Open Access

Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper / Rast i fotosinteza u vodene leće (Lemna minor L.) izložene kadmiju u kombinaciji s cinkom ili bakrom


Cite

1. Felix-Henningsen P, Urushadze T, Steffens D, Kalandadze B, Narimanidze E. Uptake of heavy metals by food crops from highly-polluted Chernozem-like soils in an irrigation district south of Tbilisi, eastern Georgia. Agronomy Research 2010;8:781-95.Search in Google Scholar

2. Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol 2005;17:21-34. doi: 10.1590/ S1677-0420200500010000310.1590/S1677-04202005000100003Search in Google Scholar

3. Prince WSPM, Senthil Kumar P, Doberschutz KD, Subburam V. Cadmium toxicity in mulberry plants with special reference to the nutritional quality of leaves. J Plant Nutr 2002;25:689-700. doi: 10.1081/PLN-12000295210.1081/PLN-120002952Search in Google Scholar

4. Nazar R, Iqbal N, Masood A, Khan MlR, Syeed S, Khan NA.Search in Google Scholar

Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 2012;3:1476-89. doi: 10.4236/ ajps.2012.31017810.4236/ajps.2012.310178Search in Google Scholar

5. Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants: a review. Environ Pollut 1997;98:29-36. doi: 10.1016/S0269-7491(97)00110-310.1016/S0269-7491(97)00110-3Search in Google Scholar

6. Siedlecka A. Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 1995;64:265-72. doi: 10.5586/asbp.1995.03510.5586/asbp.1995.035Search in Google Scholar

7. Tran TA, Popova LP. Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 2013;37:1-13. doi: 10.3906/bot-1112-1610.3906/bot-1112-16Search in Google Scholar

8. Aravind P, Prasad MNV. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. Plant Sci 2004;166:1321-7. doi: 10.1016/j.plantsci.2004.01.01110.1016/j.plantsci.2004.01.011Search in Google Scholar

9. Parmar P, Kumari N, Sharma V. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 2013;54:45. doi: 10.1186/1999-3110-54-4510.1186/1999-3110-54-45Search in Google Scholar

10. Prasad MNV. Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 1995;35:525-45. doi: 10.1016/0098-8472(95)00024-010.1016/0098-8472(95)00024-0Search in Google Scholar

11. Tkalec M, Prebeg T, Roje V, Pevalek-Kozlina B, Ljubešić N.Search in Google Scholar

Cadmium-induced responses in duckweed Lemna minor L.Search in Google Scholar

Acta Physiol Plant 2008;30:881-90. doi: 10.1007/s11738-008-0194-y10.1007/s11738-008-0194-ySearch in Google Scholar

12. Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM.Search in Google Scholar

Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 2009;150:229-43. doi: 10.1104/ pp.108.13152410.1104/pp.108.131524267572919279198Search in Google Scholar

13. Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 2002;53:1351-65. doi: 10.1093/ jexbot/53.372.135110.1093/jxb/53.372.1351Search in Google Scholar

14. Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 2003;41:391-7. doi: 10.1016/S0981-9428(03)00035-410.1016/S0981-9428(03)00035-4Search in Google Scholar

15. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol 2007;173:677-702. doi: 10.1111/j.1469-8137.2007.01996.x10.1111/j.1469-8137.2007.01996.xSearch in Google Scholar

16. Welch RM. Micronutrient nutrition of plants. Crit Rev Plant Sci 1995;14:49-82. doi: 10.1080/0735268950970192210.1080/07352689509701922Search in Google Scholar

17. Maksymiec W. Effect of copper on cellular processes in higher plants. Photosynthetica 1997;34:321-42. doi: 10.1023/A:100681881552810.1023/A:1006818815528Search in Google Scholar

18. Babu TS, Marder JB, Tripuranthakam S, Dixon DG, Greenberg BM. Synergistic effects of a photooxidized polycyclic aromatic hydrocarbon and copper on photosynthesis and plant growth: evidence that in vivo formation of reactive oxygen species is a mechanism of copper toxicity. Environ Toxicol Chem 2001;20:1351-8. doi: 10.1002/etc.562020062610.1002/etc.5620200626Search in Google Scholar

19. Kanoun-Boulé M, Vicente JAF, Nabais C, Prasad MNV, Freitas H. Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 2009;91:1-9. doi: 10.1016/j. aquatox.2008.09.009Search in Google Scholar

20. Khellaf N, Zerdaoui M. Growth response of the duckweed Lemna minor to heavy metal pollution. Iran J Environ Health Sci Eng 2009;6:161-6.Search in Google Scholar

21. Yruela I. Copper in plants. Braz J Plant Physiol 2005;17:145-56. doi: 10.1590/S1677-0420200500010001210.1590/S1677-04202005000100012Search in Google Scholar

22. Hewitt EJ. Sand and Water Culture Method Used in the Study of Plant Nutrition, 2nd ed. Technical Communication No 22.Search in Google Scholar

Farnham Royal (UK): Commonwealth Agricultural Bureaux;Search in Google Scholar

1966.Search in Google Scholar

23. Chaoui A, Ghorbal MH, El Ferjani E. Effects of cadmiumzinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Sci 1997;126:21-8. doi: 10.1016/S0168-9452(97)00090-310.1016/S0168-9452(97)00090-3Search in Google Scholar

24. Megateli S, Semsari S, Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 2009;72:1774-80. doi: 10.1016/j.ecoenv.2009.05.00410.1016/j.ecoenv.2009.05.00419505721Search in Google Scholar

25. Khellaf N, Zerdaoui M. Growth response of L. gibba (duckweed) to copper and nickel phytoaccumulation.Search in Google Scholar

Ecotoxicology 2010;19:1363-8. doi: 10.1007/s10646-010-0522-z10.1007/s10646-010-0522-z20680456Search in Google Scholar

26. Prasad MNV, Malec P, Waloszek A, Bojko M, Strzałka K.Search in Google Scholar

Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 2001;161:881-9. doi: 10.1016/S0168-9452(01)00478-210.1016/S0168-9452(01)00478-2Search in Google Scholar

27. Hassan MJ, Zhang G, Wu F, Wei K, Chen Z. Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 2005;168:255-61. doi: 10.1002/ jpln.20042040310.1002/jpln.200420403Search in Google Scholar

28. An YJ, Kim YM, Kwon TI, Jeong SW. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ 2004;326:85-93. doi: 10.1016/j.scitotenv.2004.01.00210.1016/j.scitotenv.2004.01.002Search in Google Scholar

29. Aravind P, Prasad MNV. Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 2005;17:3-20. doi: 10.1590/ S1677-0420200500010000210.1590/S1677-04202005000100002Search in Google Scholar

30. Aravind P, Prasad MNV, Malec P, Waloszek A, Strzałka K.Search in Google Scholar

Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Elem Med Biol 2009;23:50-60. doi: 10.1016/j.jtemb.2008.10.00210.1016/j.jtemb.2008.10.002Search in Google Scholar

31. Balen B, Tkalec M, Šikić S, Tolić S, Cvjetko P, Pavlica M, Vidaković-Cifrek Ž. Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicology 2011;20:815-26. doi: 10.1007/s10646-011-0633-110.1007/s10646-011-0633-1Search in Google Scholar

32. Cvjetko P, Tolić S, Šikić S, Balen B, Tkalec M, Vidaković- Cifrek Ž, Pavlica M. Effect of copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna minor L.) Arh Hig Rada Toksikol 2010;61:287-96. doi: 10.2478/10004-1254-61-2010-205910.2478/10004-1254-61-2010-2059Search in Google Scholar

33. Lewis MA. Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 1995;87:319-36. doi: 10.1016/0269-7491(94)P4164-J10.1016/0269-7491(94)P4164-JSearch in Google Scholar

34. Krajnčič B, Devidé Z. Report on photoperiodic responses in Lemnaceae from Slovenia. Berichte des Geobot Inst ETH Stiftung Rübel (Zürich) 1980;47:75-86.Search in Google Scholar

35. Pirson A, Seidel F. Zell- und stoffwechselphysiologiche Untersuchungen an der Wurzel von Lemna minor unter besonderer Berucksichtigung von Kalium- und Calciummangel [Cell metabolism and physiology in Lemna minor root deprived of potassium and calcium, in German].Search in Google Scholar

Planta 1950;38:431-73.10.1007/BF01928941Search in Google Scholar

36. ISO 20079;2005 - Water quality - Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) - Duckweed growth inhibition test. Geneva: International Organization for Standardization; 2005.Search in Google Scholar

37. ISO 11885;2009 - Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Geneva: International Organization for Standardization; 2009.Search in Google Scholar

38. Rahmani GNH, Sternberg SPK. Bioremoval of lead from water using Lemna minor. Bioresour Technol 1999;70:225-30. doi: 10.1016/S0960-8524(99)00050-410.1016/S0960-8524(99)00050-4Search in Google Scholar

39. Ensley HE, Barber JT, Polito MA, Oliver AI. Toxicity and metabolism of 2,4-dichlorophenol by the aquatic angiosperm Lemna gibba. Environ Toxicol Chem 1994;13:325-31. doi: 10.1002/etc.562013021710.1002/etc.5620130217Search in Google Scholar

40. Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 1987;148:350-82. doi: 10.1016/0076-6879(87)48036-110.1016/0076-6879(87)48036-1Search in Google Scholar

41. Maxwell K, Johnson GN. Chlorophyll fluorescence - a practical guide. J Exp Bot 2000;51:659-68. doi: 10.1093/ jexbot/51.345.65910.1093/jexbot/51.345.659Search in Google Scholar

42. Liu C-W, Lin K-H, Kuo Y-M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 2003;313:77-89. doi: 10.1016/S0048-9697(02)00683-610.1016/S0048-9697(02)00683-6Search in Google Scholar

43. Kwan KHM, Smith S. Some aspects of the kinetics of cadmium and thallium uptake by fronds of Lemna minor L. New Phytol 1991;117:91-102. doi: 10.1111/j.1469-8137.1991. tb00948.xSearch in Google Scholar

44. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 2013;35:1281-9. doi: 10.1007/s11738-012-1167-810.1007/s11738-012-1167-8Search in Google Scholar

45. Shaw BP, Sahu SK, Mishra RK. Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV, editor. Heavy metal stress in plants: from biomolecules to ecosystems. Berlin, Heidelberg: Springer; 2004. p. 84-126.10.1007/978-3-662-07743-6_4Search in Google Scholar

46. Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006;88:1707-19. doi: 10.1016/j.biochi.2006.07.00310.1016/j.biochi.2006.07.003Search in Google Scholar

47. Palmer CM, Guerinot ML. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 2009;5:333-40. doi: 10.1038/nchembio.16610.1038/nchembio.166Search in Google Scholar

48. Sun JY, Shen ZG. [Effects of Cd stress on photosynthetic characteristics and nutrient uptake of cabbages with different Cd-tolerance, in Chinese]. Ying Yong Sheng Tai Xue Bao 2007;18:2605-10. PMID: 18260471Search in Google Scholar

49. Myśliva-Kurdziel B, Prasad MNV, Strzalka K. Photosynthesis in heavy metal stressed plants. In: Prasad MNV, editor. Heavy metal stress in plants: from biomolecules to ecosystems.Search in Google Scholar

Berlin, Heidelberg: Springer; 2004. p. 146-81.Search in Google Scholar

50. Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ 1990;13:195-206. doi: 10.1111/j.1365-3040.1990.tb01304.x10.1111/j.1365-3040.1990.tb01304.xSearch in Google Scholar

51. Ralph PJ, Burchett MD. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 1998;103:91-101. doi: 10.1016/S0269-7491(98)00121-310.1016/S0269-7491(98)00121-3Search in Google Scholar

52. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001;212:475-86. doi: 10.1007/ s00425000045810.1007/s004250000458Search in Google Scholar

53. Rashid A, Bernier M, Pazdernick L, Carpentier R. Interaction of Zn2+ with the donor side of Photosystem II. Photosynth Res 1991;30:123-30. doi: 10.1007/BF0004201010.1007/BF00042010Search in Google Scholar

54. Krämer U, Talke IN, Hanikenne M. Transition metal transport. FEBS Lett 2007;581:2263-72. doi:10.1016/j. febslet.2007.04.010Search in Google Scholar

55. Frankart C, Eullaffroy P, Vernet G. Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol Environ Saf 2002;53:439-45. doi: 10.1016/S0147-6513(02)00003-910.1016/S0147-6513(02)00003-9Search in Google Scholar

56. Tkalec M, Peharec Štefanić P, Cvjetko P, Šikić S, Pavlica M, Balen B. The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS ONE 2014;9:e87582. doi: 10.1371/journal. pone.0087582 Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other