Open Access

Estimation of Heat Energy in Regeneration of Agricultural Machine Parts by Welding Methods


Cite

ASME IX QW-409 standard (2010). Electrical characteristic.Search in Google Scholar

Goldak, J., Asadi, M., Alena, R.G. (2010). Why power per unit length of weld does not characterize a weld? Computational Materials Science, 48, 390-401.10.1016/j.commatsci.2010.01.030Search in Google Scholar

Górka, J., Janicki, D., Fidali, M., Jamrozik, W. (2017). Thermographic assessment of the HAZ properties and structure of thermomechanically treated steel. International Journal Thermophysics, 38, 183. DOI 10.1007/s10765-017-2320-9.10.1007/s10765-017-2320-9Search in Google Scholar

Hrabe, P., Choteborsky, R., Navratilova, M. (2009). Influence of welding parameters on geometry of weld deposit bead. Int. Conf. Economic Eng. Manufacturing Systems, Brasov, 26-27 November 2009, Regent, 103(27), 291-294.Search in Google Scholar

Kensik, R. (2006). Assessment of linear energy in MIG / MAG processes. Welding Technology Review, 78(9-10), 5-8. (in Polish)Search in Google Scholar

Kudła, K., Wojsyk, K. (2010). Normalized linear energy and the amount of heat introduced during welding. Welding Technology Review, 82(12), 21-25. (in Polish)Search in Google Scholar

Labanowski, J., Fydrych, D., Rogalski, G., Samson, K. (2011). Underwater welding of duplex stainless steel, Solid State Phenomena, 183, 101-106.10.4028/www.scientific.net/SSP.183.101Search in Google Scholar

Liskevych, O., Scotti, A. (2015). Determination of the gross heat input in arc welding. Journal of Materials Processing Technology, 225, 139-150.10.1016/j.jmatprotec.2015.06.005Search in Google Scholar

Loos, P. (1993). Europäischer Normentwurf über die Verarbeitung ferritischer Stähle. Schweissen & Schneiden, 45(1), 59-70.Search in Google Scholar

Łabanowski, J. (2019). Corrosion-resistant steels. Gdańsk. Ed. Gdańsk University of Technology. (in Polish)Search in Google Scholar

Matkowski, P., Nowacki, J., Sajek, A. (2016). The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Archives of Civil and Mechanical Engineering, 16, 777-783.Search in Google Scholar

Nasir, N.S.M., Razab, M.K.A.A., Ahmad, M.I., Mamat, S. (2017). Influence of heat input on carbon steel microstructure. ARPN Journal of Engineering and Applied Sciences, 12, 2689-2697.Search in Google Scholar

Ostromęcka, M. (2017). Influence of linear energy on selected aspects of the quality of joints welded with a non-consumable electrode with the use of pulsed current. Welding Technology Review, 89(6), 20-23. (in Polish)Search in Google Scholar

PN-NE 1011-1 (2001). Guidelines for welding steel. Part 1. General guidelines for arc welding. (Polish standard).Search in Google Scholar

Romek, D., Selech, J., Ulbrich, D., Felusiak, A., Kieruj, P., Janeba-Baroszewicz, E., Pieniak, D. (2020). The impact of padding weld shape of agricultural machinery tools on their abrasive wear. Tribologia, 14(2), 55-62.10.5604/01.3001.0014.3740Search in Google Scholar

Sajek, A., Nowacki, J. (2018). Comparative evaluation of various experimental and numerical simulation methods for determination of t8/5 cooling times in HPAW process weldments, Archives of Civil and Mechanical Engineering, 18, 2018, 583-591.10.1016/j.acme.2017.10.001Search in Google Scholar

Winczek, J. (2011). New approach to modeling of temperature field in surfaced steel elements. International Journal of Heat and Mass Transfer, 54, 4702-4709.10.1016/j.ijheatmasstransfer.2011.06.007Search in Google Scholar

Wojsyk, K., Macherzyński, M. (2016). Determination of linear energy of welding by measuring trans-verse fields of welds. Biuletyn Instytutu Spawalnictwa, 60(5), 75-79. (in Polish)Search in Google Scholar

Wojsyk, K., Macherzyński, M., Lis, R. (2017). Ocena ilości ciepła wprowadzonego do spoin i napoin metodą pomiaru ich pól poprzecznych w konwencjonalnych i hybrydowych procesach spawalniczych. Przegląd Spawalnictwa, 89(10), 67-82.10.26628/ps.v89i10.821Search in Google Scholar