1. bookVolume 64 (2017): Issue 2 (November 2017)
Journal Details
License
Format
Journal
eISSN
2453-6725
First Published
25 Nov 2011
Publication timeframe
2 times per year
Languages
English
access type Open Access

Ceramides in the skin barrier

Published Online: 30 Nov 2017
Volume & Issue: Volume 64 (2017) - Issue 2 (November 2017)
Page range: 28 - 35
Received: 31 Oct 2016
Accepted: 07 Dec 2016
Journal Details
License
Format
Journal
eISSN
2453-6725
First Published
25 Nov 2011
Publication timeframe
2 times per year
Languages
English
Abstract

The skin barrier, which is essential for human survival on dry land, is located in the uppermost skin layer, the stratum corneum. The stratum corneum consists of corneocytes surrounded by multilamellar lipid membranes that prevent excessive water loss from the body and entrance of undesired substances from the environment. To ensure this protective function, the composition and organization of the lipid membranes is highly specialized. The major skin barrier lipids are ceramides, fatty acids and cholesterol in an approximately equimolar ratio. With hundreds of molecular species of ceramide, skin barrier lipids are a highly complex mixture that complicate the investigation of its behaviour. In this minireview, the structures of the major skin barrier lipids, formation of the stratum corneum lipid membranes and their molecular organization are described.

Keywords

[1] Banks-Schlegel S, Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981;90:732-737.10.1083/jcb.90.3.732Search in Google Scholar

[2] Behne M, Uchida Y, Seki T, de Montellano PO, Elias PM, Holleran WM. J. Invest. Dermatol. 2000;114:185.Search in Google Scholar

[3] Bouwstra JA, Gooris GS, Bras W, Downing DT. Lipid organization in pig stratum corneum. J. Lipid. Res. 1995;36:685-695.Search in Google Scholar

[4] Bouwstra JA, Gooris GS, Dubbelaar FE, Ponec M. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid. Res. 2001;42:1759-1770.Search in Google Scholar

[5] Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 1991;97:1005-1012.Search in Google Scholar

[6] Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta. 2006;1758:2080-2095.Search in Google Scholar

[7] Breathnach AS. Aspects of epidermal ultrastructure. J. Invest. Dermatol. 1975;65:2-15.10.1111/1523-1747.ep12598018Search in Google Scholar

[8] Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation. Biochim Biophys Acta. 2014;1841:441-452.10.1016/j.bbalip.2013.08.010Search in Google Scholar

[9] Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005;6:328-340.Search in Google Scholar

[10] Corkery RW. The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Colloids Surf B Biointerfaces. 2002;26:3-20.10.1016/S0927-7765(02)00034-6Search in Google Scholar

[11] Craven B. Pseudosymmetry in cholesterol monohydrate. Acta Crystallogr Sect B. 1979;35:1123-1128. 10.1107/S0567740879005719Search in Google Scholar

[12] Damien F, Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010;130:611-614.Search in Google Scholar

[13] de Jager M, Gooris G, Ponec M, Bouwstra J. Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J. Invest. Dermatol. 2004;123:911-916.Search in Google Scholar

[14] de Jager M, Groenink W, i Guivernau RB, et al. A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharmaceut. Res. 2006;23:951-960.Search in Google Scholar

[15] de Sousa Neto D, Gooris G, Bouwstra J. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem Phys Lipids. 2011;164:184-195.10.1016/j.chemphyslip.2010.12.00721238439Search in Google Scholar

[16] Elias PM. Skin barrier function. Curr. Allergy Asthma Rep. 2008;8:299-305.Search in Google Scholar

[17] Elias PM, Goerke J, Friend DS. Mammalian Epidermal Barrier Layer Lipids: Composition and Influence on Structure. J. Invest. Dermatol. 1977;69:535-546.Search in Google Scholar

