1. bookVolume 38 (2015): Issue 2 (October 2015)
Journal Details
First Published
08 Sep 2014
Publication timeframe
2 times per year
access type Open Access

Canine Adipose-Derived Stem Cell Aggregates as a Viable Substitute to Actual Canine Dermal Papillae

Published Online: 18 Nov 2015
Volume & Issue: Volume 38 (2015) - Issue 2 (October 2015)
Page range: 167 - 173
Received: 28 Feb 2015
Accepted: 24 Apr 2015
Journal Details
First Published
08 Sep 2014
Publication timeframe
2 times per year

Hair loss is a major dermatological disease in veterinary and human medicine. Active studies on hair regeneration with mesenchymal stem cells have been performed in an effort to solve the limitations of conservative treatments in human medicine. Our understanding of the canine hair follicle (HF), considering a useful model for the study of the human alopecia, is limited. This study was designed to broaden our understanding of canine dermal papilla (DP), and to reconstruct dermal papilla-like tissue (DPLT) using canine adipose-derived mesenchymal stem cells (AD-MSCs), as an alternative to actual DP. We cultured canine DPs, observed their culture patterns and compared their expression level of DP-related genes and proteins with those of DPLTs by performing RT-PCR analysis and Western blotting. Canine dermal papilla cells (DPCs) showed multilayer culture patterns with pseudo-papillae. Reconstruction of DPLTs was performed successfully. Not only were they morphologically similar to actual DPs, but we also observed similarities between DPCs and DPLTs in molecular characteristics. These findings suggested that DPLT was a viable substitute for DP. This study will not only be helpful for understanding the morphological and molecular characteristics of canine DPCs, but may also serve as a basis for understanding human hair follicle biology and potential therapeutic strategies for alopecia.


1. Kobayashi, T., Fujisawa, A., Amagai, M., Iwasaki, T., Ohyama, M. (2011). Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions.10.1111/j.1365-3164.2011.00964.x21410799Search in Google Scholar

Vet Dermatol, 22(5): 414-422. http://dx.doi.org/10.1111/j.1365-3164.2011.00964.x PMid:2141079910.1111/j.1365-3164.2011.00964.xSearch in Google Scholar

2. Tobin, D., Gardner, S., Luther, P., Dunston, S., Lindsey, N., Olivry, T. (2003). A natural canine homologue of alopecia areata in humans. Br J Dermatol, 149(5): 938-950. http://dx.doi.org/10.1111/j.1365-2133.2003.05610.x PMid:1463279710.1111/j.1365-2133.2003.05610.x14632797Search in Google Scholar

3. Al-Refu, K. (2012). Stem cells and alopecia: a review of pathogenesis. Br J Dermatol, 167(3): 479-484. http://dx.doi.org/10.1111/j.1365-2133.2012.11018.x PMid:2253355110.1111/j.1365-2133.2012.11018.x22533551Search in Google Scholar

4. Yoo, BY., Shin, YH., Yoon, HH., Seo, YK., Song, KY., Park, JK. (2010). Optimization of the reconstruction of dermal papilla like tissues employing umbilical cord mesenchymal stem cells. Biotechnol Bioprocess Eng, 15(1): 182-190. http://dx.doi.org/10.1007/s12257-009-3050-z10.1007/s12257-009-3050-zSearch in Google Scholar

5. Yoo, BY., Shin, YH., Yoon, HH., Seo, YK., Song, KY., Park, JK. (2010). Application of mesenchymal stem cells derived from bone marrow and umbilical cord in human hair multiplication. J Dermatol Sci, 60(2): 74-83. http://dx.doi.org/10.1016/j.jdermsci.2010.08.01710.1016/j.jdermsci.2010.08.01720956069Search in Google Scholar

PMid:20956069Search in Google Scholar

6. Mc Elwee, KJ., Kissling, S., Wenzel, E., Huth, A., Hoffmann, R. (2003). Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla.10.1111/j.1523-1747.2003.12568.x14675169Search in Google Scholar

J Invest Dermatol, 121(6): 1267-1275. http://dx.doi.org/10.1111/j.1523-1747.2003.12568.x PMid:1467516910.1111/j.1523-1747.2003.12568.xSearch in Google Scholar

7. Yoo BY, Shin YH, Yoon HH, Kim YJ, Song KY, Hwang SJ, et al. (2007). Improved isolation of outer root sheath cells from human hair follicles and their proliferation behavior under serum-free condition.10.1007/BF02931804Search in Google Scholar

Biotechnol Bioprocess Eng;12(1):59. http://dx.doi.org/10.1007/BF0293180410.1007/BF02931804Search in Google Scholar

8. Gledhill, K., Gardner, A., Jahoda, CA. (2013).Search in Google Scholar

Isolation and establishment of hair follicle dermal papilla cell cultures. Methods Mol Biol, 989, 285-292. http://dx.doi.org/10.1007/978-1-62703-330-5_2210.1007/978-1-62703-330-5_2223483403Search in Google Scholar

PMid:23483403Search in Google Scholar

9. Chuong, CM. (2007). Regenerative biology: new hair from healing wounds. Nature 447(7142): 265-266. http://dx.doi.org/10.1038/447265a PMid:17507966; PMCid:PMC437723110.1038/447265a437723117507966Search in Google Scholar

10. Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, SE., et al. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447(7142): 316-320. http://dx.doi.org/10.1038/nature0576610.1038/nature0576617507982Search in Google Scholar

PMid:17507982Search in Google Scholar

11. Kishimoto, J., Burgeson, RE., Morgan, BA. (2000).Search in Google Scholar

Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev, 14(10): 1181-1185.10.1101/gad.14.10.1181Search in Google Scholar

PMid:10817753; PMCid:PMC316619Search in Google Scholar

12. Rendl, M., Lewis, L., Fuchs, E. (2005). Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol, 3(11):e331. http://dx.doi.org/10.1371/journal.pbio.003033110.1371/journal.pbio.0030331121632816162033Search in Google Scholar

PMid:16162033; PMCid:PMC1216328Search in Google Scholar

13. Rendl, M., Polak, L., Fuchs, E. (2008). BMP signaling in dermal papilla cells is required for their hair follicleinductive properties. Genes Dev, 22(4): 543-557. http://dx.doi.org/10.1101/gad.161440810.1101/gad.1614408223867418281466Search in Google Scholar

PMid:18281466; PMCid:PMC2238674Search in Google Scholar

14. Schneider, MR., Schmidt-Ullrich, R., Paus, R. (2009).Search in Google Scholar

The hair follicle as a dynamic miniorgan. Curr Biol, 19(3): R132-142. http://dx.doi.org/10.1016/j.cub.2008.12.00510.1016/j.cub.2008.12.00519211055Search in Google Scholar

PMid:19211055Search in Google Scholar

15. Yang, CC., Cotsarelis, G. (2010). Review of hair follicle dermal cells. J Dermtol Sci, 57(1): 2-11. http://dx.doi.org/10.1016/j.jdermsci.2009.11.00510.1016/j.jdermsci.2009.11.005281877420022473Search in Google Scholar

PMid:20022473; PMCid:PMC2818774Search in Google Scholar

16. Schlake, T. (2007). Determination of hair structure and shape. Semin Cell Dev Biol, 18(2): 267-273. http://dx.doi.org/10.1016/j.semcdb.2007.01.00510.1016/j.semcdb.2007.01.00517324597Search in Google Scholar

PMid:17324597Search in Google Scholar

17. Kim, H., Choi, K., Kweon, OK., Kim, WH. (2012).Search in Google Scholar

Enhanced wound healing effect of canine adiposederived mesenchymal stem cells with low-level laser therapy in athymic mice. J Dermatol Sci, 68(3): 149-156. http://dx.doi.org/10.1016/j.jdermsci.2012.09.01310.1016/j.jdermsci.2012.09.01323084629Search in Google Scholar

PMid:23084629Search in Google Scholar

18. Ryu, HH., Lim, JH., Byeon, YE. et al. (2009).Search in Google Scholar

Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury.Search in Google Scholar

J Vet Sci, 10(4): 273-284. http://dx.doi.org/10.4142/jvs.2009.10.4.27310.4142/jvs.2009.10.4.273280726219934591Search in Google Scholar

PMid:19934591; PMCid:PMC2807262Search in Google Scholar

19. Müntener, T., Doherr, MG., Guscetti, F., Suter, MM., Welle, MM. (2011). The canine hair cycle- a guide for the assessment of morphological and immunohistochemical criteria. Vet Dermatol, 22(5): 383-395. http://dx.doi.org/10.1111/j.1365-3164.2011.00963.x PMid:2140174110.1111/j.1365-3164.2011.00963.x21401741Search in Google Scholar

20. Warren, R., Chestnut, MH., Wong, TK., Otte, TE., Lammers, KM., Meili, ML. (1992). Improved method for the isolation and cultivation of human scalp dermal papilla cells. J Invest Dermatol, 98(5): 693-699. http://dx.doi.org/10.1111/1523-1747.ep1249990910.1111/1523-1747.ep124999091569320Search in Google Scholar

PMid:1569320Search in Google Scholar

21. Bratka-Robia, CB., Mitteregger, G., Aichinger, A., Egerbacher, M., Helmreich, M., Bamberg, E. (2002). Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts. Vet Dermatol, 13(1): 1-6. http://dx.doi.org/10.1046/j.0959-4493.2001.00276.x PMid:1189696410.1046/j.0959-4493.2001.00276.x11896964Search in Google Scholar

22. Magerl, M., Kauser, S., Paus, R., Tobin, DJ. (2002).Search in Google Scholar

Simple and rapid method to isolate and culture follicular papillae from human scalp hair follicles.Search in Google Scholar

Exp Dermatol, 11(4): 381-385. http://dx.doi.org/10.1034/j.1600-0625.2002.110414.x PMid:1219094910.1034/j.1600-0625.2002.110414.x12190949Search in Google Scholar

23. Yoo, BY., Shin, YH., Yoon, HH., Kim, YJ., Seo, YK. (2009). Evaluation of human umbilical cord-derived mesenchymal stem cells on in vivo hair inducing activity. J Tissue Eng Regen Med, 6(1): 15-22.Search in Google Scholar

24. Soma, T., Tajima, M., Kishimoto, J. (2005). Hair cycle-specific expression of versican in human hair follicles. J Dermatol Sci, 39(3): 147-154. http://dx.doi.org/10.1016/j.jdermsci.2005.03.01010.1016/j.jdermsci.2005.03.01015871917Search in Google Scholar

PMid:15871917Search in Google Scholar

25. Kobayashi, T., Shimizu, A., Nishifuji, K., Amagai, M., Iwasaki, T., Ohyama, M. (2009). Canine hair-follicle keratinocytes enriched with bulge cells have the highly proliferative characteristic of stem cells. Vet Dermatol, 20(5-6): 338-346. http://dx.doi.org/10.1111/j.1365-3164.2009.00815.x PMid:2017847010.1111/j.1365-3164.2009.00815.x20178470Search in Google Scholar

26. Osada, A., Iwabuchi, T., Kishimoto, J., Hamazaki, TS., Okochi, H. (2007). Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng, 13(5): 975-982. http://dx.doi.org/10.1089/ten.2006.030410.1089/ten.2006.030417341162Search in Google Scholar

PMid:17341162Search in Google Scholar

27. Gao, J., DeRouen, MC., Chen, C-H., Nguyen, M., Nguyen, NT., Ido, H., et al. (2008). Laminin-511 is an epithelial message promoting dermal papilla development and function during early hair morphogenesis. Genes Dev, 22(15): 2111-2124. http://dx.doi.org/10.1101/gad.168990810.1101/gad.1689908249275218676816Search in Google Scholar

PMid:18676816; PMCid:PMC2492752Search in Google Scholar

28. Driskell, RR., Clavel, C., Rendl, M., Watt, FM. (2011). Hair follicle dermal papilla cells at a glance.10.1242/jcs.082446311577121444748Search in Google Scholar

J Cell Sci, 124(8): 1179-1182. http://dx.doi.org/10.1242/jcs.08244610.1242/jcs.082446311577121444748Search in Google Scholar

PMid:21444748; PMCid:PMC3115771 Search in Google Scholar

29. Ehama, R., Ishimatsu-Tsuji, Y., Iriyama, S., Ideta, R., Soma, T., Yano, K., et al. (2007). Hair follicle regeneration using grafted rodent and human cells. J Invest Dermatol, 127(9): 2106-2115. http://dx.doi.org/10.1038/sj.jid.570082310.1038/sj.jid.570082317429436Search in Google Scholar

PMid:17429436Search in Google Scholar

30. Won, CH., Kwon, OS., Sung, MY. et al. (2010). Hair growth promoting effects of adipose tissue-derived stem cells. J Dermatol Sci, 57, 132-146. http://dx.doi.org/10.1016/j.jdermsci.2009.10.01310.1016/j.jdermsci.2009.10.01319963355Search in Google Scholar

PMid:19963355 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo