1. bookTom 13 (2011): Zeszyt 2 (June 2011)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1899-4741
ISSN
1509-8117
Pierwsze wydanie
03 Jul 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Open Access

Economically viable synthesis of Fe3O4 nanoparticles and their characterization

Data publikacji: 16 Jun 2011
Tom & Zeszyt: Tom 13 (2011) - Zeszyt 2 (June 2011)
Zakres stron: 1 - 5
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1899-4741
ISSN
1509-8117
Pierwsze wydanie
03 Jul 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Liu, Z.L., Wang, H.B., Lu, Q.H., Du, G.H., Peng, L., Du, Y.Q., Zhang, S.M. & Yao, K.L. (2004). Synthesis and characterization of ultra fine well dispersed magnetic nano particles. J. Magnetism Magnetic Mater. 283, 258-262. DOI:10.1016/j.jmmm.2004.05.031.10.1016/j.jmmm.2004.05.031Search in Google Scholar

Salazar, J.S., Roman, M.A.C. & Gomez, L.B. (2007). Structural and magnetic domains characterization of magnetic nanoparticles. Mater. Sci. Eng. C. 27, 317-1320. DOI:10.1016/j.msec.2006.07.027.10.1016/j.msec.2006.07.027Search in Google Scholar

Thapa, D., Palkar, V.R., Kurup, M.B. & Malik, S.K. (2004). Properties of magnetic nano particles synthesized through a novel chemical route. Mater. Lett. 58, 2692-2694. DOI:10.1016/j.matlet.2004.03.045.10.1016/j.matlet.2004.03.045Search in Google Scholar

Sharma, Y.C., Srivastava, V., Singh, V.K., Kaul, S.N. & Weng, C.H. (2009). Nanoadsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 30, 583-609. DOI:10.1080/09593330902838080.10.1080/09593330902838080Search in Google Scholar

Ozkaya, T., Toprak, M.S., Baykal, A., Kavas. H., Koseoglu, Y. & Aktas, B. (2009). Synthesis of Fe2O3 nanoparticles at 100 °C and its magnetic characterization. J. Alloy. Comp., 472, 18-23. DOI:10.1016/j.jallcom.2008.04.101.10.1016/j.jallcom.2008.04.101Search in Google Scholar

Sharma, Y.C., Srivastava, V., Upadhyay, S.N. & Weng, C.H. (2008). Aluminum nanoparticles for the removal of Ni(II) from aqueous solutions. Ind. Eng. Chem. Res., 47, 8095-8100. DOI: 10.1021/ie800831v.10.1021/ie800831vSearch in Google Scholar

Swihart, M.T. (2003). Vapor phase synthesis of nanoparticles. Curr. Opin. Colloid Interf. Sci. 8, 127-133. DOI:10.1016/S1359-0294•03.00007-4.Search in Google Scholar

Feng, N.S., Yang, L., Hua, X. & Hua, L.Z. (2005). Removal of hexavalent chromium from aqueous solutions by iron nanoparticles. J. Zhejing Univ. Sci. 6B, 1022-1027. DOI: 10.1007/BF02888495.Search in Google Scholar

Murray, C.B., Kagan, C.R. & Bawendi, M.G. (2000). Synthesis and characterization of monodisperse nano crystals and close packed assemblies. Annu. Rev. Mater. Sci. 30, 545-610. DOI: 10.1146/annurev.matsci.30.1.545.10.1146/annurev.matsci.30.1.545Search in Google Scholar

Hann, H. (1997). Gas phase synthesis of nanocrystalline materials. Nanostruct. Mater. 9, 3-12. PII 80965-9773(97)ooo13-5.10.1016/S0965-9773(97)00013-5Search in Google Scholar

Biasi, R.S.D., Figueiredo, A.B.S., Fernandes, A.A.S. & Larica, C. (2007). Synthesis of cobalt ferrite nanoparticles using combustion waves. Solid State Commun. 144, 15-17. DOI:10.1016/j.ssc.2007.07.031.10.1016/j.ssc.2007.07.031Search in Google Scholar

Nomanbhay, M. & Palanisamy, K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic J Biotechnol. 8, 43-53.10.2225/vol8-issue1-fulltext-7Search in Google Scholar

Sun, Y., Zhang, J.P., Yang, G. & Li, Z.H. (2007). Preparation of activated carbon with large specific surface area from reed black liquor. Environ. Technol. 28, 491-497. DOI: 10.1080/09593332808618810.10.1080/0959333280861881017615958Search in Google Scholar

Kanel, S.R., Charlet, B. & Choi, L. (2005). Removal of As(III) from ground water by nanoscale zerovalent iron. Environ. Sci. Technol. 39, 1291-1298. DOI: 10.1021/es048991u.10.1021/es048991u15787369Search in Google Scholar

Verges, M.A., Costo, R., Roca, A.G., Marco, J.F., Goya, G.F., Serna, C.J. & Morales, M.P. (2008). Uniform and water stable magnetic nanoparticles with diameters around the monodomain-multidomain limit. J. Phys. D: Appl. Phys. 41, 134003-134013. DOI: 10.1088/0022-3727/41/13/134003.10.1088/0022-3727/41/13/134003Search in Google Scholar

Qi, B., Li, D., Ni & Zheng, H. (2007). A facile reduction route to the preparation of single-crystalline iron nanocubes, Chem. Lett. 36, 722-723. DOI:10.1246/cl.2007.722.10.1246/cl.2007.722Search in Google Scholar

Iida, H., Takayanagi, K., Nakanishi, T. & Osaka, T. (2007). Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interf. Sci. 314, 274-280. DOI:10.1016/j.jcis.2007.05.047.10.1016/j.jcis.2007.05.04717568605Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo