1. bookTom 26 (2022): Zeszyt 1 (June 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Quality and Technological Properties of Flour with the Addition of Aesculus Hippocastanum and Castanea Sativa

Data publikacji: 09 Jul 2022
Tom & Zeszyt: Tom 26 (2022) - Zeszyt 1 (June 2022)
Zakres stron: 43 - 54
Otrzymano: 03 Jan 2022
Przyjęty: 10 Apr 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2344-150X
Pierwsze wydanie
30 Jul 2013
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

The study of alternative food sources or ingredients that can partially replace or enrich today’s food is a perspective direction. The possibility of using horse chestnut (Aesculus hippocastanum) and chestnut (Castanea sativa) fruits in the baking industry as an admixture to wheat flour has been determined. The addition of flours from these fruits at a level of 10% increases the number of minerals in the flour mixture and also enriches the mixture in saponins, coumarins, and tannins. However, it is necessary to remove excess saponins from horse chestnut. The amylograph has shown that flour from horse chestnut fruit has optimal parameters for baking mixed bread. Farinograph tests showed that a 10% addition of ground horse chestnut to wheat flour had the best baking properties. Mixtures with 10 and 15% chestnut addition showed the best baking characteristic.

Keywords

1. Abudayeh, Z. H. M., Al Azzam, K. M., Naddaf, A., Karpiuk, U. V., & Kislichenko, V. S. (2015). Determination of four major saponins in skin and endosperm of seeds of horse chestnut (Aesculus hippocastanum L.) using high-performance liquid chromatography with positive confirmation by thin layer chromatography. Adv. Pharm. Bull., 5(4), 587. DOI: 10.15171/apb.2015.079472934826819933 Otwórz DOISearch in Google Scholar

2. Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem., 119(2), 770-778. DOI: 10.1016/j.foodchem.2009.07.032 Otwórz DOISearch in Google Scholar

3. Beck B.R., Shoemaker M.R. (2000). Osteoporoza. Najważniejsze czynniki ryzyka i możliwość leczenia. Med. po Dypl., 9, 147-163. Search in Google Scholar

4. Bekele, D. A., & Geleta, G. S. (2015). Iodometric determination of the ascorbic acid (Vitamin C) content of some fruits consumed in Jimma Town Community in Ethiopia. Res. J. Chem. Sci., 2231: 606X. Search in Google Scholar

5. Benzie, I.F.F., Strain, J.J., (1996). The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal. Biochem. 239, 70–76. DOI: 10.1006/abio.1996.02928660627 Otwórz DOISearch in Google Scholar

6. Bernard, F., & Prieur, A. (2007). Biofuel market and carbon modeling to analyse French biofuel policy. Energy Policy, 35(12), 5991-6002. DOI: 10.1016/j.enpol.2007.08.005 Otwórz DOISearch in Google Scholar

7. Bielawska, K., Malinowska, M., & Cyuńczyk, M. (2014). Wpływ kumaryn na organizm człowieka. Bromat. Chem. Toksykol., 47(2), 213-221 Search in Google Scholar

8. Borges, O., Gonçalves, B., de Carvalho, J. L. S., Correia, P., & Silva, A. P. (2008). Nutritional quality of chestnut (Castanea sativa Mill.) cultivars from Portugal. Food Chem., 106(3), 976-984. DOI: 10.1016/j.foodchem.2007.07.011 Otwórz DOISearch in Google Scholar

9. Brzozowska, A. (Ed.). (2002). Składniki mineralne w żywieniu człowieka. Wydaw. Akademii Rolniczej im. Augusta Cieszkowskiego. Search in Google Scholar

10. Campos, M. R. S., Gómez, K. R., Ordo, Y. M., & Ancona, D. B. (2013). Polyphenols, ascorbic acid and carotenoids contents and antioxidant properties of habanero pepper (Capsicum chinense) fruit. DOI: 10.4236/fns.2013.48A006 Otwórz DOISearch in Google Scholar

11. Cappuccio F. (2000). Sodium, potassium, calcium and magnesium and cardiovascular risk. J. Card. Risk., 7, 1-3.10.1177/20474873000070010110785866 Search in Google Scholar

12. Chełpiński, P., Ochmian, I., & Forczmański, P. (2019). Sweet cherry skin colour measurement as an non-destructive indicator of fruit maturity. Acta Univ. Cibiniensis, Ser. E: Food Technol., 23(2), 157-166. DOI: 10.2478/aucft-2019-0019 Otwórz DOISearch in Google Scholar

13. Conedera, M., Tinner, W., Krebs, P., de Rigo, D., & Caudullo, G. (2016). Castanea sativa in Europe: distribution, habitat, usage and threats. Tree species European Atlas of Forest Tree Species, 78-79 Search in Google Scholar

14. Dababneh, M. F., Grinenko, U. V., Almuaikel, N. S., & Zhuravel, I. O. (2017). The study of micro-and macroelements composition of quince (Сydonia oblonga) plant material. Res. J. Pharm. Biol. Chem. Sci., 8(2), 1830 Search in Google Scholar

15. De Morais Cardoso, L., Pinheiro, S. S., Martino, H. S. D., & Pinheiro-Sant’Ana, H. M. (2017). Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Critical reviews in food science and nutrition, 57(2), 372-390. DOI: 10.1080/10408398.2014.88705725875451 Otwórz DOISearch in Google Scholar

16. De Vasconcelos, M. D. C. B. M., Bennett, R. N., Rosa, E. A., & Cardoso, J. V. F. (2007). Primary and secondary metabolite composition of kernels from three cultivars of Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation. J. Agric. Food Chem., 55(9), 3508-3516. DOI: 10.1021/jf062908017407304 Otwórz DOISearch in Google Scholar

17. Ditlevsen, K., Sandøe, P., & Lassen, J. (2019). Healthy food is nutritious, but organic food is healthy because it is pure: The negotiation of healthy food choices by Danish consumers of organic food. Food Qual. Prefer., 71, 46-53. DOI: 10.1016/j.foodqual.2018.06.001 Otwórz DOISearch in Google Scholar

18. European Parliament and Council. (2008). Regulation (EC) no 1334/2008 of the European Parliament and of the council of 16 December 2008 onflavouringsand certain food ingredients with flavouring properties for use in and on foods and amending council regulation (EEC) no 1601/91, regulations (EC) no 2232/96and (EC) no 110/2008 and directive 2000/13/EC. Official Journal of the European Communities, L354,34e50 Search in Google Scholar

19. FAOSTAT (2017). Crop Statistics. Retrieved: 10 June 2020, from: http://www.fao.org/faostat/en/#data/QC. Search in Google Scholar

20. Fatih, E. R., Özcan, M. M., Duman, E., & ENDES, Z. (2013). Some Chemical Properties Of Chestnut (Castanea Sativa Mill.) Fruit Collected From Different Locations In Turkey. Int. Anatol. Acad. Online J., 1(1),9-12. Search in Google Scholar

21. Fernandez-Orozco, R., Li, L., Harflett, C., Shewry, P. R., & Ward, J. L. (2010). Effects of environment and genotype on phenolic acids in wheat in the HEALTH GRAIN diversity screen. J. Agric. Food Chem., 58(17), 9341-9352. DOI: 10.1021/jf102017s Otwórz DOISearch in Google Scholar

22. Floegel, A., Kim, D. O., Chung, S. J., Song, W. O., Fernandez, M. L., Bruno, R. S., & Chun, O. K. (2010). Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. Int. J. Food Sci. Nutr., 61(6), 600-623. DOI: 10.3109/09637481003670816 Otwórz DOISearch in Google Scholar

23. Foca, G., Ulrici, A., Cocchi, M., Durante, C., Vigni, M. L., Marchetti, A., ... & Tassi, L. (2011). Seeds of horse chestnut (Aesculus hippocastanum L.) and their possible utilization for human consumption. In Nuts and Seeds in Health and Disease Prevention (pp. 653-661). Academic Press. DOI: 10.1016/B978-0-12-375688-6.10076-3 Otwórz DOISearch in Google Scholar

24. Galiano, F., Briceno, K., Marino, T., Molino, A., Christensen, K. V., & Figoli, A. (2018). Advances in biopolymer-based membrane preparation and applications. J. Membr. Sci., 564, 562-586. DOI: 10.1016/j.memsci.2018.07.059 Otwórz DOISearch in Google Scholar

25. GB 2762-2012. Krajowy Standard Bezpieczeństwa Żywności Maksymalne poziomy zanieczyszczeń w produktach spożywczych. Krajowa Komisja ds. Zdrowia i Planowania Rodziny. Wydano w dniu 11/13/2013. Wdrożono w dniu 1 czerwca 2014. Search in Google Scholar

26. Gemede, H. F., & Ratta, N. (2014). Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Food Sci., 3(4), 284-289. DOI: 10.11648/j.ijnfs.20140304.18 Otwórz DOISearch in Google Scholar

27. Gil, E. P. (2015). Technological characteristics of wheat and non-cereal flour blends and their applicability in bread making. J. Food Nutr. Res., 54(1), 69-78. Search in Google Scholar

28. Gill, A. J., & Kolson, D. L. (2013). Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy. Crit. Rev. Immunol., 33(4). DOI: 10.1615/CritRevImmunol.2013007247 Otwórz DOISearch in Google Scholar

29. IUNG (Institute of Soil Science and Plant Cultivation). Fertiliser Recommendations Part I. Limits for Estimating Soil Macro- and Microelement Content. Series P. (44); Państwowy Instytut Badawczy w Puławach, Puławy, Poland, 1990, pp. 26–28. Search in Google Scholar

30. Jorde R., Bonaa K. (2000). Calcium from dairy products, vitamin D intake, and blood pressure: the Tromso Study. Am. J. Clin. Nutr., 71, 1530-1534. DOI: 10.1093/ajcn/71.6.1530 Otwórz DOISearch in Google Scholar

31. Korotkova, E. I., Karbainov, Y. A., & Shevchuk, A. V. (2002). Study of antioxidant properties by voltammetry. J. Electroanal. Chem., 518(1), 56-60. DOI: 10.1016/S0022-0728(01)00664-7 Otwórz DOISearch in Google Scholar

32. Kumar, K., Henry, D. C., & Sivakumar, K. (2019). Bioprofiling of phytochemicals and phytonutritional potentials of Solanum incanum L. World Scientific News, 128(2), 328-347. Search in Google Scholar

33. Lizunkov, V. (2018). Population of the world and regions as the principal energy consumer. Search in Google Scholar

34. Lohi, S., Mustalahti, K., Kaukinen, K., Laurila, K., Collin, P., Rissanen, H., ... & Mäki, M. (2007). Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther., 26(9), 1217-1225. DOI: 10.1111/j.1365-2036.2007.03502.x17944736 Otwórz DOISearch in Google Scholar

35. Long, S. P., Marshall-Colon, A., & Zhu, X. G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161(1), 56-66. DOI: 10.1016/j.cell.2015.03.01925815985 Otwórz DOISearch in Google Scholar

36. Lorent, J. H., Quetin-Leclercq, J., & Mingeot-Leclercq, M. P. (2014). The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org. Biomol. Chem., 12(44), 8803-8822. DOI: 10.1039/C4OB01652A Otwórz DOISearch in Google Scholar

37. Łuczaj, Ł. (2004). Dzikie rośliny jadalne Polski: przewodnik survivalowy. Wydawnictwo” Chemigrafia”. Search in Google Scholar

38. Nascimento, A.N., Silvestre, D.M., de Oliveira Leme, F., Nomura, C.S., Naozuka, J. (2015). Elemental analysis of goji berries using axially and radially viewed inductively coupled plasma-opical emissin spectometry. Spectroscopy 30 (1). Search in Google Scholar

39. Nojavan, S., Khalilian, F., Kiaie, F. M., Rahimi, A., Arabanian, A., & Chalavi, S. (2008). Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compos. Anal., 21(4), 300-305. DOI: 10.1016/j.jfca.2007.11.007 Otwórz DOISearch in Google Scholar

40. Oszmiański, J., Lachowicz, S., Gławdel, E., Cebulak, T., Ochmian, I. (2018). Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol. 244 (4), 647–662. DOI: 10.1007/s00217-017-2989-9 Otwórz DOISearch in Google Scholar

41. Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Delikanli, B. (2014). Phenolics in human health. Int. J. Chem. Eng., 5(5), 393. DOI: 10.7763/IJCEA.2014.V5.416 Otwórz DOISearch in Google Scholar

42. Piwowarczyk, R., Ochmian, I., Lachowicz, S., Kapusta, I., Malinowska, K., & Ruraż, K. (2021). Correlational nutritional relationships and interactions between expansive holoparasite Orobanche laxissima and woody hosts on metal-rich soils. Phytochemistry, 190, 112844. DOI: 10.1016/j.phytochem.2021.11284434311276 Otwórz DOISearch in Google Scholar

43. PN-EN ISO 5530-1:2015-01 Mąka pszenna – Fizyczne właściwości ciasta – Część 1: Oznaczanie wodochłonności i właściwości reologicznych za pomocą farinografu Search in Google Scholar

44. PN-EN ISO 7973: 2016-01 Ziarno zbóż i przetwory zbożowe – Oznaczanie lepkości mąki – Metoda z zastosowaniem amylografu. Search in Google Scholar

45. PN-ISO 712. Zboża i przetwory zbożowe. Oznaczanie wilgotności. Rutynowa metoda odwoławcza. Search in Google Scholar

46. Rao, A. V., & Gurfinkel, D. M. (2000). Dietary saponins and human health. In Saponins in food, feedstuffs and medicinal plants (pp. 255-270). Springer, Dordrecht.10.1007/978-94-015-9339-7_26 Search in Google Scholar

47. Rose, M., Baxter, M., Brereton, N., Baskaran, C. (2010). Dietary exposure to metals and other elements in the 2006 UK Total Diet Study and some trends over the last 30 years. Food Addit. Contam., 27 (10), 1380–1404. DOI: 10.1080/19440049.2010.49679420628929 Otwórz DOISearch in Google Scholar

48. Shafi, S., Wani, I. A., Gani, A., Sharma, P., Wani, H. M., Masoodi, F. A., ... & Hamdani, A. M. (2016). Effect of water and ether extraction on functional and antioxidant properties of Indian horse chestnut (Aesculus indica Colebr) flour. J. Food Meas. Charact., 10(2), 387-395. DOI: 10.1007/s11694-016-9317-0 Otwórz DOISearch in Google Scholar

49. Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945–948. https://doi.org/10.1021/jf00018a005. Search in Google Scholar

50. Singh, B., Singh, J. P., Singh, N., & Kaur, A. (2017). Saponins in pulses and their health promoting activities: A review. Food Chem., 233, 540-549. DOI: 10.1016/j.foodchem.2017.04.16128530610 Otwórz DOISearch in Google Scholar

51. Sobczyk, M. (2012). Wpływ dodatku płatków jęczmiennych na jakość ciasta i pieczywa pszennego. ZPPNR, 570, 87-96. Search in Google Scholar

52. Szabłowska, E., & Tańska, M. (2021). Acorn flour properties depending on the production method and laboratory baking test results: A review. Compr. Rev. Food Sci. Food Saf., 20(1), 980-1008. DOI: 10.1111/1541-4337.1268333325090 Otwórz DOISearch in Google Scholar

53. Thomas, P. A., Alhamd, O., Iszkuło, G., Dering, M., & Mukassabi, T. A. (2019). Biological Flora of the British Isles: Aesculus hippocastanum. J. Ecol., 107(2), 992-1030. DOI: 10.1111/1365-2745.13116 Otwórz DOISearch in Google Scholar

54. Wani, I. A., Hamid, H., Hamdani, A. M., Gani, A., & Ashwar, B. A. (2017). Physico-chemical, rheological and antioxidant properties of sweet chestnut (Castanea sativa Mill.) as affected by pan and microwave roasting. J. Adv. Res., 8(4), 399-405. DOI: 10.1016/j.jare.2017.05.005547055228649458 Otwórz DOISearch in Google Scholar

55. WHO. (1989). Toxicological Evaluations of Certain Food Additives and Contaminants, 33rd Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Food Additive Series No. 24. Search in Google Scholar

56. Zhang, Q. C., Zhao, Y., & Bian, H. M. (2014). Anti-Thrombotic Effect of a Novel Formula from Corni Fructus with Malic Acid, Succinic Acid and Citric Acid. Phytother Res., 28(5), 722-727. DOI: 10.1002/ptr.505223913658 Otwórz DOISearch in Google Scholar

57. Zhu, F. (2017). Properties and food uses of chestnut flour and starch. Food Bioproc. Tech., 10(7), 1173-1191. DOI: 10.1007/s11947-017-1909-0 Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo