1. bookTom 46 (2021): Zeszyt 1 (March 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-3405
Pierwsze wydanie
24 Oct 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Revealed Comparative Advantage Method for Solving Multicriteria Decision-making Problems

Data publikacji: 01 Mar 2021
Tom & Zeszyt: Tom 46 (2021) - Zeszyt 1 (March 2021)
Zakres stron: 85 - 96
Otrzymano: 05 Jun 2020
Przyjęty: 24 Nov 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-3405
Pierwsze wydanie
24 Oct 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

[1] Aguirre, O. and Taboada, H. A clustering method based on dynamic self-organizing trees for post-pareto optimality analysis. Procedia Computer Science, 6, 2011,195-200.10.1016/j.procs.2011.08.037 Search in Google Scholar

[2] Balassa, B. Trade liberalisation and “revealed” comparative advantage, The Manchester school, 33, 1965, 99–123.10.1111/j.1467-9957.1965.tb00050.x Search in Google Scholar

[3] Balf, F. R. Ranking Efficient Units by Regular Polygon Area (RPA) in DEA, International Journal of Industrial Mathematics, 3(1), 2011, 41-53. Search in Google Scholar

[4] Bana E Costa C.A., and Vansnick J.C. The MACBETH Approach: Basic Ideas, Software, and an Application. In: Meskens N., Roubens M. (eds) Advances in Decision Analysis. Mathematical Modelling: Theory and Applications, vol 4, 1999, Springer, Dordrecht. Search in Google Scholar

[5] Bollen, J., Rodriquez, M.A., and Van de Sompel, H. Journal status. Scientometrics, 69, 2006, 669-687.10.1007/s11192-006-0176-z Search in Google Scholar

[6] Brans, J. L’ingenierie de la decision; Elaboration d’instruments d’aide a la decision. La methode PROMETHEE, in L’aide a la decision: Nature, Instruments et Perspectives d’Avenir, R. Nadeau and M. Landry, Eds. Quebec, Canada: Presses de l’Universite Laval, 1982, pp. 183–213. Search in Google Scholar

[7] Brauers, W. K. M., Zavadskas, E. K. The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 2006, 445. Search in Google Scholar

[8] Carrillo VM, Taboada H.. A post-Pareto approach for multi-objective decision making using a non-uniform weight generator method. Procedia Computer Science. 12:1, 2012,16-121.10.1016/j.procs.2012.09.040 Search in Google Scholar

[9] Carrillo VM, Taboada H. A sweeping cones technique for post pareto analysis. In Industrial and Systems Engineering Research Conference, 2013. Search in Google Scholar

[10] Carrillo VM, Taboada H., A General Iterative Procedure of the Non-Numerical Ranking Preferences Method for Multiple Objective Decision Making. Procedia Computer Science. Procedia Computer Science. 12, 2012,135-139.10.1016/j.procs.2012.09.043 Search in Google Scholar

[11] Carrillo, V.M. Post-Pareto optimality methods for the analysis of large Pareto sets in multi-objective optimization, 2013. Search in Google Scholar

[12] Carrillo, V.M., Aguirre, O. and Taboada, H. Applications and performance of the nonnumerical ranking preferences method for post-Pareto optimality. Procedia Computer Science, 6, ., 2011, 243-248.10.1016/j.procs.2011.08.045 Search in Google Scholar

[13] Chatterjee, P., Athawale, V.M., and Chakraborty, S. Selection of materials using compromise ranking and outranking methods. Materials & Design, 30, (2009), 4043–4053.10.1016/j.matdes.2009.05.016 Search in Google Scholar

[14] Churchman, C.W., Ackoff, R.L., Arnoff, E.L. Introduction to Operations Research, A John Wiley and Sons, Ltd., Publication., New York 1957 Search in Google Scholar

[15] Farag, M.M. Quantitative methods of materials selection, In: Kutz M. (Eds) Handbook of Materials Selection, John Wiley & Sons. 2002. Search in Google Scholar

[16] Gleich, D.F. PageRank beyond the Web. SIAM Review, 57, 2015, 321-363.10.1137/140976649 Search in Google Scholar

[17] Hidalgo, C.A. and Hausmann, R. The building blocks of economic complexity. Proceedings of the National Academy of Sciences, 106, 2009, 10570–10575.10.1073/pnas.0900943106 Search in Google Scholar

[18] Hwang, C.-L., Lai Y.-J., and Liu, T.-Y.. A new approach for multiple objective decision making, Comput. Oper. Res., vol. 20, no. 9,, 1993, 889–899.10.1016/0305-0548(93)90109-V Search in Google Scholar

[19] Inoua, S. A simple measure of economic complexity. arXiv preprint,2016, arXiv:1601.05012. Search in Google Scholar

[20] Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., and Bahraminasab, M. A comprehensive VIKOR method for material selection. Materials & Design, 32, (2011), 1215–1221.10.1016/j.matdes.2010.10.015 Search in Google Scholar

[21] Jones, D., Tamiz, M. A review of goal programming. In Multiple criteria decision analysis, 2016, 903-926.10.1007/978-1-4939-3094-4_21 Search in Google Scholar

[22] Kacen, I., Hammadi, S., Borne, P. Pareto- optimality Approach on Uniform Design and Fuzzy Evolutionary algorithms for Flexible Job-shop Scheduling. Problems. Systems, Man and Cybernetics, 2002 IEEE International Conference, 2003. Search in Google Scholar

[23] Karande, P. and Chakraborty, S. Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Materials & Design, 37, (2012), 317–324.10.1016/j.matdes.2012.01.013 Search in Google Scholar

[24] Khabbaz, R., Sarfaraz, B., Dehghan Manshadi, A., Abedian, R. Mahmudi. A simplified fuzzy logic approach for materials selection in mechanical engineering design. Materials & Design, 30, (2009), 687–697.10.1016/j.matdes.2008.05.026 Search in Google Scholar

[25] Kleinberg, J.M. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46, (1999), 604–632.10.1145/324133.324140 Search in Google Scholar

[26] Korhonen, H. Restricting weights in value efficiency Analysis, European Journal of Operation Research,126, 2000, 175-188.10.1016/S0377-2217(99)00290-8 Search in Google Scholar

[27] Langville, A.N., Meyer, C.D. Deeper inside page rank. Internet Mathematics, 1, 2004, 335-380.10.1080/15427951.2004.10129091 Search in Google Scholar

[28] Marler, R.T. and Arora, J.S. Function-transformation methods for multi-objective optimization. Engineering Optimization, 37, 2005, 551–570.10.1080/03052150500114289 Search in Google Scholar

[29] Mietinen,K. Nonlinear Multi-objective Optimization. Boston: Kluer Academic Publishers, 1999. Search in Google Scholar

[30] Opricovic S., Tzeng, G., Extended VIKOR method in comparison with outranking methods, European Journal of Operational Research, vol. 178, no. 2,, 2007, 514–529.10.1016/j.ejor.2006.01.020 Search in Google Scholar

[31] Padhye, N., Kalia, S. and Deb, K. Multi-Objective Optimization and Multi-criteria Decision Making For FDM Using Evolutionary Approaches, 2009. Search in Google Scholar

[32] Roy, B., Classement et choix en pr´esence de points de vue multiples (la m´ethode ELECTRE). Revue Francaise d’Informatique et de Recherche Op´erationnelle 8, 1968, 57–75.10.1051/ro/196802V100571 Search in Google Scholar

[33] Saaty, T. L. How to make a decision : the analytic hierarchy process, European journal of operational research, vol. 48, 1,, 1990, 9–26.10.1016/0377-2217(90)90057-I Search in Google Scholar

[34] Saaty, T. L., Decision making with dependence and feedback : The analytic network process, RWS publications Pittsburgh. 1996. Search in Google Scholar

[35] Salukvadze, M. E.: Optimization of vector functionals. Part I: Programming of optimal trajectories (in Russian). Avtomatika i Telemekhanika, 8, 1971, 5-15. Search in Google Scholar

[36] Taboada, H. & Coit, D., Data Mining Techniques to Facilitate the Analysis of the Pareto-Optimal Set for Multiple Objective Problems. In Proceedings of the Industrial Engineering Research Conference (IERC), Orlando, Florida, 2006. Search in Google Scholar

[37] Taboada, H. and Coit, D. Post-Pareto Optimality Analysis to Efficiently Identify Promising Solutions for Multi-Objective Problems, Rutgers University ISE Working Paper 05-15, 2005. Search in Google Scholar

[38] Triantaphyllou, E., Multi-criteria decision-making methods, in Multicriteria decision making methods: A comparative study. Dordrecht, The Netherlands: Kluwer Academic Publishers (now Springer)., 2000, pp. 5–21. Search in Google Scholar

[39] Venkat, V., Jacobson, S., Stori, J. 2004. A Post-Optimality Analysis Algorithm for Multi-Objective Optimization. Computational Optimization and Applications. 28, 357-372. Search in Google Scholar

[40] Yu P.L., Leitmann G. Compromise solutions, domination structures, and Salukvadze’s solution. Journal of Optimization Theory and Applications, 13(3), 1974,362-378.10.1007/BF00934871 Search in Google Scholar

[41] Zadeh, L., Optimality and non-scalar-valued performance criteria, IEEE Transactions on Automatic Control, vol. 8, no. 1, pp. 59–60, 1963.10.1109/TAC.1963.1105511 Search in Google Scholar

[42] Zeleny, M., Multiple criteria decision making. New York: McGraw-Hill, 1982. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo