[
Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., De Tommasi, G. (2014). Finite-Time Stability and Control, Springer, London.
]Search in Google Scholar
[
Amato, F., Ariola, M., Cosentino, C., Abdallah, C. and Dorato, P. (2003). Necessary and sufficient conditions for finite-time stability of linear systems, Proceedings of the 2003 American Control Conference, Denver, USA, Vol. 5, pp. 4452–4456.
]Search in Google Scholar
[
Amato, F., Ariola, M. and Dorato, P. (2001). Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica 37(9): 1459–1463.
]Search in Google Scholar
[
Bhat, S.P. and Bernstein, D.S. (2000). Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization 38(3): 751–766.
]Search in Google Scholar
[
Edwards, C. and Spurgeon, S. (1998). Sliding Mode Control: Theory and Applications, CRC Press, Boca Raton.
]Search in Google Scholar
[
Haddad, W.M. and Chellaboina, V. (2011). Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach, Princeton University Press, Princeton.
]Search in Google Scholar
[
Khalil, H.K. and Grizzle, J.W. (2002). Nonlinear Systems, Vol. 3, Prentice Hall, Upper Saddle River.
]Search in Google Scholar
[
Kokotović, P.V., Nicosia, T., Menini, L., Zaccarian, L. and Abdallah, C.T. (2006). Current Trends in Nonlinear Systems and Control: In Honor of Petar Kokotovic and Turi Nicosia, Springer, Boston.
]Search in Google Scholar
[
Kukurowski, N., Mrugalski, M., Pazera, M. and Witczak, M. (2022). Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding, International Journal of Applied Mathematics and Computer Science 32(2): 171–183, DOI: 10.34768/amcs-2022-0013.
]Otwórz DOISearch in Google Scholar
[
Li, X., Ho, D.W. and Cao, J. (2019). Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica 99: 361–368.
]Search in Google Scholar
[
Liu, H., Zhong, M. and Yang, R. (2018). Simultaneous disturbance compensation and Hi/H∞ optimization in fault detection of UAVs, International Journal of Applied Mathematics and Computer Science 28(2): 349–362, DOI: 10.2478/amcs-2018-0026.
]Otwórz DOISearch in Google Scholar
[
Orlov, Y., Aoustin, Y. and Chevallereau, C. (2010). Finite time stabilization of a perturbed double integrator. Part I: Continuous sliding mode-based output feedback synthesis, IEEE Transactions on Automatic Control 56(3): 614–618.
]Search in Google Scholar
[
Polyakov, A., Efimov, D. and Perruquetti, W. (2015). Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica 51: 332–340.
]Search in Google Scholar
[
Poznyak, A., Polyakov, A. and Azhmyakov, V. (2014). Attractive Ellipsoids in Robust Control, Springer, Cham.
]Search in Google Scholar
[
Puangmalai, J., Tongkum, J. and Rojsiraphisal, T. (2020). Finite-time stability criteria of linear system with non-differentiable time-varying delay via new integral inequality, Mathematics and Computers in Simulation 171: 170–186.
]Search in Google Scholar
[
Utkin, V.I. and Poznyak, A.S. (2013). Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method, Automatica 49(1): 39–47.
]Search in Google Scholar
[
Wang, H., Liu, P.X., Zhao, X. and Liu, X. (2019). Adaptive fuzzy finite-time control of nonlinear systems with actuator faults, IEEE Transactions on Cybernetics 50(5): 1786–1797.
]Search in Google Scholar
[
Weiss, L. and Infante, E. (1967). Finite time stability under perturbing forces and on product spaces, IEEE Transactions on Automatic Control 12(1): 54–59.
]Search in Google Scholar
[
Yu, S., Yu, X., Shirinzadeh, B. and Man, Z. (2005). Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica 41(11): 1957–1964.
]Search in Google Scholar