1. bookTom 73 (2022): Zeszyt 5 (September 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1339-309X
Pierwsze wydanie
07 Jun 2011
Częstotliwość wydawania
6 razy w roku
Języki
Angielski
Otwarty dostęp

A triple path noise cancellation LNA with transformer output using 45 nm CMOS technology

Data publikacji: 15 Nov 2022
Tom & Zeszyt: Tom 73 (2022) - Zeszyt 5 (September 2022)
Zakres stron: 337 - 342
Otrzymano: 10 Sep 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1339-309X
Pierwsze wydanie
07 Jun 2011
Częstotliwość wydawania
6 razy w roku
Języki
Angielski

[1] B, Razavi, Design of Analog CMOS Integrated Circuits, New York: Tata McGraw Hill, 2016. Search in Google Scholar

[2] A. Chaturvedi, M. Kumar, R. S. Meena, and G. K. Sharma, “Wideband ring mixer for band #1 of MB-OFDM systems in 180 nm CMOS technology”, Journal of Electrical Engineering, no. 5, pp. 323–329, 2021.10.2478/jee-2021-0045 Search in Google Scholar

[3] A. Shukla, “Intelligent reflected surfaces assisted code domain non-orthogonal multiple access scheme”, Journal of Electrical Engineering, no. 5, pp. 343–347, 2021.10.2478/jee-2021-0048 Search in Google Scholar

[4] F. Zhang and P. R. Kinget, “Low-power programmable gain CMOS distributed LNA”, IEEE Journal of Solid-State Circuits, no. 6, pp. 1333–1343, 2006. Search in Google Scholar

[5] M. Kumar and V. K. Deolia, “A wideband design analysis of LNA utilizing complimentary common gate stage with mutually coupled common source stage”, Analog Integrated Circuits and Signal Processing, no. 3, pp. 575–585, 2019.10.1007/s10470-018-1355-6 Search in Google Scholar

[6] C.-F. Liao and S.-I. Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers”, IEEE Journal of Solid-State Circuits, no. 2, pp. 329–339, 2007.10.1109/JSSC.2006.889356 Search in Google Scholar

[7] H. Yu, Y. Chen, C. C. Boon, P.-I. Mak, and R. P. Martins, “A 0.096 mm2 1–20-GHz Triple-Path Noise-Canceling Common-Gate Common-Source LNA With Dual Complementary pMOS–nMOS Configuration”, IEEE Transactions on Microwave Theory and Techniques, no. 1, pp. 144–159, 2020.10.1109/TMTT.2019.2949796 Search in Google Scholar

[8] H. Yu, Y. Chen, C. C. Boon, C. Li, P.-I. Mak, and R. P. Mar-tins, “A 0.044-mm2 0.5-to-7-GHz Resistor-Plus-Source-Follower -Feedback Noise-Cancelling LNA Achieving a Flat NF of 3.3± 0.45 dB”, IEEE Transactions on Circuits and Systems II: Express Briefs, no. 1, pp. 71–75, Jan 2019.10.1109/TCSII.2018.2833553 Search in Google Scholar

[9] W.-H. Chen, G. Liu, B. Zdravko, and A. M. Niknejad, “A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation”, IEEE Journal of Solid-State Circuits, no. 5, pp. 1164–1176, 2008. Search in Google Scholar

[10] B. Guo, J. Chen, L. Li, H. Jin, and G. Yang, “A Wideband Noise-Canceling CMOS LNA With Enhanced Linearity by Using Complementary nMOS and pMOS Configurations”, IEEE Journal of Solid-State Circuits, no. 5, pp. 1331–1344, 2017. Search in Google Scholar

[11] J. Chang and Y. Lin, “0.99 mW 3-10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique”, Electronics Letters, no. 11, pp. 658–659, 2011.10.1049/el.2011.0619 Search in Google Scholar

[12] S. V. Ankathi, S. Athukuri, S. Mohan, K. Balamurugan, and M. N. Devi, “A 5–7 GHz current reuse and gm-boosted common gate low noise amplifier with LC based ESD protection in 32 nm CMOS”, Analog Integrated Circuits and Signal Processing, pp. 573–589, 2017.10.1007/s10470-016-0915-x Search in Google Scholar

[13] Y.-T. Chang and H.-C. Lu, “A V-Band Low-Power Digital Variable-Gain Low-Noise Amplifier Using Current-Reused Technique With Stable Matching and Maintained OP1dB”, IEEE Transactions on Microwave Theory and Techniques, no. 11, pp. 4404–4417, 2019. Search in Google Scholar

[14] M. Chen and J. Lin, “A 0.1–20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS”, IEEE Microwave and Wireless Components Letters, no. 5, pp. 323–325, 2009.10.1109/LMWC.2009.2017608 Search in Google Scholar

[15] K.-H. Chen and S.-I. Liu, “Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique”, IEEE Transactions on Circuits and Systems I: Regular Papers, no. 2, pp. 305–314, Feb 2012.10.1109/TCSI.2011.2162461 Search in Google Scholar

[16] S. Woo, W. Kim, C.-H. Lee, H. Kim, and J. Laskar, “A Wideband Low-Power CMOS LNA With Positive–Negative Feedback for Noise, Gain, and Linearity Optimization”, IEEE Transactions on Microwave Theory and Techniques, no. 10, pp. 3169–3178, 2012. Search in Google Scholar

[17] H. Lee, T. Chung, H. Seo, I. Choi, and B. Kim, “A Wideband Differential Low-Noise-Amplifier With IM3 Harmonics and Noise Canceling”, IEEE Microwave and Wireless Components Letters, no. 1, pp. 46–48, 2015.10.1109/LMWC.2014.2365733 Search in Google Scholar

[18] J. Jang, H. Kim, G. Lee, and T. W. Kim, “Two-Stage Compact Wideband Flat Gain Low-Noise Amplifier Using High-Frequency Feedforward Active Inductor”, IEEE Transactions on Microwave Theory and Techniques, no. 12, pp. 4803–4811, 2019. Search in Google Scholar

[19] A. Bozorg and R. B. Staszewski, “A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G Exploiting Noise Reduction and Current Reuse”, IEEE Journal of Solid-State Circuits, no. 2, pp. 404–415, 2021.10.1109/JSSC.2020.3018680 Search in Google Scholar

[20] P. B. T. Huynh, J.-H. Kim, and T.-Y. Yun, “Dual-Resistive Feedback Wideband LNA for Noise Cancellation and Robust Linearization”, IEEE Transactions on Microwave Theory and Techniques, no. 4, pp. 2224–2235, 2022. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo