Zeszyty czasopisma

AHEAD OF PRINT

Tom 44 (2022): Zeszyt 3 (September 2022)

Tom 44 (2022): Zeszyt 2 (June 2022)

Tom 44 (2022): Zeszyt 1 (March 2022)

Tom 43 (2021): Zeszyt 4 (December 2021)

Tom 43 (2021): Zeszyt 3 (September 2021)

Tom 43 (2021): Zeszyt 2 (June 2021)

Tom 43 (2021): Zeszyt s1 (December 2021)
Special Zeszyt: Underground Infrastructure of Urban Areas

Tom 43 (2021): Zeszyt 1 (April 2021)

Tom 42 (2020): Zeszyt 4 (December 2020)

Tom 42 (2020): Zeszyt 3 (September 2020)

Tom 42 (2020): Zeszyt 2 (June 2020)

Tom 42 (2020): Zeszyt 1 (April 2020)

Tom 41 (2019): Zeszyt 4 (December 2019)

Tom 41 (2019): Zeszyt 3 (September 2019)

Tom 41 (2019): Zeszyt 2 (June 2019)

Tom 41 (2019): Zeszyt 1 (April 2019)

Tom 40 (2018): Zeszyt 4 (December 2018)

Tom 40 (2018): Zeszyt 3 (November 2018)

Tom 40 (2018): Zeszyt 2 (October 2018)

Tom 40 (2018): Zeszyt 1 (July 2018)

Tom 39 (2017): Zeszyt 4 (December 2017)

Tom 39 (2017): Zeszyt 3 (September 2017)

Tom 39 (2017): Zeszyt 2 (June 2017)

Tom 39 (2017): Zeszyt 1 (March 2017)

Tom 38 (2016): Zeszyt 4 (December 2016)

Tom 38 (2016): Zeszyt 3 (September 2016)

Tom 38 (2016): Zeszyt 2 (June 2016)

Tom 38 (2016): Zeszyt 1 (March 2016)

Tom 37 (2015): Zeszyt 4 (December 2015)

Tom 37 (2015): Zeszyt 3 (September 2015)

Tom 37 (2015): Zeszyt 2 (June 2015)

Tom 37 (2015): Zeszyt 1 (March 2015)

Tom 36 (2014): Zeszyt 4 (December 2014)

Tom 36 (2014): Zeszyt 3 (September 2014)

Tom 36 (2014): Zeszyt 2 (June 2014)

Tom 36 (2014): Zeszyt 1 (March 2014)

Tom 35 (2013): Zeszyt 4 (December 2013)

Tom 35 (2013): Zeszyt 3 (September 2013)

Tom 35 (2013): Zeszyt 2 (June 2013)

Tom 35 (2013): Zeszyt 1 (March 2013)

Tom 34 (2012): Zeszyt 4 (December 2012)

Tom 34 (2012): Zeszyt 3 (September 2012)

Tom 34 (2012): Zeszyt 2 (June 2012)

Tom 34 (2012): Zeszyt 1 (March 2012)

Informacje o czasopiśmie
Format
Czasopismo
eISSN
2083-831X
Pierwsze wydanie
09 Nov 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Wyszukiwanie

Tom 42 (2020): Zeszyt 3 (September 2020)

Informacje o czasopiśmie
Format
Czasopismo
eISSN
2083-831X
Pierwsze wydanie
09 Nov 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Wyszukiwanie

9 Artykułów
Otwarty dostęp

Supervised probabilistic failure prediction of tuned mass damper-equipped high steel frames using machine learning methods

Data publikacji: 30 Sep 2020
Zakres stron: 179 - 190

Abstrakt

Abstract

In this study, firstly, the behavior of a high steel frame equipped with tuned mass damper (TMD) due to several seismic records is investigated considering the structural and seismic uncertainties. Then, machine learning methods including artificial neural networks (ANN), decision tree (DT), Naïve Bayes (NB) and support vector machines (SVM) are used to predict the behavior of the structure. Results showed that among the machine learning models, SVM with Gaussian kernel has better performance since it is capable of predicting the drift of stories and the failure probability with R2 value equal to 0.99. Furthermore, results of feature selection algorithms revealed that when using TMD in high steel structures, seismic uncertainties have greater influences on drift of stories in comparison with structural uncertainties. Findings of this study can be used in design and probabilistic analysis of high steel frames equipped with TMDs.

Słowa kluczowe

  • Failure analysis
  • supervised machine learning
  • feature selection
  • tuned mass damper
Otwarty dostęp

The influence of the soil constitutive models on the seismic analysis of pile-supported wharf structures with batter piles in cut-slope rock dike

Data publikacji: 05 Jul 2020
Zakres stron: 191 - 209

Abstrakt

Abstract

In coastal regions, earthquakes caused severe damage to marine structures. Many researchers have conducted numerical investigations in order to understand the dynamic behavior of these structures. The most frequently used model in numerical calculations of soil is the linear-elastic perfectly plastic model with a Mohr-Coulomb failure criterion (MC model). It is recommended to use this model to represent a first-order approximation of soil behavior. Therefore, it is necessary to accommodate soil constitutive models for the specific geotechnical problems.

In this paper, three soil constitutive models with different accuracy were applied by using the two-dimensional finite element software PLAXIS to study the behavior of pile-supported wharf embedded in rock dike, under the 1989 Loma Prieta earthquake. These models are: a linear-elastic perfectly plastic model (MC model), an elastoplastic model with isotropic hardening (HS model), and the Hardening Soil model with an extension to the small-strain stiffness (HSS model).

A typical pile-supported wharf structure with batter piles from the western United States ports was selected to perform the study. The wharf included cut-slope (sliver) rock dike configuration, which is constituted by a thin layer of rockfill overlaid by a slope of loose sand. The foundation soil and the backfill soil behind the wharf were all dense sand. The soil parameters used in the study were calibrated in numerical soil element tests (Oedometer and Triaxial tests).

The wharf displacement and pore pressure results obtained using models with different accuracy were compared to the numerical results of Heidary-Torkamani et al.[28] It was found that the Hardening Soil model with small-strain stiffness (HSS model) gives clearly better results than the MC and HS models.

Afterwards, the pile displacements in sloping rockfill were analyzed. The displacement time histories of the rock dike at the top and at the toe were also exposed. It can be noted that during the earthquake there was a significant lateral ground displacement at the upper part of the embankment due to the liquefaction of loose sand. This movement caused displacement at the dike top greater than its displacement at the toe. Consequently, the behavior of the wharf was affected and the pile displacements were important, specially the piles closest to the dike top.

Słowa kluczowe

  • iles
  • wharf
  • cut-slope rock dike
  • finite element analysis
  • seismic
  • soil constitutive models
Otwarty dostęp

Heave analysis of shallow foundations founded in swelling clayey soil at N’Gaous city in Algeria

Data publikacji: 07 Jul 2020
Zakres stron: 210 - 221

Abstrakt

Abstract

The design of shallow foundations on swelling soils needs a thorough study to evaluate the effect of swelling potential soil on the final foundation heave. For this reason, a simple analytical approach based on the soil stress state under the foundation can be used to calculate the foundation heave. This paper reports a set of analytical and numerical analysis using the finite-difference code (FLAC 3D), performed on an isolated shallow foundation founded on a swelling soil mass at N’Gaous city in Batna Province, Algeria, subjected to distributed vertical loads. Further, the influence of some parameters on total heave was analyzed, such as the embedded foundation and soil stiffness. The analysis results from the proposed 3D modelling was compared and discussed with analytical results. The numerical results obtained show a good agreement with the analytical solutions based on oedometer tests proposed in the literature, and deliver a satisfactory prediction of the heave of the shallow foundations.

Słowa kluczowe

  • Clayey soils
  • swelling
  • analytical approach
  • foundation heave
  • numerical modelling
Otwarty dostęp

Model experiments to assess effect of cavities on bearing capacity of two interfering superficial foundations resting on granular soil

Data publikacji: 13 Jun 2020
Zakres stron: 222 - 231

Abstrakt

Abstract

The objective of this paper is to describe the effect of cavities on the bearing capacity of two interfering footings based on granular soil using an exclusively experimental approach with a test model designed in the laboratory. The experimental protocol was carried out based on the variation of several parameters such as the spacing (x) (axis to axis) between the footings, and the distance (H) between the footings and cavities and between the cavities axes (L). The results highlight the effect of cavities and the interference of two strip footings on the bearing capacity factor (q) and efficiency factor (EF). Moreover, the results revealed that, in the case wherein the distance between the footings and the cavity is greater than 3, the cavity impact is eliminated.

Słowa kluczowe

  • Bearing capacity
  • shallow foundations
  • cavities
  • interference effect
  • model test
  • granular soil
Otwarty dostęp

Analysis of the Collapse Gradient of Deep Water Horizontal Wellbore and the Effects of Mud Chemical Activity and Variation in Water Depth

Data publikacji: 09 Apr 2020
Zakres stron: 232 - 241

Abstrakt

Abstract

Wellbore collapse is an instability-event that occurs at low mud density and leads to unfavorable economic project, reaching billions of US dollars. Thus, it is important to accurately determine its value, especially in deepwater horizontal wellbores. The main reasons for nontrivial problems with such wellbores are evident: the shale encountered are anisotropic in nature and possess planes of weakness; they react with water-based mud, generate osmotic stresses, swell, and fall unto the wellbore bottom, thereby increasing the non-productive time. To this end, salts are added to reduce the collapse tendency, but it is not currently known what amount of salt addition maintains stability, and does not lead to wellbore fracture; in deepwater, the current trend in global warming means there is a future concern to the industry. As the climate temperature increases, more ice melts from the polar region, the seawater expands and the sea level rises. How to incorporate the corresponding effect on collapse gradient is scarcely known. This study captures the major concerns stated above into wellbore stability analysis. Following the classical approach for geomechanical analysis, Mogi-Coulomb criterion was combined with a constitutive stress equation comprising contributions from mechanical and osmotic potentials of mud and shale. A sophisticated industry model was used to consider the deepwater effect. The results show significant reduction in collapse gradient as the water depth increases, also, larger difference between the mud and shale chemical activities represents higher complexities in the wellbore. In addition, the reduction in the chemical activities of mud limited to 37.5% of the initial value can be practically safe.

Słowa kluczowe

  • Mogi-Coulomb criterion
  • collapse gradient
  • horizontal well
  • deepwater
  • chemical activity
Otwarty dostęp

Application of non-classical operational calculus to indicate hazards in numerical solutions of engineering problems

Data publikacji: 26 Jun 2020
Zakres stron: 242 - 247

Abstrakt

Abstract

The article addresses the application of non-classical operational calculus to approximative solutions of engineering problems. The engineering-sound examples show that a continuous–discrete problem transformation from differential unequivocal problem to a differential wildcard problem, triggering a change in solution quality. A number of approximative methods are capable to alter both quantitative and qualitative solution effects.

Słowa kluczowe

  • approximative computation
  • non-classical operational calculus
  • quantity analysis
Otwarty dostęp

Volumetric behavior of natural swelling soil on drying-wetting paths. Application to the Boumagueur marl -Algeria-

Data publikacji: 29 Apr 2020
Zakres stron: 248 - 262

Abstrakt

Abstract

This article presents the results of experimental work carried out both in situ (coring; pressuremeter test) and in the laboratory (drying-wetting and oedometric tests) to describe the volumetric behavior on drying-wetting path of a swelling clayey soil of eastern Algeria. In order to perform drying-wetting tests the osmotic technique and saturated salts solutions were used. These suction-imposed methods have gained widespread acceptance as reliable methods for imposing suction on soil specimens. They allowed to sweep a wide range of suctions between 0 and 500 MPa. The ability to impose suction on soil specimens allows for drying and wetting stress paths to be applied to evaluate resulting changes in state parameters (void ratio, degree of saturation and water content). These paths were carried out on specimens with different initial states. Slurries of soil were used to characterize the reference behavior, while the undisturbed soil samples allow to describe the behavior of material under in situ conditions. In the last part of this article and to specify the behavior observed in the saturated domain, a comparison between the resulting deformations of the drying-wetting test and those resulting from the oedometric test was made.

Słowa kluczowe

  • Suction
  • Shrinkage
  • Swelling
  • drying-wetting
  • undisturbed soil
  • slurry
  • volumetric behavior
Otwarty dostęp

Influence of the heterogeneity of a dump soil on the assessment of its selected properties

Data publikacji: 30 Sep 2020
Zakres stron: 263 - 275

Abstrakt

Abstract

This article concerns the assessment of selected physical and mechanical properties of a dump soil. The dump soil is a specific soil with a very heterogeneous internal structure. Next to each other, there may be lumps and crumbs of cohesive soils mixed with non-cohesive soils accompanied by a very diverse admixture of organic substance. In addition, the soil in the waste dump, in spatial terms, may significantly differ in consistency and density. This is the result of the process of forming a dump soil, which takes place in three stages: excavation, transport and dumping. A heterogeneous soil deposited within the waste dump is subject to further processes: consolidation, compaction and creeping. Changes occurring in the course of these processes have a significant impact on the development of the properties of the dump soil.

Due to the large diversity of the tested soils, the results of their properties were divided into two groups, based on type and consistency of soil. This allows us to estimate the selected properties of the dump soil only on the basis of their macroscopic analysis.

Słowa kluczowe

  • dump soil
  • soil properties
  • shear strength
  • laboratory tests
  • heterogeneity
Otwarty dostęp

Testing the rocks loosening process by undercutting anchors

Data publikacji: 09 Jul 2020
Zakres stron: 276 - 290

Abstrakt

Abstract

The method of unconventional solid rock loosening with undercutting anchors and the literature analysis of the problem are presented. The tests and test results of the rocks loosening process with a fixed undercutting anchor are described. The tests were carried out within the RODEST project, OPUS 10 competition No. 2015/19/B/ST10/02817, financed by the National Science Centre. Numerical modeling process as well as a series of laboratory and in situ tests were carried out. The test stand equipment and methodology for the in situ tests are presented. The tests were conducted in four mines, which allowed to obtain and determine the following characteristics:

loosening force as a function of anchoring depth (for a given type of rock),

the range of rock loosening in a function of anchoring depth (for a given type of rock), and

loosened rock volume as a function of anchoring depth (for a given type of rock).

The in situ test results are compared with the concrete capacity design (CCD) model used for the calculation of anchor load capacity in concrete.

Słowa kluczowe

  • destroying the integrity of rocks
  • tearing out rock fragments
  • mine rescue operations
  • unconventional rock cutting
  • rock strength tests
9 Artykułów
Otwarty dostęp

Supervised probabilistic failure prediction of tuned mass damper-equipped high steel frames using machine learning methods

Data publikacji: 30 Sep 2020
Zakres stron: 179 - 190

Abstrakt

Abstract

In this study, firstly, the behavior of a high steel frame equipped with tuned mass damper (TMD) due to several seismic records is investigated considering the structural and seismic uncertainties. Then, machine learning methods including artificial neural networks (ANN), decision tree (DT), Naïve Bayes (NB) and support vector machines (SVM) are used to predict the behavior of the structure. Results showed that among the machine learning models, SVM with Gaussian kernel has better performance since it is capable of predicting the drift of stories and the failure probability with R2 value equal to 0.99. Furthermore, results of feature selection algorithms revealed that when using TMD in high steel structures, seismic uncertainties have greater influences on drift of stories in comparison with structural uncertainties. Findings of this study can be used in design and probabilistic analysis of high steel frames equipped with TMDs.

Słowa kluczowe

  • Failure analysis
  • supervised machine learning
  • feature selection
  • tuned mass damper
Otwarty dostęp

The influence of the soil constitutive models on the seismic analysis of pile-supported wharf structures with batter piles in cut-slope rock dike

Data publikacji: 05 Jul 2020
Zakres stron: 191 - 209

Abstrakt

Abstract

In coastal regions, earthquakes caused severe damage to marine structures. Many researchers have conducted numerical investigations in order to understand the dynamic behavior of these structures. The most frequently used model in numerical calculations of soil is the linear-elastic perfectly plastic model with a Mohr-Coulomb failure criterion (MC model). It is recommended to use this model to represent a first-order approximation of soil behavior. Therefore, it is necessary to accommodate soil constitutive models for the specific geotechnical problems.

In this paper, three soil constitutive models with different accuracy were applied by using the two-dimensional finite element software PLAXIS to study the behavior of pile-supported wharf embedded in rock dike, under the 1989 Loma Prieta earthquake. These models are: a linear-elastic perfectly plastic model (MC model), an elastoplastic model with isotropic hardening (HS model), and the Hardening Soil model with an extension to the small-strain stiffness (HSS model).

A typical pile-supported wharf structure with batter piles from the western United States ports was selected to perform the study. The wharf included cut-slope (sliver) rock dike configuration, which is constituted by a thin layer of rockfill overlaid by a slope of loose sand. The foundation soil and the backfill soil behind the wharf were all dense sand. The soil parameters used in the study were calibrated in numerical soil element tests (Oedometer and Triaxial tests).

The wharf displacement and pore pressure results obtained using models with different accuracy were compared to the numerical results of Heidary-Torkamani et al.[28] It was found that the Hardening Soil model with small-strain stiffness (HSS model) gives clearly better results than the MC and HS models.

Afterwards, the pile displacements in sloping rockfill were analyzed. The displacement time histories of the rock dike at the top and at the toe were also exposed. It can be noted that during the earthquake there was a significant lateral ground displacement at the upper part of the embankment due to the liquefaction of loose sand. This movement caused displacement at the dike top greater than its displacement at the toe. Consequently, the behavior of the wharf was affected and the pile displacements were important, specially the piles closest to the dike top.

Słowa kluczowe

  • iles
  • wharf
  • cut-slope rock dike
  • finite element analysis
  • seismic
  • soil constitutive models
Otwarty dostęp

Heave analysis of shallow foundations founded in swelling clayey soil at N’Gaous city in Algeria

Data publikacji: 07 Jul 2020
Zakres stron: 210 - 221

Abstrakt

Abstract

The design of shallow foundations on swelling soils needs a thorough study to evaluate the effect of swelling potential soil on the final foundation heave. For this reason, a simple analytical approach based on the soil stress state under the foundation can be used to calculate the foundation heave. This paper reports a set of analytical and numerical analysis using the finite-difference code (FLAC 3D), performed on an isolated shallow foundation founded on a swelling soil mass at N’Gaous city in Batna Province, Algeria, subjected to distributed vertical loads. Further, the influence of some parameters on total heave was analyzed, such as the embedded foundation and soil stiffness. The analysis results from the proposed 3D modelling was compared and discussed with analytical results. The numerical results obtained show a good agreement with the analytical solutions based on oedometer tests proposed in the literature, and deliver a satisfactory prediction of the heave of the shallow foundations.

Słowa kluczowe

  • Clayey soils
  • swelling
  • analytical approach
  • foundation heave
  • numerical modelling
Otwarty dostęp

Model experiments to assess effect of cavities on bearing capacity of two interfering superficial foundations resting on granular soil

Data publikacji: 13 Jun 2020
Zakres stron: 222 - 231

Abstrakt

Abstract

The objective of this paper is to describe the effect of cavities on the bearing capacity of two interfering footings based on granular soil using an exclusively experimental approach with a test model designed in the laboratory. The experimental protocol was carried out based on the variation of several parameters such as the spacing (x) (axis to axis) between the footings, and the distance (H) between the footings and cavities and between the cavities axes (L). The results highlight the effect of cavities and the interference of two strip footings on the bearing capacity factor (q) and efficiency factor (EF). Moreover, the results revealed that, in the case wherein the distance between the footings and the cavity is greater than 3, the cavity impact is eliminated.

Słowa kluczowe

  • Bearing capacity
  • shallow foundations
  • cavities
  • interference effect
  • model test
  • granular soil
Otwarty dostęp

Analysis of the Collapse Gradient of Deep Water Horizontal Wellbore and the Effects of Mud Chemical Activity and Variation in Water Depth

Data publikacji: 09 Apr 2020
Zakres stron: 232 - 241

Abstrakt

Abstract

Wellbore collapse is an instability-event that occurs at low mud density and leads to unfavorable economic project, reaching billions of US dollars. Thus, it is important to accurately determine its value, especially in deepwater horizontal wellbores. The main reasons for nontrivial problems with such wellbores are evident: the shale encountered are anisotropic in nature and possess planes of weakness; they react with water-based mud, generate osmotic stresses, swell, and fall unto the wellbore bottom, thereby increasing the non-productive time. To this end, salts are added to reduce the collapse tendency, but it is not currently known what amount of salt addition maintains stability, and does not lead to wellbore fracture; in deepwater, the current trend in global warming means there is a future concern to the industry. As the climate temperature increases, more ice melts from the polar region, the seawater expands and the sea level rises. How to incorporate the corresponding effect on collapse gradient is scarcely known. This study captures the major concerns stated above into wellbore stability analysis. Following the classical approach for geomechanical analysis, Mogi-Coulomb criterion was combined with a constitutive stress equation comprising contributions from mechanical and osmotic potentials of mud and shale. A sophisticated industry model was used to consider the deepwater effect. The results show significant reduction in collapse gradient as the water depth increases, also, larger difference between the mud and shale chemical activities represents higher complexities in the wellbore. In addition, the reduction in the chemical activities of mud limited to 37.5% of the initial value can be practically safe.

Słowa kluczowe

  • Mogi-Coulomb criterion
  • collapse gradient
  • horizontal well
  • deepwater
  • chemical activity
Otwarty dostęp

Application of non-classical operational calculus to indicate hazards in numerical solutions of engineering problems

Data publikacji: 26 Jun 2020
Zakres stron: 242 - 247

Abstrakt

Abstract

The article addresses the application of non-classical operational calculus to approximative solutions of engineering problems. The engineering-sound examples show that a continuous–discrete problem transformation from differential unequivocal problem to a differential wildcard problem, triggering a change in solution quality. A number of approximative methods are capable to alter both quantitative and qualitative solution effects.

Słowa kluczowe

  • approximative computation
  • non-classical operational calculus
  • quantity analysis
Otwarty dostęp

Volumetric behavior of natural swelling soil on drying-wetting paths. Application to the Boumagueur marl -Algeria-

Data publikacji: 29 Apr 2020
Zakres stron: 248 - 262

Abstrakt

Abstract

This article presents the results of experimental work carried out both in situ (coring; pressuremeter test) and in the laboratory (drying-wetting and oedometric tests) to describe the volumetric behavior on drying-wetting path of a swelling clayey soil of eastern Algeria. In order to perform drying-wetting tests the osmotic technique and saturated salts solutions were used. These suction-imposed methods have gained widespread acceptance as reliable methods for imposing suction on soil specimens. They allowed to sweep a wide range of suctions between 0 and 500 MPa. The ability to impose suction on soil specimens allows for drying and wetting stress paths to be applied to evaluate resulting changes in state parameters (void ratio, degree of saturation and water content). These paths were carried out on specimens with different initial states. Slurries of soil were used to characterize the reference behavior, while the undisturbed soil samples allow to describe the behavior of material under in situ conditions. In the last part of this article and to specify the behavior observed in the saturated domain, a comparison between the resulting deformations of the drying-wetting test and those resulting from the oedometric test was made.

Słowa kluczowe

  • Suction
  • Shrinkage
  • Swelling
  • drying-wetting
  • undisturbed soil
  • slurry
  • volumetric behavior
Otwarty dostęp

Influence of the heterogeneity of a dump soil on the assessment of its selected properties

Data publikacji: 30 Sep 2020
Zakres stron: 263 - 275

Abstrakt

Abstract

This article concerns the assessment of selected physical and mechanical properties of a dump soil. The dump soil is a specific soil with a very heterogeneous internal structure. Next to each other, there may be lumps and crumbs of cohesive soils mixed with non-cohesive soils accompanied by a very diverse admixture of organic substance. In addition, the soil in the waste dump, in spatial terms, may significantly differ in consistency and density. This is the result of the process of forming a dump soil, which takes place in three stages: excavation, transport and dumping. A heterogeneous soil deposited within the waste dump is subject to further processes: consolidation, compaction and creeping. Changes occurring in the course of these processes have a significant impact on the development of the properties of the dump soil.

Due to the large diversity of the tested soils, the results of their properties were divided into two groups, based on type and consistency of soil. This allows us to estimate the selected properties of the dump soil only on the basis of their macroscopic analysis.

Słowa kluczowe

  • dump soil
  • soil properties
  • shear strength
  • laboratory tests
  • heterogeneity
Otwarty dostęp

Testing the rocks loosening process by undercutting anchors

Data publikacji: 09 Jul 2020
Zakres stron: 276 - 290

Abstrakt

Abstract

The method of unconventional solid rock loosening with undercutting anchors and the literature analysis of the problem are presented. The tests and test results of the rocks loosening process with a fixed undercutting anchor are described. The tests were carried out within the RODEST project, OPUS 10 competition No. 2015/19/B/ST10/02817, financed by the National Science Centre. Numerical modeling process as well as a series of laboratory and in situ tests were carried out. The test stand equipment and methodology for the in situ tests are presented. The tests were conducted in four mines, which allowed to obtain and determine the following characteristics:

loosening force as a function of anchoring depth (for a given type of rock),

the range of rock loosening in a function of anchoring depth (for a given type of rock), and

loosened rock volume as a function of anchoring depth (for a given type of rock).

The in situ test results are compared with the concrete capacity design (CCD) model used for the calculation of anchor load capacity in concrete.

Słowa kluczowe

  • destroying the integrity of rocks
  • tearing out rock fragments
  • mine rescue operations
  • unconventional rock cutting
  • rock strength tests

Zaplanuj zdalną konferencję ze Sciendo