1. bookTom 26 (2022): Zeszyt 1 (January 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8506
Pierwsze wydanie
01 Jan 1997
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Otwarty dostęp

Detecting and categorising lexical innovations in a corpus of tweets

Data publikacji: 21 Oct 2022
Tom & Zeszyt: Tom 26 (2022) - Zeszyt 1 (January 2022)
Zakres stron: 313 - 329
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2083-8506
Pierwsze wydanie
01 Jan 1997
Częstotliwość wydawania
1 raz w roku
Języki
Angielski

Abitbol, J. L., Karsai, M., Magué, J.-P., Chevrot, J.-P., & Fleury, E. (2018). Socioeconomic dependencies of linguistic patterns in Twitter: A multivariate analysis. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web (pp. 1125–1134). International World Wide Web Conferences Steering Committee. https://doi.org/10.1145/3178876.3186011 Search in Google Scholar

Ali, I. (2019). Personality traits, individual innovativeness and satisfaction with life. Journal of Innovation & Knowledge, 4(1), 38–46. https://doi.org/10.1016/j.jik.2017.11.002 Search in Google Scholar

Bamman, D., Eisenstein, J., & Schnoebelen, T. (2014). Gender identity and lexical variation in social media. Journal of Sociolinguistics, 18(2), 135– 160. https://doi.org/10.1111/josl.12080 Search in Google Scholar

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008 Search in Google Scholar

Blythe, R. A., & Croft, W. (2012). S-curves and the mechanisms of propagation in language change. Language, 88(2), 269–304.10.1353/lan.2012.0027 Search in Google Scholar

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117. https://doi.org/10.1016/S0169-7552(98)00110-X Search in Google Scholar

Chambers, J. K. (2013). Patterns of variation including change. In J. K. Chambers & N. Schilling (Eds.), The handbook of language variation and change (pp. 129–297). Wiley Blackwell.10.1002/9781118335598.ch14 Search in Google Scholar

Costin-Gabriel, C., & Rebedea, T. E. (2014). Archaisms and neologisms identification in texts. In: 2014 RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event RENAM 8th Conference (pp. 1–6). IEEE. https://doi.org/10.1109/RoEduNet-RENAM.2014.6955312 Search in Google Scholar

Del Tredici, M., & Fernández, R. (2018). The road to success: Assessing the fate of linguistic innovations in online communities. ArXiv:1806.05838 [cs.CL]. https://doi.org/10.48550/arXiv.1806.05838 Search in Google Scholar

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. ArXiv:1810.04805 [cs.CL]. https://doi.org/10.48550/arXiv.1810.04805 Search in Google Scholar

Eisenstein, J., O’Connor, B., Smith, N. A., & Xing, E. P. (2014). Diffusion of lexical change in social media. PLoS One, 9(11), e113114. https://doi.org/10.1371/journal.pone.0113114 Search in Google Scholar

Fagyal, Z., Swarup, S., Escobar, A. M., Gasser, L., & Lakkaraju, K. (2010). Centers and peripheries: Network roles in language change. Lingua, 120(8), 2061–2079. https://doi.org/10.1016/j.lingua.2010.02.001 Search in Google Scholar

Feltgen, Q., Fagard, B., & Nadal, J.-P. (2017). Frequency patterns of semantic change: Corpus-based evidence of a near-critical dynamics in language change. Royal Society Open Science, 4(11), 170830. https://doi.org/10.1098/rsos.170830 Search in Google Scholar

Flekova, L., Preoţiuc-Pietro, D., & Ungar, L. (2016). Exploring stylistic variation with age and income on Twitter. In: K. Erk & N. A. Smith (Eds.), Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (pp. 313–319). Association for Computational Linguistics10.18653/v1/P16-2051 Search in Google Scholar

Friggeri, A., Lambiotte, R., Kosinski, M., & Fleury, E. (2012). Psychological aspects of social communities. In: 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing (pp. 195–202). IEEE. https://doi.org/10.1109/SocialCom-PASSAT.2012.104 Search in Google Scholar

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380. https://doi.org/10.1086/225469 Search in Google Scholar

Kerremans, D., & Prokić, J. (2018). Mining the web for new words: Semi-automatic neologism identification with the NeoCrawler. Anglia, 136(2), 239–268. https://doi.org/10.1515/ang-2018-0032 Search in Google Scholar

Kershaw, D., Rowe, M., & Stacey, P. (2016). Towards modelling language innovation acceptance in online social networks. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (pp. 553–562). Association for Computing Machinery. Search in Google Scholar

Labov, W. (2010). Principles of linguistic change. 2: Social factors. Wiley-Blackwell.10.1002/9781444327496 Search in Google Scholar

Laitinen, M., Fatemi, M., & Lundberg, J. (2020). Size matters: Digital social networks and language change. Frontiers in Artificial Intelligence, 3, 46. https://doi.org/10.3389/frai.2020.00046 Search in Google Scholar

Leskovec, J., & Sosič, R. (2016). SNAP: A general-purpose network analysis and graph-mining library. ACM Transactions on Intelligent Systems and Technology, 8(1), 1–20. https://doi.org/10.1145/2898361 Search in Google Scholar

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In: C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 26 (pp. 3111–3119). Curran Associates, Inc. Search in Google Scholar

Milroy, J., & Milroy, L. (1997). Network structure and linguistic change. In: N. Coupland & A. Jaworski (Eds.), Sociolinguistics (pp. 199–211). Springer. Search in Google Scholar

Nguyen, D., Doğruöz, A. S., Rosé, C. P., & de Jong, F. (2016). Computational sociolinguistics: A survey. Computational Linguistics, 42(3), 537-593. https://doi.org/10.1162/COLI_a_00258 Search in Google Scholar

Rogers, E. M. (2003). Diffusion of innovations (5th ed). Free Press. Search in Google Scholar

Schlechtweg, D., Hätty, A., Del Tredici, M., & im Walde, S. (2019). A wind of change: Detecting and evaluating lexical semantic change across times and domains. ArXiv, 1906.02979 [cs.CL]. https://doi.org/10.48550/arXiv.1906.02979 Search in Google Scholar

Stewart, I., & Eisenstein, J. (2018). Making “fetch” happen: The influence of social and linguistic context on nonstandard word growth and decline. ArXiv:1709.00345 [cs.CL]. https://doi.org/10.48550/arXiv.1709.00345 Search in Google Scholar

Tjong Kim Sang, E. (2016). Finding rising and falling words. In: E. Hinrichs, M. Hinrichs, & T. Trippel (Eds.), Proceedings of the workshop on language technology resources and tools for digital humanities (LT4DH) (pp. 2–9). The COLING 2016 Organizing Committee Search in Google Scholar

Wang, Z., Hale, S., Adelani, D. I., Grabowicz, P., Hartman, T., Flöck, F., & Jurgens, D. (2019). Demographic inference and representative population estimates from multilingual social media data. In: L. Loiu & R. White (Eds.), WWW’ 19: The World Wide Web Conference (pp. 2056–2067). https://doi.org/10.1145/3308558.3313684 Search in Google Scholar

Weinreich, U., Labov, W., & Herzog, M. (1968). Empirical foundations for a theory of language change (Vol. 58). University of Texas Press Austin. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo