1. bookTom 68 (2022): Zeszyt 1 (March 2022)
Informacje o czasopiśmie
Pierwsze wydanie
04 Apr 2014
Częstotliwość wydawania
4 razy w roku
access type Otwarty dostęp

Natural aldose reductase inhibitors for treatment and prevention of diabetic cataract: A review

Data publikacji: 09 May 2022
Tom & Zeszyt: Tom 68 (2022) - Zeszyt 1 (March 2022)
Zakres stron: 35 - 58
Otrzymano: 25 Sep 2021
Przyjęty: 08 Dec 2021
Informacje o czasopiśmie
Pierwsze wydanie
04 Apr 2014
Częstotliwość wydawania
4 razy w roku

1. World Health Organisation. Classification of Diabetes Mellitus 2019. https://www.who.int/health-topics/diabetes Search in Google Scholar

2. International Diabetes Federation 2017. IDF Diabetes Atlas 8th edition In. Search in Google Scholar

3. Brownlee M. Biochemicstry and molecular cell biology of diabetic complications. Nature 2001; 414:813–820. doi: http://dx.doi.org/10.1038/414813a10.1038/414813a Search in Google Scholar

4. Majekova M, Ballekova J, Prnova M, Stefek M. Structure optimization of tetrahydropyridoindole-based aldose reductase inhibitors improved their efficacy and selectivity. Bioorg Med Chem 2017; 25:6353–6360. doi: http://dx.doi.org/10.1016/j.bmc.2017.10.00510.1016/j.bmc.2017.10.005 Search in Google Scholar

5. Halder N, Joshi S, Gupta SK. Lens aldose reductase inhibiting potential of some indigenous plants. J Ethnopharmacol 2003; 86:113–116. doi: http://dx.doi.org/10.1016/S0378-8741(03)00052-710.1016/S0378-8741(03)00052-7 Search in Google Scholar

6. Hayman S, Kinoshita JH. Isolation and properties of lens aldose reductase. J Biol Chem 1965; 240:877–882.10.1016/S0021-9258(17)45256-2 Search in Google Scholar

7. Veeresham Q, Dodda D. Pharmacological reports therapeutic potential of resveratrol in diabetic complications: In vitro and in vivo studies. Pharmacol Rep 2014; 1–5. doi: http://dx.doi.org/10.1016/j.pharep.2014.04.00610.1016/j.pharep.2014.04.00625149983 Search in Google Scholar

8. K Kaur A, Gupta V, Francis A, Ahmad M, Bansal P. Nutraceuticals in prevention of cataract – an evidence based approach. Saudi J Ophthalmol 2017; 31:30–37. doi: http://dx.doi.org/10.1016/j.sjopt.2016.12.00110.1016/j.sjopt.2016.12.001535294628337060 Search in Google Scholar

9. Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash M, LaBarbera DV. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS ONE 2012; 7:1–9. doi: http://dx.doi.org/10.1371/journal.pone.003139910.1371/journal.pone.0031399331765522485126 Search in Google Scholar

10. Lim S, Jung S, Ji J, Shin K, Keum S. Synthesis of flavonoids and their effects on aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. J Pharma Pharmacol 2001; 53:653–668.10.1211/002235701177598311370705 Search in Google Scholar

11. Bhadada SV, Vyas VK, Goyal RK. Protective effect of Tephrosia purpurea in diabetic cataract through aldose reductase inhibitory activity. Biomed Pharmacother 2016; 83:221–228. doi: http://dx.doi.org/10.1016/j.biopha.2016.05.01810.1016/j.biopha.2016.05.01827372406 Search in Google Scholar

12. Kesari AN, Gupta RK, Singh SK, Diwakar S, Watal G. Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. J Ethnopharmacol 2006; 107:374–379. doi: http://dx.doi.org/10.1016/j.jep.2006.03.04210.1016/j.jep.2006.03.04216781099 Search in Google Scholar

13. Nandkarni AK. Indian Materia Medica. Vol. I. Third ed Popular Prakshan, Bombay. 1976; 45-49. Search in Google Scholar

14. Kirtikar KR, Basu BD. Indian Medicinal Plant. Lalit Mohan Publication, Calcutta. 1935; 499. Search in Google Scholar

15. Suryanarayana P, Kumar AP, Saraswat M, Petrash JM, Reddy GB. Inhibition of aldose reductase by tannoid principles of Emblica officinalis: Implications for the prevention of sugar cataract. Mol Vis 2004; 10:148–154. Search in Google Scholar

16. Gacche RN, Dhole NA. Profile of aldose reductase inhibition, anti-cataract and free radical scavenging activity of selected medicinal plants: An attempt to standardize the botanicals for amelioration of diabetes complications. Food Chem Toxicol 2011; 49:1806–1813. doi: http://dx.doi.org/10.1016/j.fct.2011.04.03210.1016/j.fct.2011.04.032 Search in Google Scholar

17. Sankeshi V, Kumar PA, Naik RR, Sridhar G, Kumar MP, Gopal VVH et al. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. J Ethnopharmacol 2013; 149:215–221.10.1016/j.jep.2013.06.025 Search in Google Scholar

18. Kumar R, Pate DK, Satyendra KP, Prasad SK. Hemalatha, S. Antidiabetic activity of alcoholic leaves extract of Alangium lamarckii Thwaites on streptozotocin-nicotinamide induced type 2 diabetic rats. Asian Pac J Trop Med 2011; 4:904–909.10.1016/S1995-7645(11)60216-2 Search in Google Scholar

19. Mosaddik MA, Kabir KE, Hassan P. Antibacterial activity of Alangium salviifolium flowers. Fitoterapia 2000; 71.10.1016/S0367-326X(00)00146-5 Search in Google Scholar

20. Wuthi-udomlert M, Prathanturarug SWY. Anti-fungal activity and local toxicity study of Alan-gium salviifolium subsp. Hexapetalum. SE Asian J Trop Med 2002; 23:152–154. Search in Google Scholar

21. Porchezhian E, Ansari SH, Sarfaraz A. Analgesic and antiinflammatory effects of Alangium salvifolium. Pharma Biol 2001; 39:65–66.10.1076/phbi. Search in Google Scholar

22. Kumar R, Patel DK, Laloo D, Sairam K, Hemalatha S. Inhibitory effect of two Indian medicinal plants on aldose reductase of rat lens in vitro. Asian Pac J Trop Med 2011; 4: 694–697. doi: http://dx.doi.org/10.1016/S1995-7645(11)60176-410.1016/S1995-7645(11)60176-4 Search in Google Scholar

23. Kumar R, Hemalatha S. Pharmacognostical standardization of leaves of Alangium lamarckii thwaites. Pharmacogn J 2011; 2:19–25.10.1016/S0975-3575(11)80021-0 Search in Google Scholar

24. Subramanian R, Asmawi M, Sadikun A. In-vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol 2008; 55:391–398.10.18388/abp.2008_3087 Search in Google Scholar

25. Yoopan N, Thisoda P, Rangkadilok N, Sahasitiwat S. Cardiovascular effects of 13-deoxy-11,12-dide-hydro andrographolide and Andrographis paniculata extracts. Planta Med 2007; 73:503–511.10.1055/s-2007-96718117650544 Search in Google Scholar

26. Das S, Neogy S, Gautam N, Roy S. In vitro nicotine induced superoxide mediated DNA fragmentation in lymphocytes: Protective role of Andrographis paniculata. Toxicol in Vitro 2009; 23:90–98.10.1016/j.tiv.2008.10.01219027060 Search in Google Scholar

27. Manikam S, Stansias J. Andrographolide inhibits growth of acute promyelocytic leukemia cells by inducing retinoic acid receptor-independent cell differentiation and apoptosis. J Pharma Pharmacol 2009; 61:69–71.10.1211/jpp.61.01.0010 Search in Google Scholar

28. Sheeja K, Kuttan G. Activation of cytotoxic T lymphocyte responces and attenuation of tumor growth in vivo by Andrographis paniculata extract by andrographolide. Immunopharmacol Immunotoxicol 2006; 29:81–93.10.1080/0892397070128272617464769 Search in Google Scholar

29. Misra P, Pal N, Guru P, Katiyar J, Srivastava V, Tandon J. Anti-malarial activity of Andrographis paniculata (Kalmegh) against Plasmodium berghei. International J Pharmacogn 1992; 30:263–274.10.3109/13880209209054010 Search in Google Scholar

30. Chao W, Kuo Y, Lin B. Anti-inflammatory activity of new compounds from Andrographis paniculata by NF-κB transactivation inhibition. J Agric Food Chem 2010; 58:2505–2512.10.1021/jf903629j20085279 Search in Google Scholar

31. V Veeresham C, Swetha E, Rao AR, Asres K. In vitro and in vivo aldose reductase inhibitory activity of standardized extracts and the major constituent of Andrographis paniculata. Phytother Res 2012; 27:412–416.10.1002/ptr.472222628202 Search in Google Scholar

32. Shikov AN, Pozharitskaya ON, Makarov VG. Aralia elata var. Mandshurica (Rupr. & Maxim.) J. Wen: An overview of pharmacological studies. Phytomed 2016; 23:1409–1421.10.1016/j.phymed.2016.07.01127765361 Search in Google Scholar

33. Chung YS, Choi YH, Lee SJ, Choi SA, Lee J, Kim H et al. Water extract of Aralia elata prevents cataractogenesis in vitro and in vivo. J Ethnopharmacol 2005; 101:49–54.10.1016/j.jep.2005.03.02015905053 Search in Google Scholar

34. Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwa BB. Neem (Azadirachta indica): An Indian traditional panacea with modern molecular basis. Phytomed 2017; 34:14–20.10.1016/j.phymed.2017.07.00128899496 Search in Google Scholar

35. Park TW, Chul Lee JWL, Jang H, Jin Q, Lee MK, Hwang BY. Chemical constituents from Buddleja officinalis and their inhibitory effects on nitric oxide production. Nat Prod Sci 2016; 22:129–133.10.20307/nps.2016.22.2.129 Search in Google Scholar

36. Matsuda H, Cai H, Kubo M, Tosa H, Iinuma M. Study on anti-cataract drugs from natural sources. II. effects of Buddlejae flos on in vitro aldose reductase activity. Biol Pharma Bull 1995; 18:463–466.10.1248/bpb.18.4637550105 Search in Google Scholar

37. Kumar R, Patel DK, Satyendra K, Prasad DL, Krishnamurthy S, Hemalatha S. Type 2 antidiabetic activity of bergenin from the roots of Caesalpinia digyna rottler. Fitoterapia 2012; 83:395–401.10.1016/j.fitote.2011.12.008 Search in Google Scholar

38. Rastogi S, Rawat A. A comprehensive review on bergenin, a potential hepatoprotective and anti-oxidative phytoconstituent. Herba Pol 2008; 54:66–78. Search in Google Scholar

39. Singh U, Kunwar A, Srinivasan R, Nanjan M, Priyadarsini K. Differential free radical scavenging activity and radioprotection of Caesalpinia digyna extracts and its active constituent. J Rad Res 2009; 50:425–433.10.1269/jrr.08123 Search in Google Scholar

40. Pawar AV, Patil SJ, Killedar SG. Uses of Cassia fistula Linn as a medicinal plant. Inter J Adv Res Develop. 2017; 2:85–91. Search in Google Scholar

41. Gacche RN, Dhole NA. Aldose reductase inhibitory, anti-cataract and antioxidant potential of selected medicinal plants from the Marathwada region, India. Nat Prod Res 2011; 25:760–763.10.1080/14786419.2010.536951 Search in Google Scholar

42. Don G. Catharanthus roseus. In: Ross I.A. (Ed.), Medicinal Plants of the World. Human Press, Totowa, NJ. 1999. Search in Google Scholar

43. Ingh SN, Vats P, Suri S, Shyam R, Kumria MML, Ranganathan S et al. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 2001; 76:269–277. doi: http://dx.doi.org/10.1016/S0378-8741(01)00254-910.1016/S0378-8741(01)00254-9 Search in Google Scholar

44. Huang J, Zhang Y, Dong L, Gao Q, Yin L, Quan H et al. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J Ethnopharmacol 2018; 213:280–301.10.1016/j.jep.2017.11.01029155174 Search in Google Scholar

45. Lee J, Jang Sik D, Kim NH, Lee YM, Kim J, Kim JS. Galloyl glucoses from the seeds of Cornus officinalis with inhibitory activity against protein glycation, aldose reductase, and cataractogenesis ex vivo. Biol Pharma Bull 2011; 34:443–446.10.1248/bpb.34.44321372401 Search in Google Scholar

46. Kubo M, Matsuda H, Tokuoka K, Kobayashi Y, Ma S, Tanaka T. Studies of anti-cataract drugs from natural sources. I. Effects of a methanolic extract and the alkaloidal components from Corydalis tuber on in vitro aldose reductase activity. Biol Pharma Bull 1994; 17:458–459.10.1248/bpb.17.4588019518 Search in Google Scholar

47. A Asgary S, Naderi G, Sadeghi M, Kelishadi R, Amiri M. Antihypertensive effect of Iranian Crataegus curvisepala Lind: A randomized, double-blind study. Drugs Exper Clinic Res 2004; 30:221–225. Search in Google Scholar

48. Tadic V, Dobric S, Markovic G, Dordevic S, Arsic I, Menkovic N et al. Antiinflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of Hawthorn berries ethanol extract. J Agric Food Chem 2008; 56:7700–7709.10.1021/jf801668c18698794 Search in Google Scholar

49. Veveris M, Koch E, Chatterjee S. Crataegus special extract WS (R) 1442 improves cardiac function and reduces infarct size in a rat model of prolonged coronary ischemia and reperfusion. Life Sci 2004; 74:1945–1955.10.1016/j.lfs.2003.09.05014761675 Search in Google Scholar

50. Matsuda H, Morikawa T, Toguchida I, Yoshikawa M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharma Bull 2002; 50:788–795.10.1248/cpb.50.78812045333 Search in Google Scholar

51. Wang T, Zhang P, Zhao C, Zhang Y, Liu H, Hu L et al. Prevention effect in selenite-induced cataract in vivo and antioxidative effects in vitro of Crataegus pinnatifida leaves. Biol Trace Element Res 2011; 142:106–116.10.1007/s12011-010-8752-8 Search in Google Scholar

52. Boaz M, Leibovitz E, Dayan YB, Wainstein J. functional foods in the treatment of type 2 diabetes: Olive leaf extract, turmeric and fenugreek, a qualitative review. J Func Foods Health Dis 2011; 1:472–481.10.31989/ffhd.v1i11.114 Search in Google Scholar

53. Ramadan G, Al-Kahtani MA, El-Sayed WM. Anti-inflammatory and antioxidant properties of Curcuma longa (Turmeric) versus Zingiber officinale (Ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation 2011; 34:291–301.10.1007/s10753-010-9278-0 Search in Google Scholar

54. Akter J, Hossain MA, Sano A, Takara K, Islam MZ, Hou DX. Antifungal activity of various species and strains of turmeric (Curcuma spp.) against Fusarium solani sensu lato. Pharma Chem J 2018; 52:292–297.10.1007/s11094-018-1815-4 Search in Google Scholar

55. Ringman JM, Frautschy SA, Cole GM, Master-man DL, Cummings JL. A potential role of the curry spice curcumin in Alzheimer’s disease. Cur Alzheimer Res 2005; 2:131–136.10.2174/1567205053585882 Search in Google Scholar

56. Du ZY, Bao YD, Liu Z, Qiao W, Ma L, Huang ZS et al. Curcumin analogs as potent aldose reductase inhibitors. Archiv der Pharmazie, Chem Life Sci 2006; 339:123–128.10.1002/ardp.200500205 Search in Google Scholar

57. Zhao Y, Son YO, Kim SS, Jang YS, Lee JC. Antioxidant and anti-hyperglycemic activity of polysaccharide isolated from Dendrobium chrysotoxum Lindl. J Biochem Mol Biol 2007; 40:670–677. doi: http://dx.doi.org/10.5483/bmbrep.2007.40.5.67010.5483/BMBRep.2007.40.5.670 Search in Google Scholar

58. Zeng Q, Ko CH, Siu WS, Li KK, Wong CW, Han XQ et al. Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways. Chinese J Nat Med 2018; 16:481–489. doi: http://dx.doi.org/10.1016/S1875-5364(18)30083-910.1016/S1875-5364(18)30083-9 Search in Google Scholar

59. Wu J, Li X, Wan W, Yang Q, Ma W, Chen D et al. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: an in vitro mechanistic study. J Ethnopharmacol 2017; 255–261. doi: http://dx.doi.org/10.1016/j.jep.2017.01.02610.1016/j.jep.2017.01.02628104409 Search in Google Scholar

60. Chandra D, Chandra S, Pallavi AKS. Review of finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sc Human Well 2016; 5:149–155.10.1016/j.fshw.2016.05.004 Search in Google Scholar

61. Chethan AS, Dharmesh SM, Malleshi NG. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg Med Chem 2008; 16:10085–10090.10.1016/j.bmc.2008.10.00318976928 Search in Google Scholar

62. Variya CB, Bakrania KA, Snehal SP. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 2016; 111:180–200.10.1016/j.phrs.2016.06.01327320046 Search in Google Scholar

63. Jiangsu College of New Medicine, “A dictionary of the traditional Chinese medicines,” Peoples’ Hygiene Publisher, Beijing, 1997; p. 4. In. Search in Google Scholar

64. Jang DS, Yoo NH, Kim NH, Lee YM, Kim CS, Kim J et al. 3,5-di-O-Caffeoyl-epi-quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation, aldose reductase, and cataractogenesis. Biol Pharma Bull 2010; 33:329–333.10.1248/bpb.33.32920118563 Search in Google Scholar

65. Verma AR, Vijayakumar M, Rao CV, Mathela CS. In vitro and in vivo antioxidant properties and DNA damage protective activity of green fruit of Ficus glomerata. Food Chem Toxicol 2010; 48:704–709. doi: http://dx.doi.org/10.1016/j.fct.2009.11.05210.1016/j.fct.2009.11.05219951737 Search in Google Scholar

66. Chopra RN, Nayar SL, Chopra IC. Glossary of indian medicinal plants. Council of Scientific and Industrial Research, NISCAIR, New Delhi; 1956; 199 p. Search in Google Scholar

67. Khan N, Sultana S. Chemomodulatory effect of Ficus racemosa extract against chemically induced renal carcinogenesis and oxidative damage response in Wistar rats. Life Sci 2005; 77:1194–1210.10.1016/j.lfs.2004.12.04115885707 Search in Google Scholar

68. Manzoor RA, Dar BA, Sofi SN, Bhat BA, Qurishi MA. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arabian J Chem 2016; 9:S1574–S1583.10.1016/j.arabjc.2012.04.011 Search in Google Scholar

69. Suzen S, Evcimen ND, Varol P, Sankaya M. Preliminary evaluation of rat kidney aldose inhibitory activity of 2-phenylindole derivatives: affiliation to antioxidant activity. Medicinal Chemistry Research 2007; 16:112–118.10.1007/s00044-007-9014-y Search in Google Scholar

70. Dongare V, Kulkarni C, Kondawar M, Magdum C, Haldavnekar V, Arvindekar A. Inhibition of al-dose reductase and anti-cataract action of transanethole isolated from Foeniculum vulgare Mill. fruits. Food Chem 2012; 132:385–390. doi: http://dx.doi.org/10.1016/j.foodchem.2011.11.00510.1016/j.foodchem.2011.11.00526434305 Search in Google Scholar

71. Singh B, Kaur P, Gopichand SRD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008; 79:401–418.10.1016/j.fitote.2008.05.00718639617 Search in Google Scholar

72. Sati P, Dhyani P, Bhatt ID, Pandey A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J Trad Compl Med 2019; 9:15–23.10.1016/j.jtcme.2017.10.003633547330671362 Search in Google Scholar

73. Lu Q, Yang T, Zhang M, Du L, Liu L, Zhang N et al. Preventative effects of Ginkgo biloba extract (EGb761) on high glucose-cultured opacity of rat lens. Phytother Res 2014; 28:767–773.10.1002/ptr.5060 Search in Google Scholar

74. Verma PR, Joharapurkar AA, Chatpalliwar AV, Asnani AJ. Antinociceptive activity of alcoholic extract of Hemidesmus indicus R. Br. in mice. J Ethnopharmacol 2005; 102:298–301.10.1016/j.jep.2005.05.039 Search in Google Scholar

75. Nagat M, Barka E, Lawrence R, Saani M. Phyto-chemical screening, antioxidant and antibacterial activity of active compounds from Hemidesmus indicus. Inter J Cur Pharma Res 2016; 8:24–27. Search in Google Scholar

76. Tirumani P, Venu S, Sridhar G, Kumar MP, Rajashekhar AV, Raju TN. Delaying of cataract through intervention of Hemidesmus indicus in STZ induced diabetic rats. Nat Prod Res 2018; 32:1295–1298.10.1080/14786419.2017.1333991 Search in Google Scholar

77. Patel D, Kumar R, Kumar M, Sairam K, Hemalatha S. Evaluation of in vitro aldose reductase inhibitory potential of different fraction of Hybanthus enneaspermus Linn F. Muell. Asian Pac J Trop Biomed 2012; 2:134–139.10.1016/S2221-1691(11)60207-4 Search in Google Scholar

78. Patel D, Kumar R, Prasad S, Sairam K, Hemalatha S. Antidiabetic and in vitro antioxidant potential of Hybanthus enneaspermus (Linn) F. Muell in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 2011; 1:316–322.10.1016/S2221-1691(11)60051-8 Search in Google Scholar

79. Tripathy S, Sahoo S, Pradhan D, Sahoo S, Satapathy D. Evaluation of anti arthritic potential of Hybanthus enneaspermus. African J Pharma Pharmacol 2009; 3:611–614. Search in Google Scholar

80. Amirou A, Bnouham M, Legssyer A, Ziyyat A, Aziz M, Berrabah M et al. Effects of Juglans regia root bark extract on platelet aggregation, bleeding time, and plasmatic coagulation: in vitro and ex vivo experiments. Evid Based Compl Alter Med 2018; 2018:1–7. doi: http://dx.doi.org/10.1155/2018/731351710.1155/2018/7313517611220730186357 Search in Google Scholar

81. Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N. A review study on phyto-chemistry and pharmacology applications of Juglans regia plant. Pharmacogn Rev 2017; 11:145–152, doi:10.4103/phrev.phrev_10_17.10.4103/phrev.phrev_10_17562852128989250 Search in Google Scholar

82. Toshiyuki F, Hideyuki I, Takashi Y. Effect of the walnut polyphenol fraction on oxidative stress in type 2 diabetes mice. BioFactors 2004; 21:251–253.10.1002/biof.55221014815630205 Search in Google Scholar

83. Abbasi Z, Jelodar G, Geramizadeh B. Prevention of diabetic complications by walnut leaf extract via changing aldose reductase activity: An experiment in diabetic rat tissue. J Diab Res 2020. doi: http://dx.doi.org/10.1155/2020/898267610.1155/2020/8982676744823032879893 Search in Google Scholar

84. Sabrin IRM, Gamal MA. Litchi chinensis: medicinal uses, phytochemistry, and pharmacology. J Ethnopharmacol 2015; 174:492–513.10.1016/j.jep.2015.08.05426342518 Search in Google Scholar

85. Lee SJ, Park WH, Park SD, Moon HI. Aldose reductase inhibitors from Litchi chinensis Sonn. J Enz Inhib Med Chem 2009; 24:957–959. doi: http://dx.doi.org/10.1080/1475636080256086710.1080/14756360802560867 Search in Google Scholar

86. Dixon AR, McMillen H, Etkin NL. Ferment This: The transformation of noni, a traditional polynesian medicine (Morinda citrifolia, Rubiaceae). Economic Botany 1999; 53:51–68.10.1007/BF02860792 Search in Google Scholar

87. Chan-Blanco Y, Vaillant F, Mercedes Perez A, Reynes M, Brillouet JM, Brat P. The noni fruit (Morinda citrifolia L.): A review of agricultural research, nutritional and therapeutic properties. J Food Comp Analysis 2006; 19:645–654. doi: http://dx.doi.org/10.1016/j.jfca.2005.10.00110.1016/j.jfca.2005.10.001 Search in Google Scholar

88. Sajjadi SE. Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. DARU J Pharma Sci 2006; 14:128–130. Search in Google Scholar

89. Özcan M, Arslan D, Ünver A. Effect of drying methods on the mineral content of basil (Ocimum basilicum L.). J Food Engineering 2005; 69:375–379.10.1016/j.jfoodeng.2004.08.030 Search in Google Scholar

90. Bhatti HA, Tehseen Y, Maryam K, Uroos M, Siddiqui BS, Hameed A et al. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum. Bioorg Chem 2017; 75:62–70. doi: http://dx.doi.org/10.1016/j.bioorg.2017.08.01110.1016/j.bioorg.2017.08.011 Search in Google Scholar

91. Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J Pharmacol 2005; 49:125–131. Search in Google Scholar

92. Chattopadhyay RR. Hypoglycemic effect of Ocimum sanctum leaf extract in normal and streptozotocin diabetic rats. Indian Journal of Experimental Biology 1993; 31: 891–893. Search in Google Scholar

93. Rai V, Iyer U, Mani UV. Effect of tulasi (Ocimum sanctum) leaf powder supplementation on blood sugar levels, serum lipids and tissue lipids in diabetic rats. Plant Foods Human Nut 1997; 50:9–16.10.1007/BF02436038 Search in Google Scholar

94. Vats V, Grover JK, Rathi SS. Evaluation of anti-hyperglycemic and hypoglycemic effect of Trigonella foenum-graecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and alloxanized diabetic rats. J Ethnopharmacol 2002; 79:95–100.10.1016/S0378-8741(01)00374-9 Search in Google Scholar

95. Sedef NEl, Karakaya S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nut Rev 2009; 67: 632–638.10.1111/j.1753-4887.2009.00248.x19906250 Search in Google Scholar

96. Elimam DMA, Ibrahim ASU, Liou GI, Badria FAA. Olive and Ginkgo extracts as potential cataract therapy with differential inhibitory activity on aldose reductase. Drug Discover & Therap 2017; 22:41–46.10.5582/ddt.2016.0107128123157 Search in Google Scholar

97. Makino T, Furuta Y, Wakushima H, Fujii H, Saito K, Kano Y. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother Res 2003; 17:240–243.10.1002/ptr.111512672153 Search in Google Scholar

98. Fujita T, Ohira K, Miyatake K, Nakano Y, Nakayama M. Inhibitory effects of perillosides a and c, and related monoterpene glucosides on aldose reductase and their structure-activity relationships. Chem Pharmal Bull 1995; 43:920–926.10.1248/cpb.43.920 Search in Google Scholar

99. Bae K. The Medicinal Plants of Korea; 2002. Search in Google Scholar

100. Jang DS, Lee YM, Jeong IH, Kim JS. Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Arch Pharm Res 2010; 33:875–880.10.1007/s12272-010-0610-x Search in Google Scholar

101. Yadavra RN, Verma YA. New biologically active flavonol glycoside from Psoralea corylifolia (Linn). J Asian Nat Prod Res 2005; 7:671–675.10.1080/10286020310001608921 Search in Google Scholar

102. Chino M, Sato K, Yamazaki T, Maitani T. Constituent of natural food additive hokosshi extract and an analytical method for the additive in foods. J Food Hygi Soci Japan 2002; 43:352–355.10.3358/shokueishi.43.352 Search in Google Scholar

103. Kamboj J, Sharma S, Kumar S. In vivo anti-diabetic and anti-oxidant potential of Psoralea corylifolia seeds in streptozotocin induced type-2 diabetic rats. J Health Sci 2011; 57:225–235.10.1248/jhs.57.225 Search in Google Scholar

104. Khatune NA, Islam ME, Khondkar P, Rahman MM. Antibacterial compounds from the seeds of Psoralea corylifolia. Fitoterapia 2004; 75:228–230.10.1016/j.fitote.2003.12.018 Search in Google Scholar

105. Zhu DY, Chen ZX, Liu JS, Huang BS, Xie YY, Zeng GF. Studies on chemical constituents of Bu-Gu-Zhi, the seeds of Psoralea corylifolia. Acta Pharmacol Sinica 1979; 14:605–611. Search in Google Scholar

106. Seong SH, Roy A, Jung HA, Jung HJ, Choi JS. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory activities of Pueraria lobata root and its constituents. J Ethnopharmacol 2016; 194:706–716.10.1016/j.jep.2016.10.007 Search in Google Scholar

107. Kim NH, Kim YS, Lee YM, Jang DS, Kim JS. Inhibition of aldose reductase and xylose-induced lens opacity by puerariafuran from the roots of Pueraria lobata. Biol Pharma Bull 2010; 33:1605–1609.10.1248/bpb.33.1605 Search in Google Scholar

108. Lodhi S, Jain A, Jain AP, Pawar RS, Kumar A. Singhai effects of flavonoids from Martynia annua and Tephrosia purpurea on cutaneous wound healing. Avicenna J Phytomed 2016; 6:578–591. Search in Google Scholar

109. Nadkarni AK. Tinospora cordifolia. Indian Mate-ria Medica; Prakashan, P., Ed.; 3rd ed.; Bombay, 1954. Search in Google Scholar

110. Stanely P, Prince M, Menon VP. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J Ethnopharmacol 2000; 70:9–15. doi: http://dx.doi.org/10.1016/S0378-8741(99)00136-110.1016/S0378-8741(99)00136-1 Search in Google Scholar

111. Peer F, Sharma MC. Therapeutic evaluation of Tinospora cordifolia in CCl4 induced hepatopathy in goats. Indian J Veter Med 1989; 9:154–156. Search in Google Scholar

112. Atal CK, Sharma ML, Kaul A, Khajuria A. Immunomodulating agents of plant origin. 1. Preliminary screening. J Ethnopharmacol 1986; 18:133–141.10.1016/0378-8741(86)90025-5 Search in Google Scholar

113. Vedavathy S, Rao KN. Antipyretic activity of six indigenous medicinal plants of Tirumala hills, Andhra pradesh, India. J Ethnopharmacol 1991; 33:1–2.10.1016/0378-8741(91)90178-G Search in Google Scholar

114. Sarma DNK, Khosa RL, Chansouria JPN, Sahai M. Antistress activity of Tinospora cordifolia and Centella asiatica extracts. Phytother Res 1996; 10:181–183.10.1002/(SICI)1099-1573(199603)10:2<181::AID-PTR804>3.0.CO;2-6 Search in Google Scholar

115. Pavin NF, Izaguirry AP, Soares MB, Spiazzi CC, Mendez ASL, Leivas FG. Daniela dos Santos Brum, F.W.S.C. Tribulus terrestris protects against male reproductive damage induced by cyclophosphamide in mice. Oxid Med Cell Longv 2018; 9. doi: http://dx.doi.org/org/10.1155/2018/575819110.1155/2018/5758191 Search in Google Scholar

116. Akram M, Asif HM, Akhtar N. Tribulus terrestris Linn: A review article. J Med Plants Res 2011; 5:3601–3605. Search in Google Scholar

117. Shin KH, Kang SS, Kim HJ, Shin SW. Isolation of an aldose reductase inhibitor from the fruits of Vitex rotundifolia: part 2 in the series “Studies on the inhibitory effects of medicinal plant constituents on cataract formation.” Phytomed 1994; 1:145–147. doi: http://dx.doi.org/10.1016/S0944-7113(11)80033-410.1016/S0944-7113(11)80033-4 Search in Google Scholar

118. Muzamil A, Nawab JD. Withania somnifera: Ethnobotany, pharmacology, and therapeutic functions. Sustained energy for enhanced human functions and activity 2017; 137–154. doi: http://dx.doi.org/10.1016/B978-0-12-805413-0.00008-910.1016/B978-0-12-805413-0.00008-9 Search in Google Scholar

119. Machiah DK, Girish KS, Gowda TV. A Glyco-protein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Physiol Part C: Toxicol Pharmacol 2006; 143:158–161. Search in Google Scholar

120. Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type 1 diabetic rats. J Pharm Pharmacol 2004; 56:101–105. doi: http://dx.doi.org/10.1211/002235702240310.1211/0022357022403 Search in Google Scholar

121. Kato A, Higuchi Y, Hirozo G, Haruhisa K, Tadashi O, Asano N et al. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo. J Agric and Food Chem 2006; 54:6640–6644.10.1021/jf061599a Search in Google Scholar

122. Kaur A, Gupta V, Francis A, Ahmad M, Bansal P. Nutraceuticals in prevention of cataract – an evidence based approach. Saudi J Ophthalmol 2016. doi: http://dx.doi.org/10.1016/j.sjopt.2016.12.00110.1016/j.sjopt.2016.12.001 Search in Google Scholar

123. Krief S. Metabolites secondaires des plantes et comportement animal: surveillance sanitaire et observations de l’alimentation de chimpanzes (pan troglodytes schweinfurthii) en ouganda\ nactivites biologiques et etude chimique de plantes consommees. Ecologie et Chimie des Substances Naturelles 2003; France,346. Search in Google Scholar

124. Zhu X, Zhang S, Chang R, Lu Y. New cataract markers: Mechanisms of disease. Clinica Chimica Acta 2017; 472:41–45. doi: http://dx.doi.org/10.1016/j.cca.2017.07.01010.1016/j.cca.2017.07.010 Search in Google Scholar

125. Kowluru RA, Zhong Q, Santos JM. Thandampallayam M, Putt D, Gierhart DL. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutr Metab 2014; 11(1):8.10.1186/1743-7075-11-8 Search in Google Scholar

126. Lee AYW, Chung SSM. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999; 13(1):23-30.10.1096/fasebj.13.1.239872926 Search in Google Scholar

127. Shiels A, Hejtmancik JF. Genetic origins of cataract. Archiv Ophthal. 2007; 125(2):165-73.10.1001/archopht.125.2.16517296892 Search in Google Scholar

128. Drinkwater JJ, Davis WA, Davis TME. A systematic review of risk factors for cataract in type 2 diabetes. Diab/Metab Res Rev 2019; 35(1):e3073.10.1002/dmrr.307330209868 Search in Google Scholar

129. Berthélémy S. La cataracte. Actualités pharmaceutiques 2016; 55:39–42. doi: http://dx.doi.org/10.1016/j.actpha.2016.06.01610.1016/j.actpha.2016.06.016 Search in Google Scholar

130. Robman L, Taylor H. External factors in the development of cataract. Eye 2005; 19(10):1074-82.10.1038/sj.eye.670196416304587 Search in Google Scholar

131. Toh TY, Morton J, Coxon J, Elder MJ. Medical treatment of cataract. Clinic Experiment Ophthalmol 2007; 35:664–671. doi: http://dx.doi.org/10.1111/j.1442-9071.2007.01559.x10.1111/j.1442-9071.2007.01559.x17894689 Search in Google Scholar

132. Renouvin A, Fournié P, Soler V. Les évolutions dans le traitement de la cataracte. NPG Neurologie - Psychiatrie - Geriatrie 2016; 16:64–72. doi: http://dx.doi.org/10.1016/j.npg.2015.10.01010.1016/j.npg.2015.10.010 Search in Google Scholar

133. Pollreisz A, Schmidt-Erfurth U. Diabetic cataract – pathogenesis, epidemiology and treatment. Journal of Ophthalmology 2010; 2010:e608751.10.1155/2010/608751290395520634936 Search in Google Scholar

134. Srinivasan K. Chapter 42 - Polyphenols in vision and eye health. Editor Victor R. Preedy, Handbook of Nutrition, Diet and the Eye. 2014; 413-421p.10.1016/B978-0-12-401717-7.00042-3 Search in Google Scholar

135. Mathebula SD. Polyol pathway: A possible mechanism of diabetes complications in the eye. African Vision and Eye Health 2015; 74(1):5.10.4102/aveh.v74i1.13 Search in Google Scholar

136. Newell FW. Ophthalmology: Principles and concepts. 5th edition. St. Louis: C.V. Mosby Company; 1982; 559p. Search in Google Scholar

137. Seelinger G, Merfort I, Schempp C. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med 2008; 74:1667–1677.10.1055/s-0028-1088314 Search in Google Scholar

138. Park C, Song YS. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of nf-κb/ap-1/pi3k-akt signaling cascades in raw 264.7 cells. Nut Res Pract 2013; 7:423–429.10.4162/nrp.2013.7.6.423 Search in Google Scholar

139. Zang Y, Igarashi K, Li Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on kka(y) mice. Biosci, Biotechnol, Biochem 2016; 80:1580–1586.10.1080/09168451.2015.1116928 Search in Google Scholar

140. Xu N, Zhang L, Dong J, Al E. Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nut Food Res 2014; 58:1258–1268.10.1002/mnfr.201300830 Search in Google Scholar

141. Chang K, Li L, Sanborn TM, Shieh B, Lenhart P, Ammar D et al. Characterization of emodin as a therapeutic agent for diabetic cataract. J Nat Prod 2016; 79:1439–1444. doi: http://dx.doi.org/10.1021/acs.jnatprod.6b0018510.1021/acs.jnatprod.6b00185 Search in Google Scholar

142. Higashi Y, Higashi K, Mori A, Sakamoto K, Ishii K, Nakahara T. Anti-cataract effect of resveratrol in high-glucose-treated streptozotocin-induced diabetic rats. Biol Pharmal Bull 2018; 41:1586–1592.10.1248/bpb.b18-00328 Search in Google Scholar

143. Kim J, Kim C, Sohn E, Lee Y, Kim J. KIOM-79 inhibits aldose reductase activity and cataractogenesis in zucker diabetic fatty rats. J Pharm Pharmacol 2011; 63:1301–1308.10.1111/j.2042-7158.2011.01341.x Search in Google Scholar

144. Moghaddam M, Kumar P, Reddy G, Ghole V. Effect of diabecon on sugar-induced lens opacity in organ culture: mechanism of action. J Ethnopharmacol 2005; 97:397–403.10.1016/j.jep.2004.11.032 Search in Google Scholar

145. Gandhi M, Lal R, Sankaranarayanan A, Banerjee CK, Sharma PL. Acute toxicity study of the oil from Azadirachta indica seed (neem oil). J Ethnopharmacol 1988; 23:39–51.10.1016/0378-8741(88)90113-4 Search in Google Scholar

146. Kevin L, Hussin A, Zhari I, Chin J. Sub–acute oral toxicity study of methanol leaves extract of Catharanthus roseus in rats. J Acute Dis 2012; 1:38–41. doi: http://dx.doi.org/10.1016/S2221-6189(13)60009-810.1016/S2221-6189(13)60009-8 Search in Google Scholar

147. Venâncio A, Onofre A, Lira A, Alves P, Blank A, Antoniolli  et al. Chemical composition, acute toxicity, and antinociceptive activity of the essential oil of a plant breeding cultivar of basil (Ocimum basilicum L.). Planta Med 2011; 77:825–829. doi: http://dx.doi.org/10.1055/s-0030-125060710.1055/s-0030-125060721157680 Search in Google Scholar

148. Takizawa T, Imai T, Mitsumori K, Takagi H, Onodera H, Yasuhara K et al. Gonadal toxicity of an ethanol extract of Psoralea corylifolia in a rat 90-day repeated dose study. The J Toxicol Sci 2002; 27:97–105. doi: http://dx.doi.org/10.2131/jts.27.9710.2131/jts.27.9712058452 Search in Google Scholar

149. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother 2017; 96:305–312. doi: http://dx.doi.org/10.1016/j.biopha.2017.10.00110.1016/j.biopha.2017.10.00129017142 Search in Google Scholar

150. Ma HY, Gao HY, Jian LS, Huang Xiao-Min, Wu XJ. Constituents with α-glucosidase and advanced glycation end-product formation inhibitory activities from Salvia miltiorrhiza Bge. J Nat Med 2011; 65:37–42.10.1007/s11418-010-0453-220835851 Search in Google Scholar

151. da Silva SB, Ferreira D, Pintado M, Sarmento B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery – in vitro tests. Inter J Biol Macromol 2016; 84:112–120. doi: http://dx.doi.org/10.1016/j.ijbiomac.2015.11.07010.1016/j.ijbiomac.2015.11.07026645149 Search in Google Scholar

152. KentaroTsuji-Naito, Saeki H, Hamano M. Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem 2009; 116:854–859.10.1016/j.foodchem.2009.03.042 Search in Google Scholar

153. Gugliucci A, Bastosa DHM, Schulze J, Souza MFF. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of age generation by methylglyoxal in model proteins. Fitoterapia 2009; 80:339–344.10.1016/j.fitote.2009.04.00719409454 Search in Google Scholar

154. Lee EH, Song DG, Lee JY, Pan CH, Um BH, Jung SH. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation end products. Biol Pharma Bull 2008; 31:1626–1630.10.1248/bpb.31.162618670102 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo