1. bookTom 26 (2022): Zeszyt 1 (January 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8837
Pierwsze wydanie
26 Mar 2010
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Agro Biopolymer: A Sustainable Future of Agriculture – State of Art Review

Data publikacji: 07 Jul 2022
Tom & Zeszyt: Tom 26 (2022) - Zeszyt 1 (January 2022)
Zakres stron: 499 - 511
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-8837
Pierwsze wydanie
26 Mar 2010
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

Due to the rising demand for food and feed, agricultural waste increases, while plastic pollution increases due to hostile human activities. The sustainable way to utilize agricultural waste and promote the bioeconomy concept is to produce an alternative product of plastic, i.e., ‘bioplastic’. This paper used different keywords to perform the bibliometric analysis of the scientific publication related to bioplastic, agricultural waste, and sustainability. Remarkably, results show the increasing research interest in bioplastic with the key developing trends in sustainable bioplastic production, agriculture waste management, biopolymer, and biological processes. The identified developing trends can be used for further research to create a sustainable agricultural sector and produce higher added-value products. Moreover, this study discovered that the agro-biopolymer area needs more focus on sustainable development considering the economic, social, and environmental dimensions.

Keywords

[1] Duque-Acevedo M., Belmonte-Ureña L. J., Cortés-García F. J., Camacho-Ferre F. Agricultural waste: Review of the evolution, approaches, and perspectives on alternative uses. Global Ecology and Conservation 2020:22:e00902. https://doi.org/10.1016/j.gecco.2020.e00902 Search in Google Scholar

[2] Yu X., Zhou H., Ye X., Wang H. From hazardous agriculture waste to hazardous metal scavenger: Tobacco stalk biochar-mediated sequestration of Cd leads to enhanced tobacco productivity. Journal of Hazardous Materials 2021:413:125303. https://doi.org/10.1016/j.jhazmat.2021.12530333582463 Search in Google Scholar

[3] Malik A., et al. Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy 2021:11. https://doi.org/10.3390/agronomy11010014 Search in Google Scholar

[4] Tusher T. R., Pondit T., Hasan M., Latif M. B., Binyamin Md. Impacts of Resource Consumption and Waste Generation on Environment and Subsequent Effects on Human Health: A Study Based on Ecological Footprint Analysis. Springer, 2020. https://doi.org/10.1007/978-981-15-1205-6_11 Search in Google Scholar

[5] Puglia D., Pezzolla D., Gigliotti G., Torre L., Bartucca M. L., del Buono D. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability (Switzerland) 2021:13(5):2710. https://doi.org/10.3390/su13052710 Search in Google Scholar

[6] Asim N., Emdadi Z., Mohammad M., Yarmo M. A., Sopian K. Agricultural solid wastes for green desiccant applications: An overview of research achievements, opportunities, and perspectives. Journal of Cleaner Production 2015:91:26–35. https://doi.org/10.1016/j.jclepro.2014.12.015 Search in Google Scholar

[7] Elbasiouny H., et al. Agricultural Waste Management for Climate Change Mitigation: Some Implications to Egypt. Springer Water, 2020. https://doi.org/10.1007/978-3-030-18350-9_8 Search in Google Scholar

[8] Colwill J. A., Wright E. I., Rahimifard S., Clegg A. J. Bio-plastics in the context of competing demands on agricultural land in 2050. International Journal of Sustainable Engineering 2012:5:3–16. https://doi.org/10.1080/19397038.2011.602439 Search in Google Scholar

[9] Ford H. V., et al. The fundamental links between climate change and marine plastic pollution. Science of the Total Environment 2022:806(1):150392. https://doi.org/10.1016/j.scitotenv.2021.15039234583073 Search in Google Scholar

[10] Zheng J., Suh S. Strategies to reduce the global carbon footprint of plastics. Nature Climate Change 2019:9:374–378. https://doi.org/10.1038/s41558-019-0459-z Search in Google Scholar

[11] Talan A., Pokhrel S., Tyagi R. D., Drogui P. Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards Circular Bioeconomy. Bioresource Technology Reports 2022:17:100875. https://doi.org/10.1016/j.biteb.2021.100875 Search in Google Scholar

[12] Koul B., Yakoob M., Shah M. P. Agricultural waste management strategies for environmental sustainability. Environmental Research 2022:206:112285. https://doi.org/10.1016/j.envres.2021.11228534710442 Search in Google Scholar

[13] Scarlat N., Dallemand J. F., Monforti-Ferrario F., Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environmental Development 2015:15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006 Search in Google Scholar

[14] Yadav B., Pandey A., Kumar L. R., Tyagi R. D. Bioconversion of waste (water)/residues to bioplastics. A circular bioeconomy approach. Bioresource Technology 2020:298:122584. https://doi.org/10.1016/j.biortech.2019.12258431862396 Search in Google Scholar

[15] Ngoune Liliane T., Shelton Charles M. Factors Affecting Yield of Crops. Agronomy - Climate Change and Food Security. 2020. https://doi.org/10.5772/intechopen.90672 Search in Google Scholar

[16] Gupta J., Kumari M., Mishra A., Swati, Akram M., Thakur I. S. Agro-forestry waste management. A review. Chemosphere 2022:287(3):132321. https://doi.org/10.1016/j.chemosphere.2021.13232134563778 Search in Google Scholar

[17] Kotykova O., Babych M. Economic impact of food loss and waste. Agris On-Line Papers in Economics and Informatics 2019:11(3):55–71. https://doi.org/10.7160/aol.2019.110306 Search in Google Scholar

[18] Bhuvaneshwari S., Hettiarachchi H., Meegoda J. N. Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health 2019:16(5):832. https://doi.org/10.3390/ijerph16050832642712430866483 Search in Google Scholar

[19] Scarlat N., Martinov M., Dallemand J. F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Management 2010:30(10):1889–1897. https://doi.org/10.1016/j.wasman.2010.04.01620494567 Search in Google Scholar

[20] Sabiiti E. Utilizing agricultural waste to enhance food security and conserve the environment. African Journal of Food, Agriculture, Nutrition and Development 2011:11(6):1–9. Search in Google Scholar

[21] Bellarby J., Tirado R., Leip A., Weiss F., Lesschen J. P., Smith P. Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology 2012:19:3–18. https://doi.org/10.1111/j.1365-2486.2012.02786.x23504717 Search in Google Scholar

[22] Benyam A (Addis), Soma T, Fraser E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. Journal of Cleaner Production 2021:323:129099. https://doi.org/10.1016/j.jclepro.2021.129099 Search in Google Scholar

[23] Roszkowska S., Szubska-Włodarczyk N. What are the barriers to agricultural biomass market development? The case of Poland. Environment Systems and Decisions 2022:42:75–84. https://doi.org/10.1007/s10669-021-09831-1 Search in Google Scholar

[24] Pelkmans L. Long-term strategies for sustainable biomass imports in European bioenergy markets. Biofuels, Bioproducts and Biorefining 2018:13. https://doi.org/10.1002/bbb.1857 Search in Google Scholar

[25] Mohan S. V., Katakojwala R. The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0. Current Opinion in Green and Sustainable Chemistry 2021:28:100434. https://doi.org/10.1016/j.cogsc.2020.100434 Search in Google Scholar

[26] Belaud J. P., Prioux N., Vialle C., Sablayrolles C. Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry 2019:111:41–50. https://doi.org/10.1016/j.compind.2019.06.006 Search in Google Scholar

[27] Barros M. V., Salvador R., de Francisco A. C., Piekarski C. M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renewable and Sustainable Energy Reviews 2020:131:109958. https://doi.org/10.1016/j.rser.2020.109958 Search in Google Scholar

[28] Camana D., Manzardo A., Toniolo S., Gallo F., Scipioni A. Assessing environmental sustainability of local waste management policies in Italy from a circular economy perspective. An overview of existing tools. Sustainable Production and Consumption 2021:27:613–629. https://doi.org/10.1016/j.spc.2021.01.029 Search in Google Scholar

[29] Amran M. A., et al. Value-added metabolites from agricultural waste and application of green extraction techniques. Sustainability 2021:13(20):11432. https://doi.org/10.3390/su132011432 Search in Google Scholar

[30] Cho E. J., Trinh L. T. P., Song Y., Lee Y. G., Bae H. J. Bioconversion of biomass waste into high value chemicals. Bioresource Technology 2020:298:122386. https://doi.org/10.1016/j.biortech.2019.12238631740245 Search in Google Scholar

[31] Ubando A. T., Felix C. B., Chen W. H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology 2020:299:122585. https://doi.org/10.1016/j.biortech.2019.12258531901305 Search in Google Scholar

[32] Dietrich K., Dumont M. J., del Rio L. F., Orsat V. Producing PHAs in the bioeconomy — Towards a sustainable bioplastic. Sustainable Production and Consumption 2017:9:58–70. https://doi.org/10.1016/j.spc.2016.09.001 Search in Google Scholar

[33] Bilo F., et al. A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production 2018:200:357–368. https://doi.org/10.1016/j.jclepro.2018.07.252 Search in Google Scholar

[34] Chiellini E., Cinelli P., Imam S. H., Mao L. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization. Biomacromolecules 2001:2:1029–1037. https://doi.org/10.1021/bm010084j11710006 Search in Google Scholar

[35] Nandakumar A., Chuah J. A., Sudesh K. Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews 2021:147:111237. https://doi.org/10.1016/j.rser.2021.111237 Search in Google Scholar

[36] Wagh Y. R., Pushpadass H. A., Emerald F. M. E., Nath B. S. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. Journal of Food Science and Technology 2014:51:3767–3775. https://doi.org/10.1007/s13197-012-0916-4425241725477643 Search in Google Scholar

[37] Gadhave R v., Das A., Mahanwar P. A., Gadekar P. T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open Journal of Polymer Chemistry 2018:8(2). https://doi.org/10.4236/ojpchem.2018.82003 Search in Google Scholar

[38] Moohan J., et al. Cellulose nanofibers, and other biopolymers for biomedical applications. A review. Applied Sciences (Switzerland) 2020:10(1):65. https://doi.org/10.3390/app10010065. Search in Google Scholar

[39] Baas J., Schotten M., Plume A., Côté G., Karimi R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies 2020:1(1):377–386. https://doi.org/10.1162/qss_a_00019 Search in Google Scholar

[40] Bornmann L., Haunschild R., Hug S. E. Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis. Scientometrics 2018:114:427–437. https://doi.org/10.1007/s11192-017-2591-8580748029449748 Search in Google Scholar

[41] van Eck N. J., Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010:84:523–538. https://doi.org/10.1007/s11192-009-0146-3288393220585380 Search in Google Scholar

[42] Lackner M. Bioplastics – Biobased plastics as renewable and/or biodegradable alternatives to petroplastics. 2015. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo