[
Abegaz, F., Chaichoompu, K., Génin, E., Fardo, D. W., König, I. R., John, J. M. M., & Van Steen, K. (2019). Principals about principal components in statistical genetics. Brief Bioinform, 20(6), 2200–2216. https://doi.org/10.1093/bib/bby08110.1093/bib/bby081
]Search in Google Scholar
[
Alameda-Hernández, Á. (2008). SFL and CDA: Contributions of the analysis of the transitivity system in the study of the discursive construction of national identity (case study: Gibraltar). The Linguistics Journal, 3(3), 160–175.
]Search in Google Scholar
[
Blaschke, C., Yeh, A., Hirschman, L., & Valencia, A. (2003). ISMB 2003 Text mining SIG meeting report. Computer Funct Genomics, 4, 667–673. https://doi.org/10.1002/cfg.33810.1002/cfg.338
]Search in Google Scholar
[
Clark, N. R., & Ma’ayan, A. (2011). Introduction to statistical methods to analyze large data sets: Principal components analysis. Science Signaling, 4(190), 3. https://doi.org/10.1126/scisignal.200196710.1126/scisignal.2001967
]Search in Google Scholar
[
Dancy-Scott, N., Dutcher, G. A., Keselman, A., Hochstein, C., Copty, C., Ben-Senia, D., Rajan, S., Asencio, M. G., & Choi, J. J. (2018). Trends in HIV terminology: Text mining and data visualization assessment of International AIDS Conference abstracts over 25 years. JMIR Public Health Surveill, 4, e50. https://doi.org/10.2196/publichealth.855210.2196/publichealth.8552
]Search in Google Scholar
[
David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology, 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_1110.1007/978-1-62703-658-0_11
]Search in Google Scholar
[
de Quadros, L. G., Kaiser Jr., R. L. K., Neto, M. D. P. G., Campos, J. M., de Santana, M. F., & Ferraz, A. A. B. (2016). Long-term postoperative endoscopic findings after gastric bypass procedure: A co-occurrence analysis. https://doi.org/10.1590/s0004-2803201600040001210.1590/S0004-28032016000400012
]Search in Google Scholar
[
Foucault, M. (1981). The order of discourse. In R. Young (Ed.), Untying the text: A post-structural anthology (pp. 48–78). Boston: Routledge & Kegan Paul.
]Search in Google Scholar
[
Heasly, B., Lindner, J., Iliško, D., & Salīte, I. (2020). From initiatives, to insights, to implementation of the sustainability and securitability agenda for 2030. Discourse and Communication for Sustainable Education, 11(1), 1–4.10.2478/dcse-2020-0001
]Search in Google Scholar
[
Hall, S. (1997). The work of representation. In S. Hall (Ed.), Representation: Cultural representations and signifying practices (pp. 13–74). London: Sage and The Open University.
]Search in Google Scholar
[
Janz, K. F. (2006). Physical activity in epidemiology: Moving from questionnaire to objective measurement. British Journal of Sports Medicine, 40, 191–192. https://doi.org/10.1136/bjsm.2005.02303610.1136/bjsm.2005.023036
]Search in Google Scholar
[
Jeroen, J. A., David, A. M., Pieter, L. A., Bart, L. H., Mart, M. L., Nisreen, O., Johannes, P. C., Henrik, E., Diederik, A. M., Jan, J. C., Rogier, A. S., Menno, M. V., Dennis, A. H., Herold, J. M., Annelies, V., Jurriaan, E. M., Gerorgina, I. A., Eric, C. M., Sander, V. B., Ö Annemiek, A. V. (2021). Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nature Communications, 12, 267. https://doi.org/10.1038/s41467-020-20568-410.1038/s41467-020-20568-4
]Search in Google Scholar
[
Jodoin, J., & Singer, J. (2020). Mainstreaming education for sustainable development in English as a foreign language: An analysis of the image-text interplay found in EFL textbooks in Japanese higher education. In W. L. Filho, A. L. Salvia, R. W. Pretorius, L. L. Brandli, E. Manolas, F. Alves, U. Azeiteiro, J. Rogers, C. Shiel, & A. Do Paco (Eds.), Universities as living labs for sustainable development (pp. 545–565). Cham: Springer.
]Search in Google Scholar
[
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A, 374, 20150202. https://doi.org/10.1098/rsta.2015.020210.1098/rsta.2015.0202
]Search in Google Scholar
[
Junge, A., & Jensen, L. J. (2020). CoCoScore: Context-aware co-occurrence scoring for text mining applications using distant supervision. Bioinformatics, 36(1), 264–271. https://doi.org/10.1093/bioinformatics/btz49010.1093/bioinformatics/btz490
]Search in Google Scholar
[
Koch, M., Lunde, L.-K., Gjulem, T., Knardahl, S., & Veiersted, K. B. (2016). Validity of questionnaire and representativeness of objective methods for measurements of mechanical exposures in construction and health care work. PLoS One, 11, e0162881. https://doi.org/10.1371/journal.pone.016288110.1371/journal.pone.0162881
]Search in Google Scholar
[
Martins, T. D., Annichino-Bizzacchi, J. M., Romano, A. V. C., & Filho, R. M. (2019). Principal component analysis on recurrent venous thromboembolism. Clinical and Applied Thrombosis/Hemostasis, 25, 1076029619895323. https://doi.org/10.1177/107602961989532310.1177/1076029619895323
]Search in Google Scholar
[
Maskery, S. M., Zhang, Y., Jordan, R. M., Hu, H., Hooke, J. A., Shriver, C. D., & Liebman, M. N. (2006). Co-occurrence analysis for discovery of novel breast cancer pathology patterns. IEEE IEEE Transactions on Information Technology in Biomedicine, 10(3), 497–503. https://doi.org/10.1109/titb.2005.86386310.1109/TITB.2005.863863
]Search in Google Scholar
[
Mochizuki, Y., & Fadeeva, Z. (2010). Competences for sustainable development and sustainability: Significance and challenges for ESD. International Journal of Sustainability in Higher Education, 11(4), 391–403.10.1108/14676371011077603
]Search in Google Scholar
[
Pavlopoulos, G. A., Promponas, V. J., Ouzounis, C. A., & Iliopoulos, I. (2014). Biological information extraction and co-occurrence analysis. Methods in Molecular Biology, 1159, 77–92. https://doi.org/10.1007/978-1-4939-0709-0_510.1007/978-1-4939-0709-0_5
]Search in Google Scholar
[
Przybyła, P., Shardlow, M., Aubin, S., Bossy, R., de Castilho, R. E., Piperidis, S., McNaught, J., & Ananiadou, S. (2016). Text mining resources for the life sciences. Database (Oxford), 2016, baw145. https://doi.org/10.1093/database/baw14510.1093/database/baw145
]Search in Google Scholar
[
Renganathan, V. (2017). Text mining in biomedical domain with emphasis on document clustering. Healthcare Informatics Research, 23, 141–146. https://doi.org/10.4258/hir.2017.23.3.14110.4258/hir.2017.23.3.141
]Search in Google Scholar
[
Salīte, I. (2008). Educational action research for sustainability: Constructing a vision for the future in teacher education. Journal of Teacher Education for Sustainability, 10, 5–16.10.2478/v10099-009-0021-6
]Search in Google Scholar
[
Salīte, I. (2016). Searching for sustainability in teacher education and educational research: Experiences from the Baltic and Black Sea Circle Consortium for educational research. Discourse and Communication for Sustainable Education, 6(1), 21–29.10.1515/dcse-2015-0002
]Search in Google Scholar
[
Scheier, I. H., & Cattell, R. B. (1958). Confirmation of objective test factors and assessment of their relation to questionnaire factors: A factor analysis of 113 rating, questionnaire and objective test measurements of personality. The Journal of Mental Science, 104, 608–624. https://doi.org/10.1192/bjp.104.436.60810.1192/bjp.104.436.608
]Search in Google Scholar
[
Sell, S. L., Widen, S. G., Prough, D. S., & Hellmich, H. L. (2020). Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS One, 15, e0234185. https://doi.org/10.1371/journal.pone.023418510.1371/journal.pone.0234185
]Search in Google Scholar
[
Zhao, J., Li, Z., Gao, Q., Zhao, H., Chen, S., Huang, L., Wang, W., & Wang, T. (2021). A review of statistical methods for dietary pattern analysis. Nutrition Journal, 20, 37. https://doi.org/10.1186/s12937-021-00692-710.1186/s12937-021-00692-7
]Search in Google Scholar