[
Adler, M., Bombieri, M. and Engel, K.-J. (2017). Perturbation of analytic semigroups and applications to partial differential equations, Journal of Evolution Equations 17(4): 1183–1208.10.1007/s00028-016-0377-8
]Search in Google Scholar
[
Arendt, W., Batty, C., Hieber, M. and Neubrander, F. (2011). Vector-Valued Laplace Transforms and Cauchy Problems, Springer-Basel AG, Basel.10.1007/978-3-0348-0087-7
]Search in Google Scholar
[
Ball, J. (1977). Strongly continuous semigroups, weak solutions and the variation of constants formula, Proceedings of the American Mathematical Society 63(2): 370–373.10.1090/S0002-9939-1977-0442748-6
]Search in Google Scholar
[
Bouldin, R. (1971). The numerical range of a product, Journal of Mathematical Analysis and Applications 33(1): 243–263.10.1016/0022-247X(71)90193-4
]Search in Google Scholar
[
Crouzeix, M. (2008). A functional calculus based on the numerical range: Applications, Linear and Multilinear Algebra 56(1–2): 81–103.10.1080/03081080701336610
]Search in Google Scholar
[
Curtain, R. (1984). Spectral systems, International Journal of Control 39(4): 657–666.10.1080/00207178408933195
]Search in Google Scholar
[
Curtain, R. and Zwart, H. (1995). An Introduction to Infinite-Dimensional Linear Systems Theory, Springer, New York.10.1007/978-1-4612-4224-6
]Search in Google Scholar
[
Deckard, D., Foias, C., and Pearcy, C. (1979). Compact operators with root vectors that span, Proceedings of the American Mathematical Society 76(1): 101–106.10.1090/S0002-9939-1979-0534397-8
]Search in Google Scholar
[
DeLaubenfels, R. (1988). Inverses of generators, Proceedings of the American Mathematical Society 104(2): 443–448.10.1090/S0002-9939-1988-0962810-6
]Search in Google Scholar
[
Dunford, N. and Schwartz, J. (1971). Linear Operators. Part III: Spectral Operators, Wiley-Interscience, New York.
]Search in Google Scholar
[
Engel, K.-J. and Nagel, A. (2000). One-Parameter Semigroups, Springer, New York.
]Search in Google Scholar
[
Furuta, T. (1977). Relations between generalized growth conditions and several classes of convexoid operators, Canadian Journal of Mathematics 29(1–2): 1010–1030.10.4153/CJM-1977-099-0
]Search in Google Scholar
[
Furuta, T. (2001). Invitation to Linear Operators. From Matrices to Bounded Linear Operators on a Hilbert Space, CRC Press, London.10.1201/b16820
]Search in Google Scholar
[
Gohberg, I. and Krein, M. (1965). Introduction to the Theory of Linear Non-selfadjoint Operators, Nauka, Moscow, (in Russian).
]Search in Google Scholar
[
Grabowski, P. (1990). On spectral-Lyapunov approach to parametric optimization of distributed parameter systems, IMA Journal of Mathematical Control and Information 7(4): 317–338.10.1093/imamci/7.4.317
]Search in Google Scholar
[
Grabowski, P. (1995). Admissibility of observation functionals, International Journal of Control 62(5): 1161–1173.10.1080/00207179508921589
]Search in Google Scholar
[
Grabowski, P. (1999). Lecture Notes on Optimal Control Systems, AGH University Press, Kraków, http://home.agh.edu.pl/~pgrab/grabowski_files/lecturedition2/newlecture.xml.
]Search in Google Scholar
[
Grabowski, P. (2006). Well-posedness and stability analysis of hybrid feedback systems using Shkalikov’s theory, Opuscula Mathematica 26(1): 43–95.
]Search in Google Scholar
[
Grabowski, P. (2017). Some modifications of the Weiss–Staffans perturbation theorem, International Journal of Robust and Nonlinear Control 27(7): 1094–1121.10.1002/rnc.3617
]Search in Google Scholar
[
Grabowski, P. and Callier, F. (1999). Admissible observation operators. duality of observation and control using factorizations, Dynamics of Continuous, Discrete and Impulsive Systems 6(1): 87–119.
]Search in Google Scholar
[
Gustafson, K. and Rao, D. (1997). Numerical Range. The Field of Values of Linear Operators and Matrices, Springer, New York.
]Search in Google Scholar
[
Ionkin, N. (1977). Solutions of a boundary-value problem in heat conduction with a nonclassical boundary condition, Differentsial’nye Uravnieniya 13(2): 294–304.
]Search in Google Scholar
[
Janas, J. (1989). On unbounded hyponormal operators I, Archive för Matematik 27(1–2): 273–281.10.1007/BF02386376
]Search in Google Scholar
[
Kantorovitz, S. (2000). Topics in Operator Semigroups, Springer, New York.
]Search in Google Scholar
[
Kato, T. (1995). Perturbation Theory for Linear Operators, Springer, Berlin.10.1007/978-3-642-66282-9
]Search in Google Scholar
[
Katsnel’son, V. (1967). Conditions for a system of root vectors of certain classes of operators to be a basis, Fuktsjonal’nyj analiz i evo prilozhenija 1(2): 39–51.
]Search in Google Scholar
[
Kesel’man, G. (1964). On the unconditional convergence of eigenfunction expansions of some differential operators, Izvestya Vyshych Uchebnych Zavedenii: Matematika 39(2): 82–93, (in Russian).
]Search in Google Scholar
[
Lang, P. and Locker, J. (1989). Spectral theory of two-point differential operators determined by −D2. I: Spectral properities, Journal of Mathematical Analysis and Applications 141(2): 538–558.
]Search in Google Scholar
[
Lang, P. and Locker, J. (1990). Spectral theory of two-point differential operators determined by −D2. II: Analysis of cases, Journal of Mathematical Analysis and Applications 146(1): 148–191.
]Search in Google Scholar
[
Marchenko, V. (1977). Sturm–Liouville Operators and Applications, Naukova Dumka, Kiev.
]Search in Google Scholar
[
Mennicken, R. and Möller, M. (2003). Non-self-adjoint Boundary Eigenvalue Problems, Elsevier, Amsterdam.10.1016/S0304-0208(03)80005-1
]Search in Google Scholar
[
Mikhajlov, V. (1962). On Riesz bases in L2(0, 1), Doklady Akademii Nauk SSSR 144(5): 981–984, (in Russian).
]Search in Google Scholar
[
Orland, G. (1964). On a class of operators, Proceedings of the American Mathematical Society 15(1): 75–79.10.1090/S0002-9939-1964-0157244-4
]Search in Google Scholar
[
Paunonen, L. (2014). Robustness of strong stability of semigroups, Journal of Differential Equations 257(12): 403–436.10.1016/j.jde.2014.08.011
]Search in Google Scholar
[
Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York.10.1007/978-1-4612-5561-1
]Search in Google Scholar
[
Prüss, J. (1984). On the spectrum of C0-semigroups, Transactions of the American Mathematical Society 284(2): 847–857.10.1090/S0002-9947-1984-0743749-9
]Search in Google Scholar
[
Röh, H. (1982a). Dissipative operator with finite dimensional damping, Proceedings of the Royal Society of Edinburgh 91A(3–4): 243–263.10.1017/S0308210500017480
]Search in Google Scholar
[
Röh, H. (1982b). Spectral Analysis of Non Self-Adjoint C0-Semigroup Generators, PhD thesis, Hariot–Watt University, Edinburgh.
]Search in Google Scholar
[
Shapiro, J. (2017). Notes on the numerical range, Technical Report, May, 5, Michigan State University, East Lansing.
]Search in Google Scholar
[
Shkalikov, A. (1982). Basis property of eigenfunctions of ordinary differential operators with integral boundary conditions, Vestnik Moskovskogo Universiteta: Matematika i Mekhanika 6: 12–21, (in Russian).
]Search in Google Scholar
[
Shkalikov, A. (1986). Boundary problem for ordinary differential operators with parameter in the boundary conditions, Journal of Soviet Mathematics 33(6): 1311–1342.10.1007/BF01084754
]Search in Google Scholar
[
Triggiani, R. (1975). On the stabilizability problem in Banach space, SIAM Journal on Control 13(3): 383–403.10.1016/0022-247X(75)90067-0
]Search in Google Scholar
[
Weidmann, J. (1980). Linear Operators in Hilbert Spaces, Springer, Heidelberg.10.1007/978-1-4612-6027-1
]Search in Google Scholar