[18] Elias PM, Gruber R, Crumrine D, et al. Formation and functions of the corneocyte lipid envelope (CLE). Biochim Biophys Acta. 2014;1841:314-318.10.1016/j.bbalip.2013.09.011394382124076475Search in Google Scholar

[19] Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim. Biophys. Acta. 2014;1841:280-294.Search in Google Scholar

[20] Grayson S, Elias PM. Isolation and Lipid Biochemical Characterization of Stratum Corneum Membrane Complexes: Implications for the Cutaneous Permeability Barrier. J. Invest. Dermatol. 1982;78:128-135.Search in Google Scholar

[21] Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274:1855-1859.10.1126/science.274.5294.18558943189Search in Google Scholar

[22] Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008;9:139-150.Search in Google Scholar

[23] Holleran WM, Takagi Y, Uchida Y. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580:5456-5466.10.1016/j.febslet.2006.08.03916962101Search in Google Scholar

[24] Hou SY, Mitra AK, White SH, Menon GK, Ghadially R, Elias PM. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J. Invest. Dermatol. 1991;96:215-223.Search in Google Scholar

[25] Iwai I, Han H, den Hollander L, et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215-2225.Search in Google Scholar

[26] Jakasa I, Koster ES, Calkoen F, et al. Skin barrier function in healthy subjects and patients with atopic dermatitis in relation to filaggrin loss-of-function mutations. J. Invest. Dermatol. 2011;131:540-542.Search in Google Scholar

[27] Janusova B, Zbytovska J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. Biochim Biophys Acta. 2011;1811:129-137.10.1016/j.bbalip.2010.12.00321167310Search in Google Scholar

[28] Janůšova B, Zbytovska J, Lorenc P, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. BBA-Mol. Cell Biol. L. 2011;1811:129-137.Search in Google Scholar

[29] Jennemann R, Rabionet M, Gorgas K, et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet. 2012;21:586-608.10.1093/hmg/ddr494Search in Google Scholar

[30] Jensen JM, Schutze S, Forl M, Kronke M, Proksch E. Roles for tumor necrosis factor receptor p55 and sphingomyelinase in repairing the cutaneous permeability barrier. J. Clin. Invest. 1999;104:1761-1770.10.1172/JCI5307Search in Google Scholar

[31] Jungersted JM, Scheer H, Mempel M, et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911-918. 10.1111/j.1398-9995.2010.02326.xSearch in Google Scholar

[32] Kessner D, Brezesinski G, Funari SS, Dobner B, Neubert RH. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chem Phys Lipids. 2010;163:42-50.10.1016/j.chemphyslip.2009.10.007Search in Google Scholar

[33] Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RH. Properties of ceramides and their impact on the stratum corneum structure. Part 2: stratum corneum lipid model systems. Skin Pharmacol. Physiol. 2008;21:58-74.Search in Google Scholar

[34] Kovacik A, Opalka L, Silarova M, Roh J, Vavrova K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation- -protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6:73343-73350.10.1039/C6RA16565FSearch in Google Scholar

[35] Kovačik A, Roh J, Vavrova K. The chemistry and biology of 6 hydroxyceramide, the youngest member of the human sphingolipid family. ChemBioChem. 2014;15:1555-1562.10.1002/cbic.201402153Search in Google Scholar

[36] Lampe MA, Burlingame A, Whitney J, et al. Human stratum corneum lipids: characterization and regional variations. J.Lipid Res. 1983;24:120-130.10.1016/S0022-2275(20)38005-6Search in Google Scholar

[37] Long SA, Wertz PW, Strauss JS, Downing DT. Human stratum corneum polar lipids and desquamation. Arch Dermatol Res. 1985;277:284-287.10.1007/BF00509081Search in Google Scholar

[38] Madison KC, Swartzendruber DC, Wertz PW, Downing DT. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 1987;88:714-718.Search in Google Scholar

[39] Masukawa Y, Narita H, Shimizu E, et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid. Res. 2008;49:1466-1476.Search in Google Scholar

[40] Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta. 2006;1758:923-933. 10.1016/j.bbamem.2006.04.009Search in Google Scholar

[41] Mendelsohn R, Moore DJ. Infrared determination of conformational order and phase behavior in ceramides and stratum corneum models. Methods Enzymol. 2000;312:228-247.10.1016/S0076-6879(00)12913-1Search in Google Scholar

[42] Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie. 2009;91:784-790.10.1016/j.biochi.2009.04.001Search in Google Scholar

[43] Mojumdar EH, Gooris GS, Barlow DJ, Lawrence MJ, Deme B, Bouwstra JA. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys J. 2015a;108:2670-2679.10.1016/j.bpj.2015.04.030Search in Google Scholar

[44] Mojumdar EH, Gooris GS, Bouwstra J. Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization. Soft matter. 2015b;11:4326-4336.10.1039/C4SM02786HSearch in Google Scholar

[45] Mojumdar EH, Kariman Z, van Kerckhove L, Gooris GS, Bouwstra JA. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim Biophys Acta. 2014;1838:2473-2483.10.1016/j.bbamem.2014.05.023Search in Google Scholar

[46] Mori K, Matsuda H. Syntheisi of sphingosine relatives .10. Synthesis of (2S,3R,4E)-1-O-(beta-D-glucopyranosyl)-N- 30’- (linoleoyloxy)triacontanoyl-4-icosasphingenine, a new esterified cerebroside isolated from human and pig epidermis. Liebigs Ann. Chem. 1991:529-535.10.1002/jlac.199119910197Search in Google Scholar

[47] Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Ceramide composition of the psoriatic scale. Biochim Biophys Acta. 1993;1182:147-151.10.1016/0925-4439(93)90135-NSearch in Google Scholar

[48] Muller S, Schmidt RR. Synthesis of two unique compounds, a ceramide and a cerebroside, occurring in human stratum corneum. J. Prakt. Chem. 2000;342:779-784.Search in Google Scholar

[49] Neto DD, Gooris G, Bouwstra J. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem. Phys. Lipids. 2011;164:184-195.Search in Google Scholar

[50] Norlen L. Current understanding of skin barrier morphology. Skin Pharmacol Physiol. 2013;26:213-216. 10.1159/00035193023921107Search in Google Scholar

[51] Norlen L, Nicander I, Lundsjo A, Cronholm T, Forslind B. A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch. Dermatol. Res. 1998;290:508-516.Search in Google Scholar

[52] Novotny J, Hrabalek A, Vavrova K. Synthesis and structure-activity relationships of skin ceramides. Curr Med Chem. 2010;17:2301-2324. 10.2174/09298671079133106820459376Search in Google Scholar

[53] Novotny J, Janůšova B, Novotny M, Hrabalek A, Vavrova K. Short- -chain ceramides decrease skin barrier properties. Skin Pharmacol. Physiol. 2009;22:22-30.Search in Google Scholar

[54] Opalka L, Kovačik A, Maixner J, Vavrova K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir. 2016;32:12894-12904.10.1021/acs.langmuir.6b0308227934529Search in Google Scholar

[55] Opálka L, Kováčik A, Sochorová M, et al. Scalable Synthesis of Human Ultralong Chain Ceramides. Org. Lett. 2015;17:5456-5459. Search in Google Scholar

[56] Pullmannova P, Staňkova K, Pospišilova M, Školova B, Zbytovska J, Vavrova K. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. BBA-Biomembranes. 2014;1838:2115-2126.10.1016/j.bbamem.2014.05.00124824073Search in Google Scholar

[57] Rabionet M, Bayerle A, Marsching C, et al. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid. Res. 2013;54:3312-3321.Search in Google Scholar

[58] Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim Biophys Acta. 2014;1841:422-434.10.1016/j.bbalip.2013.08.01123988654Search in Google Scholar

[59] Rerek ME, Chen H, Markovic B, et al. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355 -9362.Search in Google Scholar

[60] Robson KJ, Stewart ME, Michelsen S, Lazo ND, Downing DT. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid. Res. 1994;35:2060-2068.Search in Google Scholar

[61] Shieh H-S, Hoard LG, Nordman CE. The structure of cholesterol. Acta Crystallogr Sect B. 1981;37:1538-1543.10.1107/S0567740881006523Search in Google Scholar

[62] Schreiner V, Pfeiffer S, Lanzendorfer G, et al. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Dermatol. 2000;114:654-660.Search in Google Scholar

[63] Skolova B, Hudska K, Pullmannova P, et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J Phys Chem B. 2014;118:10460-10470.10.1021/jp506407r25122563Search in Google Scholar

[64] Skolova B, Janusova B, Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. Biochim Biophys Acta. 2016;1858:220-232.10.1016/j.bbamem.2015.11.01926615916Search in Google Scholar

[65] Skolova B, Janusova B, Zbytovska J, et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624-15633.10.1021/la403747424283654Search in Google Scholar

[66] Stahlberg S, Lange S, Dobner B, Huster D. Probing the Role of Ceramide Headgroup Polarity in Short-Chain Model Skin Barrier Lipid Mixtures by (2)H Solid-State NMR Spectroscopy. Langmuir. 2016;32:2023-2031.10.1021/acs.langmuir.5b0417326828109Search in Google Scholar

[67] Stahlberg S, Skolova B, Madhu PK, Vogel A, Vavrova K, Huster D. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by (2)H solid-state NMR spectroscopy. Langmuir. 2015;31:4906-4915.10.1021/acs.langmuir.5b0075125870928Search in Google Scholar

[68] Školová B, Hudská Kr, Pullmannová P, et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460-10470.Search in Google Scholar

[69] Školova B, Janůšova B, Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BBA-Biomembranes. 2016;1858:220-232.10.1016/j.bbamem.2015.11.019Search in Google Scholar

[70] Školová B, Janůšová B, Zbytovská J, et al. Ceramides in the skinlipid membranes: length matters. Langmuir. 2013;29:15624-15633. 10.1021/la4037474Search in Google Scholar

[71] t’Kindt R, Jorge L, Dumont E, et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography- -quadrupole time-of-flight mass spectrometry. Anal Chem. 2012;84:403-411.10.1021/ac202646v22111752Search in Google Scholar

[72] Uchida Y, Holleran WM. Omega-O-acylceramide, a lipid essential for mammalian survival. Journal of Dermatological Science. 2008;51:77-87.10.1016/j.jdermsci.2008.01.00218329855Search in Google Scholar

[73] van Smeden J, Boiten WA, Hankemeier T, Rissmann R, Bouwstra JA, Vreeken RJ. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim Biophys Acta. 2014a;1841:70-79.10.1016/j.bbalip.2013.10.00224120918Search in Google Scholar

[74] van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J. Lipid Res. 2011;52:1211-1221.10.1194/jlr.M014456309024221444759Search in Google Scholar

[75] van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta. 2014b;1841:295-313.10.1016/j.bbalip.2013.11.00624252189Search in Google Scholar

[76] Vasireddy V, Uchida Y, Salem N, et al. Hum. Mol. Genet. 2007;16:471.Search in Google Scholar

[77] Vavrova K, Henkes D, Struver K, et al. Filaggrin Deficiency Leads to Impaired Lipid Profile and Altered Acidification Pathways in a 3D Skin Construct. J Invest Dermatol. 2014;134:746-753.10.1038/jid.2013.40224061166Search in Google Scholar

[78] Wertz PW, Madison KC, Downing DT. Covalently bound lipids of human stratum corneum. J. Invest. Dermatol. 1989;92:109-111.Search in Google Scholar

[79] White SH, Mirejovsky D, King GI. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 1988;27:3725-3732.10.1021/bi00410a0313408722Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo