1. bookTom 6 (2022): Zeszyt 2 (April 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2564-615X
Pierwsze wydanie
30 Jan 2017
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

The hydroperoxyl antiradical activity of Trolox in water: The effects of pH values on rate constants

Data publikacji: 30 Apr 2022
Tom & Zeszyt: Tom 6 (2022) - Zeszyt 2 (April 2022)
Zakres stron: 44 - 48
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2564-615X
Pierwsze wydanie
30 Jan 2017
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) is a highly hydrophilic α-tocopherol analog that is widely used as a standard against which the antioxidant ability of other chemicals is measured and represented in Trolox equivalents. However, the effect of pH values on the hydroxyl radical scavenging activity has not been fully studied yet. In this study, the HOO antiradical activity of Trolox in water was studied. It was found that the H-abstraction of the O1-H bond determined the activity of the neutral and monoanion states, whereas the electron transfer reaction of the hydroxyl anion state determined the activity of the dianion state. Although the total rate constant increased following the increase in pH levels, the overall rate constant of the Trolox + HOO reaction in water changed when pH levels rose due to the decrease in HOO molar fraction. The results also revealed that at pH < 2, the O1-radical was the main intermediate of the Trolox + HOO reaction in water, whereas, at pH ---gt--- 5, the anion-radical was the significant intermediate. Thus the rate constants and the reaction intermediates vary with the pH values.

Keywords

1. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993;84(4):407-412. Search in Google Scholar

2. Evans MG, Polanyi M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc.. 1935;31:875-894. Search in Google Scholar

3. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26(9-10):1231-1237.10.1016/S0891-5849(98)00315-3 Search in Google Scholar

4. Alberto ME, Russo N, Grand A, Galano A. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys. Chem. Chem. Phys. 2013;15(13):4642-4650. Search in Google Scholar

5. Vo QV, Thong NM, Le Huyen T, Nam PC, Tam NM, Hoa NT, Mechler A. A thermodynamic and kinetic study of the antioxidant activity of natural hydroanthraquinones. RSC Adv. 2020;10(34):20089-20097.10.1039/D0RA04013D Search in Google Scholar

6. Ramis R, Casasnovas R, Ortega-Castro J, Frau J, Alvarez-Idaboy J, Mora-Diez N. Modelling the repair of carbon-centred protein radicals by the antioxidants glutathione and Trolox. New J. Chem. 2019;43(5):2085-2097. Search in Google Scholar

7. Tošović J, Marković S. Reactivity of chlorogenic acid toward hydroxyl and methyl peroxy radicals relative to trolox in nonpolar media. Theoretical Chemistry Accounts. 2018;137(6):1-11.10.1007/s00214-018-2251-y Search in Google Scholar

8. Franzoni F, Colognato R, Galetta F, Laurenza I, Barsotti M, Di Stefano R, Bocchetti R, Regoli F, Carpi A, Balbarini A. An in vitro study on the free radical scavenging capacity of ergothioneine: comparison with reduced glutathione, uric acid and trolox. Biomed. Pharmacother. 2006;60(8):453-457.10.1016/j.biopha.2006.07.01516930933 Search in Google Scholar

9. Boulebd H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J. Mol. Struct. 2020;1201:127210.10.1016/j.molstruc.2019.127210 Search in Google Scholar

10. Castro IA, Rogero MM, Junqueira RM, Carrapeiro MM. Free radical scavenger and antioxidant capacity correlation of α-tocopherol and Trolox measured by three in vitro methodologies. Int. J. Food Sci. Nutr. 2006;57(1-2):75-82.10.1080/0963748060065619916849116 Search in Google Scholar

11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian AFI, J. Bloino, G. Zheng,, J. L. Sonnenberg MH, M. Ehara, K. Toyota,, R. Fukuda JH, M. Ishida, T. Nakajima, Y. Honda,, O. Kitao HN, T. Vreven, J. A. Montgomery Jr,, J. E. Peralta FO, M. J. Bearpark, J. Heyd,, E. N. Brothers KNK, V. N. Staroverov, R. Kobayashi,, J. Normand KR, A. P. Rendell, J. C. Burant,, S. S. Iyengar JT, M. Cossi, N. Rega, N. J. Millam,, M. Klene JEK, J. B. Cross, V. Bakken, C. Adamo,, J. Jaramillo RG, R. E. Stratmann, O. Yazyev,, A. J. Austin RC, C. Pomelli, J. W. Ochterski,, R. L. Martin KM, V. G. Zakrzewski, G. A. Voth,, P. Salvador JJD, S. Dapprich, A. D. Daniels,, ¨ O. Farkas JBF, J. V. Ortiz, J. Cioslowski,, D. J. Fox. Gaussian 09, Gaussian, Inc., Wallingford CT,. 2009. Search in Google Scholar

12. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008;120(1):215-241. Search in Google Scholar

13. Galano A, Alvarez-Idaboy JR. Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performance of density functional methods. J. Comput. Chem. 2014;35(28):2019-2026. Search in Google Scholar

14. Zhao Y, Truhlar DG. How Well Can New-Generation Density Functionals Describe the Energetics of Bond-Dissociation Reactions Producing Radicals? J. Phys. Chem. A. 2008;112(6):1095-1099. Search in Google Scholar

15. Vo QV, Nam PC, Van Bay M, Thong NM, Mechler A. A theoretical study of the radical scavenging activity of natural stilbenes. RSC Adv. 2019;9(72):42020-42028.10.1039/C9RA08381B Search in Google Scholar

16. Galano A, Alvarez-Idaboy JR. A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. J. Comput. Chem. 2013;34(28):2430-2445. Search in Google Scholar

17. Boulebd H, Mechler A, Hoa NT, Vo QV. Thermodynamic and Kinetic Studies of the Antiradical Activity of 5-Hydroxymethylfurfural: Computational Insights. New J. Chem. 2020;44:9863-9869. Search in Google Scholar

18. Marenich AV, Cramer CJ, Truhlar DG. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113(18):6378-6396. Search in Google Scholar

19. Iuga C, Alvarez-Idaboy JRl, Russo N. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study. J. Org. Chem. 2012;77(8):3868-3877. Search in Google Scholar

20. Eyring H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935;3(2):107-115.10.1063/1.1749604 Search in Google Scholar

21. Truhlar DG, Hase WL, Hynes JT. Current Status of Transition-State Theory. J. Phys. Chem. A. 1983;87(15):2664-2682. Search in Google Scholar

22. Furuncuoglu T, Ugur I, Degirmenci I, Aviyente V. Role of Chain Transfer Agents in Free Radical Polymerization Kinetics. Macromolecules. 2010;43(4):1823-1835.10.1021/ma902803p Search in Google Scholar

23. Vélez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, Zapata E, Alarcón G. A Computational Study of Stereospecifity in the Thermal Elimination Reaction of Menthyl Benzoate in the Gas Phase. J. Phys. Org. Chem. 2009;22(10):971-977. Search in Google Scholar

24. Dzib E, Cabellos JL, Ortíz-Chi F, Pan S, Galano A, Merino G. Eyringpy: A Program for Computing Rate Constants in the Gas Phase and in Solution. Int. J. Quantum Chem. 2019;119(2):e25686.10.1002/qua.25686 Search in Google Scholar

25. E. Dzib, J. L. Cabellos, F. Ortiz-Chi, S. Pan, A. Galano, G. Merino. Eyringpy 1.0.2. 2018:Cinvestav, Mérida, Yucatán. Search in Google Scholar

26. Vo QV, Hoa NT, Nam PC, Quang DT, Mechler A. In Silico Evaluation of the Radical Scavenging Mechanism of Mactanamide. ACS Omega. 2020; 5:24106–24110.10.1021/acsomega.0c03646751335632984732 Search in Google Scholar

27. Steenken S, Neta P. One-electron redox potentials of phenols. Hydroxy-and aminophenols and related compounds of biological interest. J. Phys. Chem. 1982;86(18):3661-3667. Search in Google Scholar

28. Barclay LRC, Vinqvist MR. Membrane peroxidation: inhibiting effects of water-soluble antioxidants on phospholipids of different charge types. Free Radic. Biol. Med. 1994;16(6):779-788. Search in Google Scholar

29. De Grey AD. HO2: the forgotten radical. DNA and cell biology. 2002;21(4):251-257.10.1089/10445490275375967212042065 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo