Open Access

Physicochemical characterization and dissolution studies of acyclovir solid dispersions with Pluronic F127 prepared by the kneading method


Cite

1. C. Cernik, K. Gallina and R. T. Brodell, The treatment of herpes simplex infections: an evidence-based review, Arch. Intern. Med.168 (2008) 1137–1144; DOI: 10.1001/archinte.168.11.1137.10.1001/archinte.168.11.1137Search in Google Scholar

2. K. S. Erlich, Management of herpes simplex and varicella-zoster virus infections, West. J. Med.166 (1997) 211–215.Search in Google Scholar

3. D. M. Thappa, Textbook of Dermatology, Leprology, and Venereology, 3rd ed., Elsevier, Gurgaon 2009, pp. 350–351.Search in Google Scholar

4. J. Arnal, I. Gonzalez-Alvarez, M. Bermejo, G. L. Amidon, H. E. Junginger, S. Kopp, K. K. Midha, V. P. Shah, S. Stavchansky, J. B. Dressman and D. M. Barends, Biowaiver monographs for immediate release solid oral dosage forms: acyclovir, J. Pharm. Sci.97 (2008) 5061–5073; DOI: 10.1002/jps.21392.10.1002/jps.21392Search in Google Scholar

5. R. Sankar and S. Jain, Approaches for enhancing the bioavailability of acyclovir: a critical review, Int. J. Pharm. Biol. Sci. 4 (2013) 623–633.Search in Google Scholar

6. K. M. Lutker, R. Quinones, J. Xu, A. Ramamoorthy and A. J. Matzger, Polymorphs and hydrates of acyclovir, J. Pharm. Sci. 3 (2011) 949–963; DOI: 10.1002/jps.22336.10.1002/jps.22336Search in Google Scholar

7. K. Terada, H. Kurobe, M. Ito, Y. Yoshihashi, E. Yonemochi, K. Fujii and H. Uekusa, Polymorphic transformation behavior of acyclovir based on the thermodynamics and crystallography, J. Therm. Anal. Calorim.113 (2013) 1261–1267; DOI: 10.1007/s10973-013-3140-1.10.1007/s10973-013-3140-1Search in Google Scholar

8. A. Kristl, S. Srcic, F. Vrecer, B. Sustar and D. Vojnovic, Polymorphism and pseudopolymorphism: influencing the dissolution properties of the guanine derivative acyclovir, Int. J. Pharm.139 (1996) 231–235; DOI: 10.1016/0378-5173(96)04601-7.10.1016/0378-5173(96)04601-7Search in Google Scholar

9. Y. T. Sohn and S. H. Kim, Polymorphism and pseudopolymorphism of acyclovir, Arch. Pharm. Res.31 (2008) 231–234; DOI: 10.1007/s12272-001-1146-x.10.1007/s12272-001-1146-x18365695Search in Google Scholar

10. P. K. Ghosh, R. J. Majithiya, M. L. Umrethia and R. S. R. Murthy, Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability, AAPS PharmSciTech.7 (2006) 172–177; DOI: 10.1208/pt070377.10.1208/pt070377275051917025257Search in Google Scholar

11. C. Von Plessing Rossel, J. S. Carreño, M. Rodríguez-Baeza and J. B. Alderete, Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase, Quimica Nova23 (2000) 749–752; DOI: 10.1590/S0100-40422000000600007.10.1590/S0100-40422000000600007Search in Google Scholar

12. T. Masuda, Y. Yoshihashi, E. Yonemochi, K. Fujii, H. Uekusa and K. Terada, Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir, Int. J. Pharm.422 (2012) 160–169; DOI: 10.1016/j.ijpharm.2011.10.046.10.1016/j.ijpharm.2011.10.04622079714Search in Google Scholar

13. D. Patel and K. K. Sawant, Oral bioavailability enhancement of acyclovir by self-microemulsifying drug delivery systems (SMEDDS), Drug Dev. Ind. Pharm.33 (2007) 1318–1326; DOI: 10.1080/03639040701385527.10.1080/0363904070138552718097805Search in Google Scholar

14. A. Kushwaha, S. K. Prajapati and B. Sharma, Comparative study of acyclovir solid dispersion for bioavailability enhancement, AJPTR1 (2011) 179–201.Search in Google Scholar

15. R. Cortesi and E. Esposito, Acyclovir delivery systems, Expert Opin. Drug Deliv.5 (2008) 1217–1230; DOI: 10.1517/17425240802450340.10.1517/17425240802450340Search in Google Scholar

16. A. Kushwaha, Solid dispersion: an approach to enhance the dissolution rate of acyclovir, Int. J. Nov. Drug Deliv. Tech.2 (2012) 291–296.Search in Google Scholar

17. N. Sachan, S. Pushkar, S. S. Solanki and D. S. Bhatere, Enhancement of solubility of acyclovir by solid dispersion and inclusion complexation methods, World Appl. Sci. J.11 (2010) 857–864.Search in Google Scholar

18. B. Karolewicz, M. Gajda, A. Owczarek, J. Pluta and A. Górniak, Physicochemical and dissolution studies of simvastatin solid dispersions with Pluronic F127, Pharmazie69 (2014) 589–594; DOI: 10.1691/ph.2014.3217.Search in Google Scholar

19. B. Karolewicz, A. Górniak, A. Owczarek, E. Żurawska-Płaksej, A. Piwowar and J. Pluta, Thermal, spectroscopic, and dissolution studies of ketoconazole–Pluronic F127 system, J. Therm. Anal. Calorim.115 (2014) 2487–2493; DOI: 10.1007/s10973-014-3661-2.10.1007/s10973-014-3661-2Search in Google Scholar

20. G. A. Shazly, M. A. Ibrahim, M. M. Badran and K. M. A. Zoheir, Utilizing Pluronic F-127 and Gelucire 50/13 solid dispersions for enhanced skin delivery of flufenamic acid, Drug Dev. Res.73 (2012) 299–307; DOI: 10.1002/ddr.21013.10.1002/ddr.21013Search in Google Scholar

21. P. Kumar, C. Mohan, M. K. S. U. Shankar and M. Gulati, Physiochemical characterization and release rate studies of solid dispersions of ketoconazole with Pluronic F127 and PVP K-30, Iran. J. Pharm. Res.10 (2011) 685–694.Search in Google Scholar

22. N. Kolašinac, K. Kachrimanis, I. Homšek, B. Grujič, Z. Ðurič and S. Ibrič, Solubility enhancement of desloratadine by solid dispersion in poloxamers, Int. J. Pharm.15 (2012) 161–170; DOI: 10.1016/j.ijpharm.2012.06.060.10.1016/j.ijpharm.2012.06.060Search in Google Scholar

23. European Pharmacopoeia, 8th ed., European Directorate for the Quality of Medicines & Healthcare, Strasbourg 2014, pp. 331–333.Search in Google Scholar

24. D. Q. M. Craig, The mechanisms of drug release from solid dispersions in water-soluble polymers, Int. J. Pharm.231 (2002) 131–144; DOI: 10.1016/S0378-5173(01)00891-2.10.1016/S0378-5173(01)00891-2Search in Google Scholar

25. T. L. Threlfall, Analysis of organic polymorphs. A review, Analyst120 (1995) 2435–2460; DOI: 10.1039/AN9952002435.10.1039/an9952002435Search in Google Scholar

26. M. G. Issa and H. G. Ferraz, Intrinsic dissolution as a tool for evaluating drug solubility in accordance with the Biopharmaceutics Classification System, Dissol. Technol.18 (2011) 6–13; DOI: 10.14227/DT180311P6.10.14227/DT180311P6Search in Google Scholar

27. L. X. Yu, A. S. Carlin, G. L. Amidon and A. S. Hussain, Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs, Int. J. Pharm.270 (2004) 221–227; DOI: 10.1016/j.ijpharm.2003.10.016.10.1016/j.ijpharm.2003.10.01614726137Search in Google Scholar

28. L. X. Yu, G. L. Amidon, J. E. Polli, H. Zhao, M. U. Mehta, D. P. Conner, V. P. Shah, L. J. Lesko, M. Chen, V. H. L. Lee and A. S. Hussain, Biopharmaceutics classification system: The scientific basis for biowaiver extensions, Pharm. Res.19 (2002) 921–925; DOI: 10.1023/A:1016473601633.10.1023/A:1016473601633Search in Google Scholar

29. P. Zakeri-Milani, M. Barzegar-Jalali, M. Azimi and H. Valizadeh, Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability, Eur. J. Pharm. Biopharm. 73 (2009) 102–106; DOI: 10.1016/j.ejpb.2009.04.015.10.1016/j.ejpb.2009.04.01519442726Search in Google Scholar

30. M. El-Badry, M. A. Hassan, M. A. Ibrahim and H. Elsaghir, Performance of Poloxamer 407 as hydrophilic carrier on the binary mixtures with nimesulide, Farmacia61 (2013) 1137–1150.Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other