1. bookTom 26 (2022): Zeszyt 2 (December 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Otwarty dostęp

Effect of Substrate Composition on Yield and Antioxidative Activity of Exopolysaccharides From Lactobacillus fermentum B62

Data publikacji: 30 Dec 2022
Tom & Zeszyt: Tom 26 (2022) - Zeszyt 2 (December 2022)
Zakres stron: 303 - 314
Otrzymano: 19 Oct 2022
Przyjęty: 12 Dec 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski

1. Ale, E. C., Perezlindo, M. J., Burns, P., Tabacman, E., Reinheimer, J. A., & Binetti, A. G. (2016). Exopolysaccharide from Lactobacillus fermentum Lf2 and its functional characterization as a yogurt additive. Journal of Dairy Research, 83(4), 487-492. DOI: 10.1017/s0022029916000571. Otwórz DOISearch in Google Scholar

2. Andrew, M., & Jayaraman, G. (2019). Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydrate Research, 487. DOI: 10.1016/j.carres.2019.107881.31805426 Otwórz DOISearch in Google Scholar

3. Caggianiello, G., Kleer Eb Ezem, M., & Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied Microbiology & Biotechnology, 100(9), 3877-3886. DOI: 10.1007/s00253-016-7471-2.27020288 Otwórz DOISearch in Google Scholar

4. Chen, F., Zhang, Q., Fei, S., Gu, H., & Yang, L. (2017). Optimization of ultrasonic circulating extraction of samara oil from acer saccharum using combination of plackett–burman design and box–behnken design. Ultrasonics Sonochemistry, 35(Pt A),161-175. DOI: 10.1016/j.ultsonch.2016.09.015.27671519 Otwórz DOISearch in Google Scholar

5. Chen, L., Gu, Q., & Zhou, T. (2022). Statistical Optimization of Novel Medium to Maximize the Yield of Exopolysaccharide From Lacticaseibacillus rhamnosus ZFM216 and Its Immunomodulatory Activity. Frontiers in nutrition, 9. DOI:10.3389/fnut.2022.924495920147935719166 Otwórz DOISearch in Google Scholar

6. Cheng, X., Huang, L., & Li, K. T. (2019). Antioxidant activity changes of exopolysaccharides with different carbon sources from lactobacillus plantarum lpc-1 and its metabolomic analysis. World Journal of Microbiology & Biotechnology, 35(5), 68. DOI: 10.1007/s11274-019-2645-6.31011829 Otwórz DOISearch in Google Scholar

7. Chunping, X. U., Jinwei, Y. U., Zhao, S., Shungshung, W. U., Peixin, H. E., & Jia, X., et al. (2017). Effect of carbon source on production, characterization and bioactivity of exopolysaccharide produced by phellinus vaninii Ljup. Anais da Academia Brasileira de Ciências, 89(3 Suppl), 2033-2041. DOI: 10.1590/0001-3765201720150786.29044312 Otwórz DOISearch in Google Scholar

8. Daba, G. M., Elnahas, M. O., & Elkhateeb, W. A. (2021). Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules, 173(2), 1-11. DOI: 10.1016/j.ijbiomac.2021.01.110.33482209 Otwórz DOISearch in Google Scholar

9. Doleyres Y, Schaub L, Lacroix C. (2005). Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J Dairy Sci, 88(12), 4146-4156. DOI: 10.3168/jds.S0022-0302(05)73100-3.16291605 Otwórz DOISearch in Google Scholar

10. Dong, Y., Shu, G., Dai, C., Zhang, M., & Wan, H. . (2020). Effect of amino acids on the production of biosurfactant by pediococcus acidilactici f70. Acta Universitatis Cibiniensis Series E Food Technology, 24(1), 129-138. DOI: 10.2478/aucft-2020-0011. Otwórz DOISearch in Google Scholar

11. Dubios, M., KA Gilles, Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry, 28, 250-256.10.1021/ac60111a017 Search in Google Scholar

12. Finore, I., Donato, P., Mastascusa, V., Nicolaus, B., & Poli, A. (2014). Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Marine Drugs, 12(5), 3005-3024. DOI: 10.3390/md12053005.405232824857960 Otwórz DOISearch in Google Scholar

13. Imran, M. M., Reehana, N., Jayaraj, K. A., Ahamed, A. P., D Dhanasekaran, & Thajuddin, N., et al. (2016). Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules, 93, 731-745. DOI: 10.1016/j.ijbiomac.2016.09.007.27601132 Otwórz DOISearch in Google Scholar

14. Matthysse, A. G. (2018). Exopolysaccharides of agrobacterium tumefaciens. Current topics in microbiology and immunology, 418: 111-141. DOI: 10.1007/82_2018_100.29992358 Otwórz DOISearch in Google Scholar

15. Mdk, F., Tokatl, M., Elmac, S. B., & Zelik, F. (2020). Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Archives of Microbiology, 202(4), 875-885. DOI: 10.1007/s00203-019-01799-6.31894393 Otwórz DOISearch in Google Scholar

16. Ms, A., At, A., Ds, B., Ana, C., & Maa, C. (2020). Characteristics and function of an extracellular polysaccharide from a green alga Parachlorella. Carbohydrate Polymers, 254. DOI: 10.1016/j.carbpol.2020.117252.33357848 Otwórz DOISearch in Google Scholar

17. Plackett, R. L. (1946). The design of optimum multifactor experiments. Biometrika, 33.10.1093/biomet/33.4.305 Search in Google Scholar

18. Pourjafar, H., Ansari, F., Sadeghi, A., Samakkhah, S. A., & Jafari, S. M. (2022). Functional and health-promoting properties of probiotics’ exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr, undefined, 1-32. DOI: 10.1080/10408398.2022.2047883.35266799 Otwórz DOISearch in Google Scholar

19. Qi, L., Huang, X., Yang, D., Si, T., & Pan, S. (2016). Yield improvement of exopolysaccharides by screening of the Lactobacillus acidophilus ATCC and optimization of the fermentation and extraction conditions. Excli Journal, 15, 119-133. DOI: 10.17179/excli2015-356.483475327103893 Otwórz DOISearch in Google Scholar

20. Ricciardi, A., Parente, E., Crudele, M. A., Zanetti, F., Scolari, G., & Mannazzu, I. (2002). Exopolysaccharide production by streptococcus thermophilus SY: production and preliminary characterization of the polymer. Journal of Applied Microbiology, 92(2), 297-306. DOI: 10.1046/j.1365-2672.2002.01487.x.11849358 Otwórz DOISearch in Google Scholar

21. Saadat, Y. R., Khosroushahi, A. Y., & Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79-89. DOI: 10.1016/j.carbpol.2019.04.025.31079688 Otwórz DOISearch in Google Scholar

22. Saadat, Y. R., Khosroushahi, A. Y., & Gargari, B. P. (2021). Yeast exopolysaccharides and their physiological functions. Folia Microbiologica, 66(2), 171-182. DOI: 10.1007/s12223-021-00856-2.33604744 Otwórz DOISearch in Google Scholar

23. Savadogo, A., Ouattara, C., Savadogo, P. W., Barro, N., Ouattara, A. S., & Traore, A. S. (2004). Identification of exopolysaccharides-producing lactic acid bacteria from burkina faso fermented milk samples. African Journal of Biotechnology, 3(3), 189-194. DOI: 10.5897/AJB2004.000-2034. Otwórz DOISearch in Google Scholar

24. Shangguan, W., Chen, H., Li, Y., Wang, Z., & Meng, J. (2019). Screening and identification of new types of exopolysaccharides-producing lactic acid in the inner mongolia dairy products. Acta Universitatis Cibiniensis Series E Food Technology, 23(2), 75-84. DOI: 10.2478/aucft-2019-0010. Otwórz DOISearch in Google Scholar

25. Suryawanshi, N., Naik, S., & Eswari, J. S. (2019). Extraction and optimization of exopolysaccharide from lactobacillus sp. using response surface methodology and artificial neural networks. Preparative Biochemistry & Biotechnology, 49(10), 987-996. DOI: 10.1080/10826068.2019.1645695.31361180 Otwórz DOISearch in Google Scholar

26. Tiwari, O. N., Sasmal, S., Kataria, A. K., & Devi, I. (2020). Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech, 10(5), 221. DOI: 10.1007/s13205-020-02200-w.718875032355595 Otwórz DOISearch in Google Scholar

27. Wang Q, Sun Y, Yang B, Wang Z, Liu Y, Cao Q, Sun X, Kuang H. (2014). Optimization of polysaccharides extraction from seeds of Pharbitis nil and its anti-oxidant activity. Carbohydrate Polymers, 102, 460-466. DOI: 10.1016/j.carbpol.2013.11.068.24507306 Otwórz DOISearch in Google Scholar

28. Wang Xin., Shao Chunge., Liu Lian., Guo Xing., Xu Yuanmei., Lü Xin.(2017). Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int J Biol Macromol, 103(undefined), 1173-1184. DOI:10.1016/j.ijbiomac.2017.05.11828551435 Otwórz DOISearch in Google Scholar

29. Wang, Z. F., Han, Z., Wang, M., Ma, Y., & Zhang, W. (2020). Toxicological effects of enrofloxacin and its removal by freshwater micro-green algae Dictyosphaerium sp. Environmental science, 41(6), 2688-2697. DOI: 10.13227/j.hjkx.201912227.32608784 Otwórz DOISearch in Google Scholar

30. Xin, W., Shao, C., Lian, L., Xing, G., Xu, Y., & Xin, L. (2017). Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum kx041. International Journal of Biological Macromolecules, 103, 1173-1184. DOI: 10.1016/j.ijbiomac.2017.05.118. Otwórz DOISearch in Google Scholar

31. Yang, M., Zhu, Y., Li, Y., Bao, J., Fan, X., & Qu, Y., et al. (2016). Production and optimization of curdlan produced by Pseudomonas sp. ql212. International Journal of Biological Macromolecules, 89, 25-34. DOI: 10.1016/j.ijbiomac.2016.04.027.27086290 Otwórz DOISearch in Google Scholar

32. Yang, Zhou, Yanhua, Cui, Xiaojun, & Qu. (2019). Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: a review. Carbohydrate Polymer, 207, 317-332. DOI: 10.1016/j.carbpol.2018.11.093.30600013 Otwórz DOISearch in Google Scholar

33. Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., & Zeng, X., et al. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum c88. International Journal of Biological Macromolecules, 54, 270-275. DOI: 10.1016/j.ijbiomac.2012.12.037.23274679 Otwórz DOISearch in Google Scholar

34. Zhang, L., Zhao, B., Liu, C. J., & Yang, E. (2020). Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum SP8 and the exopolysaccharides antioxidant activity test. Indian Journal of Microbiology, 60(3), 334-345. DOI:10.1007/s12088-020-00865-8.732995532647393 Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo