[
1. AbdRani NZ, Husain K, Kumolosasi E. Moringa genus: a review of phytochemistry and pharmacology. Front Pharmacol 2018; 9(108):1-26. doi: https://dx.doi.org.10.3389/fphar.2018.0010810.3389/fphar.2018.00108
]Search in Google Scholar
[
2. Vergara-Jimenez M, Almatrafi MM, Fernández ML. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants 2017; 6(4):91. doi: https://dx.doi.org/10.3390/antiox604009110.3390/antiox6040091
]Search in Google Scholar
[
3. Farrokhzadeh H, Taheri E, Ebrahimi A, Fatehizadeh A, Dasjerdi MV, Bina B. Effectiveness of Moringa oleifera powder in removal of heavy metals from aqueous solutions. Fres Environ Bull 2013; 22:1516-1523.
]Search in Google Scholar
[
4. Bhutada PR, Jadhav AJ, Pinjari DV, Nemade PR, Jain RD. Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Ind Crops Prod 2015; 82:74-80. doi: https://dx.doi.org/10.1016/j.indcrop.2015.12.00410.1016/j.indcrop.2015.12.004
]Search in Google Scholar
[
5. Nogueira RS, Alencar J, Santos V, Collares DS, Cordeiro RA, Souza CM et al. Research advances on the multiple uses of Moringa oleifera: a sustainable alternative for socially neglected population. As Pac J Trop Med 2017; 10(7):621-630. doi: https://dx.doi.org/10.1016/j.apjtm.2017.07.00210.1016/j.apjtm.2017.07.002
]Search in Google Scholar
[
6. Ali EF, Hassan FAS, Elgimabi M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. South Afr J Bot 2018; 119:387-389. doi: https://dx.doi.org/10.1016/j.sajb.2018.10.00310.1016/j.sajb.2018.10.003
]Search in Google Scholar
[
7. Rubio-Sanz L, Garzón-Molina M, Arnés-García M, Jaizme-Vega MC. Optimización del desarrollo, nutrición y producción de semillas de Moringa oleifera mediante el uso de micorrizas bajo manejo agroecológico. Agroecol 2020; 14(1):81-90.
]Search in Google Scholar
[
8. Krom MD. Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloro-isocyanurate. Analyst 1980; 105:753-757. doi: https://dx.doi.org/10.1039/AN980050030510.1039/an9800500305
]Search in Google Scholar
[
9. Bieleski RL, Turner NA. Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Anal Biochem 1996; 17:278-293. doi: https://dx.doi.org/10.1016/0003-2697(66)90206-510.1016/0003-2697(66)90206-5
]Search in Google Scholar
[
10. Nagata M, Yamashita I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J Jpn Soc Food Sci Technol 1992; 39:925-928. doi: https://dx.doi.org/10.3136/nskkk1962.39.92510.3136/nskkk1962.39.925
]Search in Google Scholar
[
11. Rivero RM, Ruíz JM, García PC, López-Lefebre LR, Sánchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 2001; 160:315-321. doi: https://dx.doi.org/10.1016/S0168-9452(00)00395-210.1016/S0168-9452(00)00395-2
]Search in Google Scholar
[
12. Law MY, Charles SA, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacea oleracea) chloroplast: the effect of hydrogen peroxide and paraquat. Biochem J 1992; 210:899-903. doi: https://dx.doi.org/10.1042/bj210089910.1042/bj210089911543056307273
]Search in Google Scholar
[
13. Gossett DR, Millhollon EP, Lucas MC. Antioxidants responses to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 1994; 34:706-714. doi: https://dx.doi.org/10.2135/cropsci1994.0011183X003400030020x10.2135/cropsci1994.0011183X003400030020x
]Search in Google Scholar
[
14. Benzie IEF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of anti-oxidant power: the FRAP assay. Ann Biochem 1996; 239:70-76. doi: https://dx.doi.org/10.1006/abio.1996.029210.1006/abio.1996.0292
]Search in Google Scholar
[
15. Cai Y, Luo M, Sun HC. Antioxidant activity and phenolic compounds of 112 traditional Chinese medical plants associated with anticancer. Life Sci 2004; 74:2157-2184. doi: https://dx.doi.org/10.1016/j.lfs.2003.09.04710.1016/j.lfs.2003.09.047
]Search in Google Scholar
[
16. Hsu CL, Chen W, Weng YM, Tseng CY. Chemical composition, physical properties and anti-oxidant activities of yam flours as affected by different drying methods. Food Chem 2003; 83:85-92. doi: https://dx.doi.org/10.1016/S0308-8146(03)00053-010.1016/S0308-8146(03)00053-0
]Search in Google Scholar
[
17. Moreno DA, Carvajal M, López-Berenguer C, García-Viguera C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal 2006; 41:1508-1522. doi: https://dx.doi.org/10.1016/j.jpba.2006.04.00310.1016/j.jpba.2006.04.00316713696
]Search in Google Scholar
[
18. Mgbemena NM, Obodo GA. Comparative analysis of proximate and mineral composition of Moringa oleifera root, leaves and seed obtained in Okigwe Imo State, Nigeria. J Mol Stud Med Res 2016; 1(2):57-62. doi: https://dx.doi.org/10.18801/jmsmr.010216.0710.18801/jmsmr.010216.07
]Search in Google Scholar
[
19. Verma KS, Nigam R. Nutritional assessment of different parts of Moringa oleifera lam collected from Central India. J Nat Prod Plant Res 2014; 4(1):81-86.
]Search in Google Scholar
[
20. Igwilo IO, Okonkwo JC, Ugochukwu GC, Ezekwesili CN, Nwenyi V. Comparative studies on the nutrient composition and anti-nutritional factors in different parts of Moringa oleifera plant found in Awka, Nigeria. Bioscien 2017; 5(1):1-12. doi: https://dx.doi.org/10.1002/fsn3.7010.1002/fsn3.70395154224804056
]Search in Google Scholar
[
21. Xu YB, Chen GL, Guo MQ. Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants 2019; 8:296. doi: https://dx.doi.org/10.3390/antiox808029610.3390/antiox8080296672117831404978
]Search in Google Scholar
[
22. Leone A, Spada A, Battezati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci 2015; 16:12791-12835. doi: https://dx.doi.org/10.3390/ijms16061279110.3390/ijms160612791449047326057747
]Search in Google Scholar
[
23. David AV, Arulmoli R, Parasuraman S. Overview of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 2016; 10:84-89. doi: https://dx.doi.org/10.4103/0973-7847.19404410.4103/0973-7847.194044521456228082789
]Search in Google Scholar
[
24. Bhagawan WS, Atmaja RRD, Atiqah SR. Optimization and quercetin release test of moringa leaf extract (Moringa oleifera) in gel-microemulsion preparation. J Islamic Pharm 2017; 2(2):34-42. doi: https://dx.doi.org/10.18860/jip.v2i2.450810.18860/jip.v2i2.4508
]Search in Google Scholar
[
25. Galuppo M, Giacoppo S, Iori R, De Nicola GR, Bramanti P, Mazzon E. Administration of 4-α-LRhamnosylowy-benzyl-isothiocyanate (glucomoringin) delays disease phenotype in SOD1G93A rats: a transgenic model of amyotrophic lateral sclerosis. Bio Med Res Int 2015; 1-12. doi: https://dx.doi.org/10.1155/2015/25941710.1155/2015/259417443645126075221
]Search in Google Scholar
[
26. Maldini M, Maksoud SA, Natella F, Montoro P, Petretto GL, Foddai M et al. Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry. J Mass Spectrom 2014; 49:900-910. doi: https://dx.doi.org/10.1002/jms.343710.1002/jms.343725230187
]Search in Google Scholar
[
27. Sankhalkar S, Vernekar V. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacogn Res 2016; 8(1):16-21. doi: https://dx.doi.org/10.4103/0974-8490.17109510.4103/0974-8490.171095475375526941531
]Search in Google Scholar
[
28. El-Alfy TS, Ezzat SM, Hegazy AK, Amer AM, Kamel GM. Isolation of biologically active constituents from Moringa peregrine growing in Egypt. Pharmacogn Mag 2011; 7:109-115. doi: https://dx.doi.org/10.4103/0973-1296.8066710.4103/0973-1296.80667311334821716619
]Search in Google Scholar