[
Aithal, B. H., M C, C., & G, N. (2019). Assessing land surface temperature and land use change through spatio-temporal analysis: a case study of select major cities of India. Arabian Journal of Geosciences, 12(11), 367. https://doi.org/10.1007/s12517-019-4547-110.1007/s12517-019-4547-1
]Search in Google Scholar
[
Almeida, C. R. de, Teodoro, A. C., & Gonçalves, A. (2021). Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 8(10), 105. https://doi.org/10.3390/environments810010510.3390/environments8100105
]Search in Google Scholar
[
Bao, S., Anselin, L., Martin, D., & Stralberg, D. (2000). Seamless integration of spatial statistics and GIS: The S-PLUS for ArcView and the S+Grassland Links. Journal of Geographical Systems, 2(3), 287–306. https://doi.org/10.1007/PL0001145910.1007/PL00011459
]Search in Google Scholar
[
Bhatt, R., & Hossain, A. (2019). Concept and Consequence of Evapotranspiration for Sustainable Crop Production in the Era of Climate Change. In Advanced Evapotranspiration Methods and Applications (pp. 95–106). IntechOpen. https://doi.org/10.5772/intechopen.8370710.5772/intechopen.83707
]Search in Google Scholar
[
Chau, K., Franklin, M., Lee, H., Garay, M., & Kalashnikova, O. (2021). Temporal and Spatial Autocorrelation as Determinants of Regional AOD-PM2.5 Model Performance in the Middle East. Remote Sensing 2021, Vol. 13, Page 3790, 13(18), 3790. https://doi.org/10.3390/RS1318379010.3390/rs13183790
]Search in Google Scholar
[
Das, S., & Angadi, D. P. (2020). Land use-land cover (LULC) transformation and its relation with land surface temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sensing Applications: Society and Environment, 19, 100322. https://doi.org/10.1016/j.rsase.2020.10032210.1016/j.rsase.2020.100322
]Search in Google Scholar
[
Duveiller, G., Hooker, J., & Cescatti, A. (2018). The mark of vegetation change on Earth’s surface energy balance. Nature Communications, 9(1), 679. https://doi.org/10.1038/s41467-017-02810-810.1038/s41467-017-02810-8582034629463795
]Search in Google Scholar
[
E. D. Chaves, M., C. A. Picoli, M., & D. Sanches, I. (2020). Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sensing, 12(18), 3062. https://doi.org/10.3390/rs1218306210.3390/rs12183062
]Search in Google Scholar
[
Fu, W. J., Jiang, P. K., Zhou, G. M., & Zhao, K. L. (2014). Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences, 11(8), 2401–2409. https://doi.org/10.5194/bg-11-2401-201410.5194/bg-11-2401-2014
]Search in Google Scholar
[
Gohain, K. J., Mohammad, P., & Goswami, A. (2021). Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quaternary International, 575–576, 259–269. https://doi.org/10.1016/j.quaint.2020.04.05210.1016/j.quaint.2020.04.052
]Search in Google Scholar
[
Guha, S., Govil, H., Gill, N., & Dey, A. (2020). Analytical study on the relationship between land surface temperature and land use/land cover indices. Annals of GIS, 26(2), 201–216. https://doi.org/10.1080/19475683.2020.175429110.1080/19475683.2020.1754291
]Search in Google Scholar
[
Horo, J. P., & Punia, M. (2019). Urban dynamics assessment of Ghaziabad as a suburb of National Capital Region, India. GeoJournal, 84(3), 623–639. https://doi.org/10.1007/s10708-018-9877-010.1007/s10708-018-9877-0
]Search in Google Scholar
[
Hu, X., Ma, C., Huang, P., & Guo, X. (2021). Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection – A case of Weifang City, China. Ecological Indicators, 125, 107464. https://doi.org/10.1016/j.ecolind.2021.10746410.1016/j.ecolind.2021.107464
]Search in Google Scholar
[
Islam, S. M. S., Islam, K. M. A., & Mullick, M. R. A. (2022). Drought hot spot analysis using local indicators of spatial autocorrelation: An experience from Bangladesh. Environmental Challenges, 6, 100410. https://doi.org/10.1016/J.ENVC.2021.10041010.1016/j.envc.2021.100410
]Search in Google Scholar
[
Kaiser, E. A., Rolim, S. B. A., Grondona, A. E. B., Hackmann, C. L., de Marsillac Linn, R., Käfer, P. S., da Rocha, N. S., & Diaz, L. R. (2022). Spatiotemporal Influences of LULC Changes on Land Surface Temperature in Rapid Urbanization Area by Using Landsat-TM and TIRS Images. Atmosphere, 13(3), 460. https://doi.org/10.3390/atmos1303046010.3390/atmos13030460
]Search in Google Scholar
[
Kumari, M., Sarma, K., & Sharma, R. (2019). Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sensing Applications: Society and Environment, 15, 100239. https://doi.org/10.1016/j.rsase.2019.10023910.1016/j.rsase.2019.100239
]Search in Google Scholar
[
Li, J., Zheng, X., Zhang, C., & Chen, Y. (2018). Impact of Land-Use and Land-Cover Change on Meteorology in the Beijing–Tianjin–Hebei Region from 1990 to 2010. Sustainability, 10(2), 176. https://doi.org/10.3390/su1001017610.3390/su10010176
]Search in Google Scholar
[
Masson, V., Lemonsu, A., Hidalgo, J., & Voogt, J. (2020). Urban Climates and Climate Change. Annual Review of Environment and Resources, 45(1), 411–444. https://doi.org/10.1146/annurev-environ-012320-08362310.1146/annurev-environ-012320-083623
]Search in Google Scholar
[
Moazzam, M. F. U., Doh, Y. H., & Lee, B. G. (2022). Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Building and Environment, 109368. https://doi.org/10.1016/j.buildenv.2022.10936810.1016/j.buildenv.2022.109368
]Search in Google Scholar
[
Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.00410.1016/j.jum.2020.05.004
]Search in Google Scholar
[
Nations, U., of Economic, D., Affairs, S., & Division, P. (2019). World Urbanization Prospects: The 2018 Revision. In World Urbanization Prospects: The 2018 Revision. UN. https://doi.org/10.18356/b9e995fe-en10.18356/b9e995fe-en
]Search in Google Scholar
[
Park, Y., Kim, S. H., Kim, S. P., Ryu, J., Yi, J., Kim, J. Y., & Yoon, H. J. (2022). Spatial autocorrelation may bias the risk estimation: An application of eigenvector spatial filtering on the risk of air pollutant on asthma. Science of the Total Environment, 843, 157053. https://doi.org/10.1016/j.scitotenv.2022.15705310.1016/j.scitotenv.2022.15705335780885
]Search in Google Scholar
[
Qu, L., Chen, Z., Li, M., Zhi, J., & Wang, H. (2021). Accuracy Improvements to Pixel-Based and Object-Based LULC Classification with Auxiliary Datasets from Google Earth Engine. Remote Sensing, 13(3), 453. https://doi.org/10.3390/rs1303045310.3390/rs13030453
]Search in Google Scholar
[
Rehman, A., Qin, J., Shafi, S., Khan, M. S., Ullah, S., Ahmad, K., Rehman, N. U., & Faheem, M. (2022). Modelling of Land Use/Cover and LST Variations by Using GIS and Remote Sensing: A Case Study of the Northern Pakhtunkhwa Mountainous Region, Pakistan. Sensors, 22(13), 4965. https://doi.org/10.3390/s2213496510.3390/s22134965926970435808454
]Search in Google Scholar
[
Rosado, R. M. G., Guzmán, E. M. A., Lopez, C. J. E., Molina, W. M., García, H. L. C., & Yedra, E. L. (2020). Mapping the LST (Land Surface Temperature) with Satellite Information and Software ArcGis. IOP Conference Series: Materials Science and Engineering, 811(1), 012045. https://doi.org/10.1088/1757-899X/811/1/01204510.1088/1757-899X/811/1/012045
]Search in Google Scholar
[
Sarkar, R. (2020). Association of urbanisation with demographic dynamics in India. GeoJournal, 85(3), 779–803. https://doi.org/10.1007/s10708-019-09988-y10.1007/s10708-019-09988-y
]Search in Google Scholar
[
Shaikh, S. F. E. A., See, S. C., Richards, D., Belcher, R. N., Grêt-Regamey, A., Galleguillos Torres, M., & Carrasco, L. R. (2021). Accounting for spatial autocorrelation is needed to avoid misidentifying trade-offs and bundles among ecosystem services. Ecological Indicators, 129, 107992. https://doi.org/10.1016/J.ECOLIND.2021.10799210.1016/j.ecolind.2021.107992
]Search in Google Scholar
[
Stewart, S. B., & Nitschke, C. R. (2017). Improving temperature interpolation using MODIS LST and local topography: a comparison of methods in south east Australia. International Journal of Climatology, 37(7), 3098–3110. https://doi.org/10.1002/joc.490210.1002/joc.4902
]Search in Google Scholar
[
Subasinghe, S., Estoque, R., & Murayama, Y. (2016). Spatiotemporal Analysis of Urban Growth Using GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka. ISPRS International Journal of Geo-Information, 5(11), 197. https://doi.org/10.3390/ijgi511019710.3390/ijgi5110197
]Search in Google Scholar
[
Tassi, A., & Vizzari, M. (2020). Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sensing, 12(22), 3776. https://doi.org/10.3390/rs1222377610.3390/rs12223776
]Search in Google Scholar
[
Yan, X., Feng, Y., Tong, X., Li, P., Zhou, Y., Wu, P., Xie, H., Jin, Y., Chen, P., Liu, S., Xv, X., Liu, S., & Wang, C. (2021). Reducing spatial autocorrelation in the dynamic simulation of urban growth using eigenvector spatial filtering. International Journal of Applied Earth Observation and Geoinformation, 102, 102434. https://doi.org/10.1016/J.JAG.2021.102434.10.1016/j.jag.2021.102434
]Search in Google Scholar