[
Abass N.Y., Simora R.M.C., Wang J., Li S., Xing D., Coogan M., Johnson A., Creamer D., Wang X., Dunham R.A. (2022). Response of cecropin transgenesis to challenge with Edwardsiella ictaluri in channel catfish Ictalurus punctatus. Fish Shellfish Immunol., 126: 311–317.
]Search in Google Scholar
[
Abelti A.L., Teka T.A., Fikreyesus Forsedo S., Tamiru M., Bultosa G., Alkhtib A., Burton E. (2022). Bio-based smart materials for fish product packaging: a review. Int. J. Food Prop., 25: 857–871.
]Search in Google Scholar
[
Adams A., Thompson K.D. (2006). Biotechnology offers revolution to fish health management. Trends Biotechnol., 24, 201–205.
]Search in Google Scholar
[
Aghaei Z., Ghorani B., Emadzadeh B., Kadkhodaee R., Tucker N. (2020). Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control., 111: 107065.
]Search in Google Scholar
[
Ali A. (2022). New technique for improving fish packaging hygiene and prolonged shelf life. Afr. J. Biotechnol., 21: 237–251.
]Search in Google Scholar
[
Anokhova V.D., Chupakhin E.G., Pershina N.A., Storublevtsev S.A., Antipova L.V., Matskova L.V., Antipov S.S. (2020). Sensitivity of different collagens to proteolytic enzyme treatment. Proc. Int. Conf.: “Health and wellbeing in modern society” (ICHW 2020), Atlantis Press, pp. 44–49.
]Search in Google Scholar
[
Aquerreta Y., Astiasarn I., Bello J. (2002). Use of exogenous enzymes to elaborate the Roman fish sauce ‘garum’. J. Sci. Food Agric., 82: 107–112.
]Search in Google Scholar
[
Assefa A., Abunna F. (2018). Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int., 2018: 5432497.
]Search in Google Scholar
[
Axelsson L., Bjerke G.A., McLeod A., Berget I., Holck A.L. (2020). Growth behavior of Listeria monocytogenes in a traditional Norwegian fermented fish product (Rakfisk) and its inhibition through bacteriophage addition. Foods, 9: 119.
]Search in Google Scholar
[
Ayoola S.O., Idowu A.A. (2008). Biotechnology and species development in aquaculture. Afr. J. Biotechnol., 7: 4722–4725.
]Search in Google Scholar
[
Aytac Z., Huang R., Vaze N., Xu T., Eitzer B.D., Krol W., MacQueen L.A., Chang H., Bousfield D.W., Chan-Park M.B., Ng K.W., Parker K.K., White J.C., Demokritou P. (2020). Development of biodegradable and antimicrobial electrospun zein fibers for food packaging. ACS Sustain. Chem. Eng., 8: 15354–15365.
]Search in Google Scholar
[
Bedekar M.K., Kole S., Tripathi G. (2020). Biotechnological approaches to fish vaccine. In: Genomics and biotechnological advances in veterinary, poultry and fisheries. Academic Press, pp. 407–419.
]Search in Google Scholar
[
Behera B.K. (2021). Nutritional Biotechnology to augment aquaculture production. In: Advances in fisheries biotechnology. Springer Nature Singapore, pp. 231–243.
]Search in Google Scholar
[
Bhargava N., Sharanagat V.S., Mor R.S., Kumar K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: a review. Trends Food Sci. Technol., 105: 385–401.
]Search in Google Scholar
[
Buwono I.D., Iskandar I., Grandiosa R. (2021). Growth hormone transgenesis and feed composition influence growth and protein and amino acid content in transgenic G3 mutiara catfish (Clarias gariepinus). Aquac. Int., 29: 431–451.
]Search in Google Scholar
[
Cabrera-Barjas G., Banerjee A., Valdes O., Moncada M., Sirajunnisa A.R., Surendhiran D., Ramakrishnan G., Rani N.S., Hamidi M., Kozani P.S., Kozani P.S. (2022). Food biotechnology: innovations and challenges. In: Future foods. Academic Press, pp. 697–719.
]Search in Google Scholar
[
Çağrı Mehmetoğlu A., Sezer E., Erol S. (2021). Development of antimicrobial whey protein‐based film containing silver nanoparticles biosynthesised by Aspergillus niger. Int. J. Food Sci. Technol., 56: 965–973.
]Search in Google Scholar
[
Chiang K.Y., Lin W.C., Tsai T.Y., Lin C.W., Huang S.J., Huang C.Y., Wu S.H., Ken C.F., Gong H.Y., Chen J.Y., Wu J.L. (2020). Dual expression of transgenic delta-5 and delta-6 desaturase in tilapia alters gut microbiota and enhances resistance to Vibrio vulnificus infection. PLoS One, 15: e0236601.
]Search in Google Scholar
[
Chukwu-Osazuwa J., Cao T., Vasquez I., Gnanagobal H., Hossain A., Machimbirike V.I., Santander J. (2022). Comparative reverse vaccinology of Piscirickettsia salmonis, Aeromonas salmonicida, Yersinia ruckeri, Vibrio anguillarum and Moritellaviscosa, frequent pathogens of Atlantic salmon and lumpfish aquaculture. Vaccines, 10: 473.
]Search in Google Scholar
[
Coogan M., Alston V., Su B., Khalil K., Elaswad A., Khan M., Simora R.M.C., Johnson A., Xing D., Li S., Wang J., Lu C., Wang W., Hettiarachchi D., Hasin T., Terhune J., Butts I.A.E., Dunham R.A. (2022). CRISPR/Cas-9 induced knockout of myostatin gene improves growth and disease resistance in channel catfish (Ictalurus punctatus). Aquaculture, 557: 738290.
]Search in Google Scholar
[
Coppola D., Lauritano C., Palma Esposito F., Riccio G., Rizzo C., De Pascale D. (2021). Fish waste: from problem to valuable resource. Mar. Drugs., 19: 116.
]Search in Google Scholar
[
Dar A.H., Rashid N., Majid I., Hussain S., Dar M.A. (2019). Nanotechnology interventions in aquaculture and seafood preservation. Crit. Rev. Food Sci. Nutr., 60: 1912–1921.
]Search in Google Scholar
[
Davies P.L. (2022). Reflections on antifreeze proteins and their evolution. Biochem. Cell Biol., 100: 282–291.
]Search in Google Scholar
[
Dávila M.S., Latimer M.F., Dixon B. (2020). Enhancing immune function and fish health in aquaculture. Fish Physiol., 38: 123–161.
]Search in Google Scholar
[
Dayakar B., Xavier K.A.M., Das O., Porayil L., Balange A.K., Nayak B.B. (2021). Application of extreme halophilic archaea as biocatalyst for chitin isolation from shrimp shell waste. Carbohydr. Polym. Technol. Appl., 2: 100093.
]Search in Google Scholar
[
Dayakar B., Xavier K.A.M., Ngasotter S., Layana P., Balange A.K., Priyadarshini B., Nayak B.B. (2022). Characterization of spray-dried carotenoprotein powder from Pacific white shrimp (Litopenaeus vannamei) shells and head waste extracted using papain: antioxidant, spectroscopic and microstructural properties. LWT, 159: 113188.
]Search in Google Scholar
[
Devarayan K., Pandiyan P., Nagaraju K.S., Anjappan H. (2020). Halochromic sensors for real-time monitoring of spoilage of packed seer fish. Mater. Today: Proc., 33: 3961–3966.
]Search in Google Scholar
[
Devi R., Yadav S., Nehra R., Yadav S., Pundir C.S. (2013). Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. J. Food Eng., 115: 207–214.
]Search in Google Scholar
[
Duan X., Zhang M., Li X., Mujumdar A.S. (2008). Microwave freeze drying of sea cucumber coated with nanoscale silver. Drying Technol., 26: 413–419.
]Search in Google Scholar
[
FAO (2002). The state of food insecurity in the world Rome, Italy, pp. 1–36.
]Search in Google Scholar
[
FAO (2014). The state of world fisheries and aquaculture, Food and Agriculture Oraganization of the United Nations. Rome, Italy, pp. 1–230.
]Search in Google Scholar
[
FAO (2018). State of fisheries and aquaculture in the world. Rome, Italy, pp. 332–333.
]Search in Google Scholar
[
Faradilla W.E., Khalid W., Izzatul N., Jais A. (2021). A mini review on sensor and biosensor for food freshness detection. Malaysian J. Anal. Sci., 25: 153–164.
]Search in Google Scholar
[
Felip A., Piferrer F. (2018). The induction of polyploidy, gynogenesis and androgenesis in the European sea bass. Sex Cont. Aquac., pp. 347–358.
]Search in Google Scholar
[
Fernandes P. (2016). Enzymes in fish and seafood processing. Front. Bioeng. Biotechnol., 4: 59.
]Search in Google Scholar
[
Fletcher G.L., Davies P.L., Hew C.L. (1992). Genetic engineering of freeze-resistant Atlantic salmon. Transgenic Fish, pp. 190–208.
]Search in Google Scholar
[
Freire D.G., Fernández-Gómez R., Reyes-Salinas A., Castro G.M., Dorca-Fornell C., Proaño K. (2022). The colors of biotechnology in Ecuador: a general overview. CABI Reviews, 2022.
]Search in Google Scholar
[
Freitas J., Vaz-Pires P., Câmara J.S. (2021). Quality index method for fish quality control: understanding the applications, the appointed limits and the upcoming trends. Trends Food Sci. Technol., 111: 333–345.
]Search in Google Scholar
[
Ghaffarifar F. (2018). Plasmid DNA vaccines: where are we now. Drug. Today, 54: 315–33.
]Search in Google Scholar
[
Gildberg A., Wichaphon J., Lertsiri S., Assavanig A., Sørensen N.K., Thongthai C. (2007). Chemical and organoleptic comparison of fish sauce made from cold water species and typical Thai fish sauce. J. Aquat. Food Prod. Technol., 16: 31–42.
]Search in Google Scholar
[
Giyatmi G., Irianto H.E. (2017). Enzymes in fermented fish. Adv. Food Nutr. Res., 80: 199–216.
]Search in Google Scholar
[
Guo J., Li Y., Wang Y., Chen B., Hu Y., Musha Y., He X., Tong T., Huang K. (2022). A 90-day subchronic toxicity study of consumption of GH-transgenic triploid carp in Wistar rats. Fishes, 7: 10.
]Search in Google Scholar
[
Harlander S.K. 1(989). Food biotechnology: yesterday, today and tomorrow. Food Technol., 49: 196–206.
]Search in Google Scholar
[
Hew C.L., Fletcher G.L. (2001). The role of aquatic biotechnology in aquaculture. Reprod. Biotechnol. Finfish Aquac., pp. 191–204.
]Search in Google Scholar
[
Huang Y., Bugg W., Bangs M., Qin G., Drescher D., Backenstose N., Weng C.C., Zhang Y., Khalil K., Dong S., Elaswad A., Ye Z., Lu C., Vo K., Simora R.M., Ma X., Taylor Z., Yang Y., Zhou T., Guo J., Salze G., Qin Z., Wang Y., Dunham R.A. (2021). Direct and pleiotropic effects of the Masou Salmon Delta-5 Desaturase transgene in F1 channel catfish (Ictalurus punctatus). Transgenic Res., 30: 185–200.
]Search in Google Scholar
[
Hulse J.H. (2004). Biotechnologies: past history, present state and future prospects. Trends Food Sci. Technol., 15: 3–18.
]Search in Google Scholar
[
Hussain M.G. (1996). Advances in chromosome engineering research in fish: review of methods, achievements and applications. Asian Fish. Sci., 9: 45–60.
]Search in Google Scholar
[
Hutkins R.W. (2006). Microbiology and technology of fermented foods. Blackwell Publishing. p. 457.
]Search in Google Scholar
[
Je J.Y., Park P.J., Kwon J.Y., Kim S.K. (2004). A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. J. Agric. Food Chem., 52: 7842–7845.
]Search in Google Scholar
[
Jónsdóttir G., Bjarnason J.B., Gudmundsdóttir Á. (2004). Recombinant cold-adapted trypsin I from Atlantic cod - expression, purification and identification. Protein Expr. Purif., 33: 110–122.
]Search in Google Scholar
[
Kara A., Tamburaci S., Tihminlioglu F., Havitcioglu H. (2019). Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol., 130: 266–279.
]Search in Google Scholar
[
Kara K., Ouanji F., Lotfi E.M., El Mahi M., Kacimi M., Ziyad M. (2018). Biodiesel production from waste fish oil with high free fatty acid content from Moroccan fish-processing industries. Egypt. J. Pet., 27: 249–255.
]Search in Google Scholar
[
Karewicz A., Machowska A., Kasprzyk M., Ledwójcik G. (2021). Application of halloysite nanotubes in cancer therapy – a review. Materials, 14: 2943.
]Search in Google Scholar
[
Khanna H.K., Daggard G. (2008). Antifreeze proteins: a molecular approach for developing cold-tolerant rice. Adv. Rice Genet., 488–489.
]Search in Google Scholar
[
Khorasani S., Danaei M., Mozafari M.R. (2018). Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol., 79: 106–115.
]Search in Google Scholar
[
Kieliszek M., Misiewicz A. (2014). Microbial transglutaminase and its application in the food industry – a review. Folia Microbiol., 59: 241–250.
]Search in Google Scholar
[
Knorr D., Sinskey A.J. (1985). Biotechnology in food production and processing. Science, 229: 1224–1229.
]Search in Google Scholar
[
Kumar V., Roy S., Meena D.K., Sarkar U.K. (2016). Application of probiotics in shrimp aquaculture: importance, mechanisms of action and methods of administration. Rev. Fish. Sci. Aquac., 24: 342–368.
]Search in Google Scholar
[
Kumar V., Roy S., Behera B.K., Bossier P., Das B.K. (2021 a). Acute hepatopancreatic necrosis disease (AHPND): virulence, pathogenesis and mitigation strategies in shrimp aquaculture. Toxins, 13: 524.
]Search in Google Scholar
[
Kumar V., Roy S., Behera B.K., Das B.K. (2021 b). Disease diagnostic tools for health management in aquaculture. In: Advances in fisheries biotechnology. Springer Nature Singapore, pp. 363–382.
]Search in Google Scholar
[
Kumar V., Das B.K., Swain H.S., Chowdhury H., Roy S., Bera A.K., Das R., Parida S.N., Dhar S., Jana A.K., Behera B.K. (2022 a). Outbreak of Ichthyophthirius multifiliis associated with Aeromonas hydrophila in Pangasianodon hypophthalmus: the role of turmeric oil in enhancing immunity and inducing resistance against co-infection. Front. Immunol., 13: 4811.
]Search in Google Scholar
[
Kumar V., Roy S., Behera B.K., Das B.K. (2022 b). Heat shock proteins (Hsps) in cellular homeostasis: a promising tool for health management in crustacean aquaculture. Life, 12: 1777.
]Search in Google Scholar
[
Kumar V., Roy S., Behera B.K., Das B.K. (2022 c). RNA interference and its potential applications in aquatic animal health management. In: Biotechnological advances in aquaculture health management. Springer Nature Singapore, pp. 25–41.
]Search in Google Scholar
[
Kumar V., Swain H.S., Roy S., Das B.K., Upadhyay A., Ramteke M.H., Kumar V., Kole R.K., Banerjee H. (2022 d). Integrated biomarker approach strongly explaining in vivo sub-lethal acute toxicity of butachlor on Labeo rohita. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol., 261: 109427.
]Search in Google Scholar
[
Kumar V., Das B.K., Swain H.S., Chowdhury H., Roy S., Bera A.K., Malick R.C., Behera B.K. (2023 a). Immunomodulatory potency of Eclipta alba (Bhringaraj) leaf extract in Heteropneustes fossilis against oomycete pathogen, Aphanomyces invadans. J. Fungi, 9: 142.
]Search in Google Scholar
[
Kumar V., Bera T., Roy S., Vuong P., Jana C., Sarkar D.J., Devi M.S., Jana A.K., Rout A.K., Kaur P., Das B.K., Behera B.K. (2023 b). Investigating bio-remediation capabilities of a constructed wetland through spatial successional study of the sediment microbiome. NPJ Clean Water, 6: 8.
]Search in Google Scholar
[
Kumari S., Sarkar U.K., Karnatak G., Mandhir S.K., Lianthuamluaia L., Kumar V., Panda D., Puthiyottil M., Das B.K. (2021). Food selectivity and reproductive biology of small indigenous fish Indian river shad, Gudusia chapra (Hamilton, 1822) in a large tropical reservoir. Environ. Sci. Pollut. Res., 28: 11040–11052.
]Search in Google Scholar
[
Kuri K., Sokolović M., Drašner K., Petravić J., Kulaš M.M., Jakšić G. (2022). Health management of endemic and non-endemic fish in the Aquatika – Freshwater Aquarium Karlovac. Croat. J. Fish., 80: 141–150.
]Search in Google Scholar
[
Kuswandi B., Wicaksono Y., Abdullah A., Heng L.Y., Ahmad M. (2011). Smart packaging: sensors for monitoring of food quality and safety. Sens. Instrum. Food Qual. Saf., 5: 137–146.
]Search in Google Scholar
[
Lang L.H. (2006). FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology, 131: 1370.
]Search in Google Scholar
[
Ledford H. (2015). Salmon is first transgenic animal to win US approval for food. Nature, 19: 2015.
]Search in Google Scholar
[
Lee C., Kim H., Ryu S. (2022). Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Crit. Rev. Food Sci. Nutr., pp. 1–20.
]Search in Google Scholar
[
LeGrand K., Borarin B., Young G.M. (2020). Tradition and fermentation science of prohok, an ethnic fermented fish product of Cambodia. J. Ethnic Foods, 7: 1–19.
]Search in Google Scholar
[
Likhar V., Chudasama B.G. (2021). Seafood enzymes and their potential industrial applications. J. Entomol. Zool. Stud., 9: 1410–1417.
]Search in Google Scholar
[
Lo J.H., Lin C.M., Chen M.J., Chen T.T. (2014). Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene. BMC Genom., 15: 1–13.
]Search in Google Scholar
[
Loan T.T., Trang D.T.Q., Huy P.Q., Ninh P.X., Van Thuoc, D. (2022). A fermentation process for the production of poly (3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. Biotechnol. Rep., 33: e00700.
]Search in Google Scholar
[
Macouzet M., Simpson B.K., Lee B.H. (2005). Expression of a cold-adapted fish trypsin in Pichia pastoris. FEMS Yeast Res., 5: 851–857.
]Search in Google Scholar
[
Mahalik S., Sharma A.K., Mukherjee K.J. (2014). Genome engineering for improved recombinant protein expression in Escherichia coli. Microb. Cell Fact., 13: 1–13.
]Search in Google Scholar
[
Mahalik S., Mohapatra D., Kumar D. (2018). Cellulase production in Lysinibacillus sp isolated from the estuaries of Odisha. Biosci. Biotechnol. Res. Commun., 11: 743–753.
]Search in Google Scholar
[
Maiti B., Shetty M., Shekar M., Karunasagar I., Karunasagar I. (2011). Recombinant outer membrane protein A (OmpA) of Edwardsiella tarda, a potential vaccine candidate for fish, common carp. Microbiol. Res., 167: 1–7.
]Search in Google Scholar
[
Maulu S., Hasimuna O.J., Haambiya L.H., Monde C., Musuka C.G., Makorwa T.H., Munganga B.P., Phiri K.J., Nsekanabo J.D. (2021). Climate change effects on aquaculture production: sustainability implications, mitigation and adaptations. Front. Sustainable Food Syst., 5: 609097.
]Search in Google Scholar
[
McClements D.J., Rao J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate and potential toxicity. Crit. Rev. Food. Sci. Nutr., 51: 285–330.
]Search in Google Scholar
[
Meeusen E.N.T., Walker J., Peters A., Pastoret P.P., Jungersen G. (2007). Current status of veterinary vaccines. Clin. Microbiol. Rev., 20: 489–510.
]Search in Google Scholar
[
Mehta A., Guleria S., Sharma R., Gupta R. (2021). The lipases and their applications with emphasis on food industry. In: Microbial biotechnology in food and health. Academic Press, pp. 143–164.
]Search in Google Scholar
[
Meral R., Ceylan Z., Kose S. (2019). Limitation of microbial spoilage of rainbow trout fillets using characterized thyme oil antibacterial nanoemulsions. J. Food Saf., 39: e12644.
]Search in Google Scholar
[
Mohanty B., Mohanty U., Pattanaik S.S., Panda A., Jena A.K. (2018). Future prospects and trends for effective utilization of fish processing wastes in India. Innovative Farming, 3: 1–5.
]Search in Google Scholar
[
Muthusamy S., Ajit S., Nath A.V., Anupama Sekar J., Ramyaa Lakshmi T.S. (2022). Enzymes from genetically modified organisms and their current applications in food development and food chain. In novel food grade enzymes: applications in food processing and preservation industries. Springer, pp. 357–382.
]Search in Google Scholar
[
Nagy A., Rajki K., Horvárth L., Csárnyi V. (1978). Investigation on carp, Cyprinus carpio L. gynogenesis. J. Fish Biol., 13: 215–224.
]Search in Google Scholar
[
Najafi M., Lee B. (2014). Biotechnology and its impact on food security and safety. Curr. Nutr. Food Sci., 10: 94–99.
]Search in Google Scholar
[
Navarro S., Guillot R., Crespo D., Schulz R.W., Ge W., Rotllant J., Cerdá-Reverter J.M., Rocha A. (2021). Enhanced growth without accelerated puberty in fish: a role for the melanocortin system. Aquaculture, 540: 736721.
]Search in Google Scholar
[
Neidleman S.L. (1984). Applications of biocatalysis to biotechnology. Biotechnol. Genet. Eng. Rev., 1: 1–38.
]Search in Google Scholar
[
Ngasotter S., Panda S.P., Mohanty U., Akter S., Mukherjee S., Waikhom D., Devi L.S. (2020). Current scenario of fisheries and aquaculture in India with special reference to Odisha: a review on its status, issues and prospects for sustainable development. Int. J. Bio-Res. Stress Manag., 11: 370–380.
]Search in Google Scholar
[
Ngasotter S., Waikhom D., Sharma S., Meitei M.M., Mangang Y.A., Irungbam S.K., Bhuneshwar Devi M.S., Singh A.S. (2021). Characteristics and mechanism of potential probiotics with special reference to lactic acid bacteria from traditional fermented fish products: a review. J. Exp. Biol. Agric. Sci., 9: 263–275.
]Search in Google Scholar
[
Ngasotter S., Sampath L., Xavier K.A.M. (2022). Nanochitin: an update review on advances in preparation methods and food applications. Carbohydr. Polym., 291: 119627.
]Search in Google Scholar
[
Nhu N.T.H., Nhu N.Q., Nhi N.T.Y., Phuong N.H.N. (2019). Biodegradable food packaging membrane from bacterial cellulose and bacteriocin for preserving raw food. Vietnam J. Food Control, 2: 114–120.
]Search in Google Scholar
[
Nie X., Zhang R., Cheng L., Zhu W., Li S., Chen X. (2022). Mechanisms underlying the deterioration of fish quality after harvest and methods of preservation. Food Control, 135: 108805.
]Search in Google Scholar
[
Østli J., Heide M., Carlehög M., Eilertsen G. (2006). The importance of bacalhau consumption in Portugal and a preliminary product consumer test in Lisboa. In: Seafood research from fish to dish: quality, safety and processing of wild and farmed fish. Wageningen Academic, pp. 241–249.
]Search in Google Scholar
[
Polonis M., Jagiełło K., Dobosz S., Rożyński R., Kondraciuk P., Gurgul A., Szmatoła T., Ocalewicz K. (2019). Alterations in the rainbow trout (Oncorhynchus mykiss) eggs exposed to ionizing radiation during induced androgenesis. Reprod. Domest. Anim., 54: 712–718.
]Search in Google Scholar
[
Pumchan A., Sae-Ueng U., Prasittichai C., Sirisuay S., Areechon N., Unajak S. (2022). Novel eciently piscine orally nano-vaccine delivery system: modied halloysite nanotubes (HNTs) preventing streptococcosis disease in tilapia (Oreochromis sp.). Vaccines, 10: 1180.
]Search in Google Scholar
[
Purdom C.E. (1983). Genetic engineering by the manipulation of chromosomes. Aquaculture, 33: 287–300.
]Search in Google Scholar
[
Putriantini I.N., Dityanawarman A., Inaiyah I., Rahman H. (2022). A model of fish consumption among Indonesian youth with the moderation on their perception of fish quality assurance. Jurnal Perikanan Universitas Gadjah Mada, 24: 11–19.
]Search in Google Scholar
[
Qiu L., Zhang M., Bhandari B., Yang C. (2020). Shelf-life extension of aquatic products by applying nanotechnology: a review. Crit. Rev. Food Sci. Nutr., 62: 1521–1535.
]Search in Google Scholar
[
Ranjha M.M.A.N., Irfan S., Nadeem M., Mahmood S. (2020). A Comprehensive review on nutritional value, medicinal uses and processing of banana. Food Rev. Int., 38: 199–225.
]Search in Google Scholar
[
Ravishankar C.N. (2019). Advances in processing and packaging of fish and fishery products. Adv. Agric. Res. Technol. J., 3: 168–181.
]Search in Google Scholar
[
Refstie T., Gjedrem T. (2005). Chromosome engineering. In selection and breeding programs in aquaculture. Springer, pp. 287–299.
]Search in Google Scholar
[
Refstie T., Vassvik V., Gjedrem T. (1977). Induction of polyploidy in salmonids by cytochalasin B. Aquaculture, 10: 65–74.
]Search in Google Scholar
[
Robert J., Jancovich J.K. (2016). Recombinant ranaviruses for studying evolution of host– pathogen interactions in ectothermic vertebrates. Viruses, 8: 1–13.
]Search in Google Scholar
[
Robertson G.L. (2009). Food packaging and shelf life: a practical guide. CRC Press, p. 404.
]Search in Google Scholar
[
Roy S., Kumar V., Mitra A., Manna R.K., Suresh V.R., Homechaudhuri S. (2018). Amylase and protease activity in shrimps and prawn of Sundarbans, West Bengal, India. Indian J. Mar. Sci., 47: 53–59.
]Search in Google Scholar
[
Roy S., Kumar V., Bossier P., Norouzitallab P., Vanrompay D. (2019). Phloroglucinol treatment induces transgenerational epigenetic inherited resistance against Vibrio infections and thermal stress in a brine shrimp (Artemia franciscana) model. Front. Immunol., 10: 2745.
]Search in Google Scholar
[
Roy S., Bossier P., Norouzitallab P., Vanrompay D. (2020). Trained immunity and perspectives for shrimp aquaculture. Rev. Aquac., 12: 2351–2370.
]Search in Google Scholar
[
Roy S., Kumar V., Behera B.K., Das B.K. (2022 a). Epigenetics: perspectives and potential in aquaculture. In: Advances in fisheries biotechnology. Springer Nature Singapore, pp. 133–150.
]Search in Google Scholar
[
Roy S., Kumar V., Behera B.K., Parhi J., Mohapatra S., Chakraborty T., Das B.K. (2022 b). CRISPR/Cas genome editing – can it become a game changer in future fisheries sector? Front. Mar. Sci., 9: 924475.
]Search in Google Scholar
[
Ruan L., Ju Y., Zhan C., Hou L. (2022). Improved umami flavor of soy sauce by adding enzymatic hydrolysate of low-value fish in the natural brewing process. LWT, 155: 112911.
]Search in Google Scholar
[
Samad N.E.A., Ghani I.F.A. (2021). Techniques to produce polyploidy species in aquaculture: a review. AJLS, 1: 51–55.
]Search in Google Scholar
[
Sampath L., Ngasotter S., Layana P., Balange A.K., Nayak B.B., Xavier K.A.M. (2022 a). Effect of chemical treatment duration on physicochemical, rheological and functional properties of colloidal chitin. Food Hydrocoll., 2: 100091.
]Search in Google Scholar
[
Sampath L., Ngasotter S., Porayil L., Balange A.K., Nayak B.B., Eappen S., Xavier K.A.M. (2022 b). Impact of extended acid hydrolysis on polymeric, structural and thermal properties of microcrystalline chitin. Carbohydr. Polym. Technol. Appl., 4: 100252.
]Search in Google Scholar
[
Santos V.P., Marques N.S., Maia P.C., Lima M.A.B.D., Franco L.D.O., Campos-Takaki G.M.D. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. Int. J. Mol. Sci., 21: 4290.
]Search in Google Scholar
[
Sarkar B., Mahanty A., Gupta S.K., Choudhury A.R., Daware A., Bhattacharjee S. (2022). Nanotechnology: A next-generation tool for sustainable aquaculture. Aquaculture, 546: 737330.
]Search in Google Scholar
[
Sharma A.K., Sharma V., Saxena J., Kuila A. (2016). Lipase production from a wild (LPF-5) and a mutant (HN1) strain of Aspergillus niger. Afr. J. Biotechnol., 15: 2292–2300.
]Search in Google Scholar
[
Shin J.H., Chang S., Kang D.H. (2004). Application of antimicrobial ice for reduction of foodborne pathogens (Escherichia coli O157:H7, Salmonella typhimurium, Listeria monocytogenes) on the surface of fish. J. Appl. Microbiol., 97: 916–922.
]Search in Google Scholar
[
Shin Y.J., Kwon T.H., Seo J.Y., Kim T.J. (2013). Oral immunization of fish against iridovirus infection using recombinant antigen produced from rice callus. Vaccine, 31: 5210–5215.
]Search in Google Scholar
[
Singh A., Benjakul S. (2018). Proteolysis and its control using protease inhibitors in fish and fish products: a review. Compr. Rev. Food. Sci. Food. Saf., 17: 496–509.
]Search in Google Scholar
[
Singh M., Unadkat K., Kapoor S., Enamala M.K., Parikh P., Chandrasekhar K. (2022). Potential applications of biopolymers in fisheries industry. In: Biopolymers: recent updates, challenges and opportunities. Cham: Springer International Publishing, pp. 199–221.
]Search in Google Scholar
[
Singh S.S., De Mandal S., Mathipi V., Ghatak S., Kumar N.S. (2018). Traditional fermented fish harbors bacteria with potent probiotic and anticancer properties. Biocatal. Agric. Biotechnol., 15: 283–290.
]Search in Google Scholar
[
Sobhan A., Muthukumarappan K., Wei L. (2021). Biosensors and biopolymer-based nanocomposites for smart food packaging: challenges and opportunities. Food Packag. Shelf Life., 30: 100745.
]Search in Google Scholar
[
Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Lymbery A.J., Roy S., Ringø E. (2019). Genus bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews Fish. Sci. Aquac., 27: 331–379.
]Search in Google Scholar
[
Sun Y., Liu C.S., Sun L. (2010). Identification of an Edwardsiella tarda surface antigen and analysis of its immunoprotective potential as a purified recombinant subunit vaccine and a surface-anchored subunit vaccine expressed by a fish commensal strain. Vaccine, 28: 6603–6608.
]Search in Google Scholar
[
Tahsin K.N., Soad A.R., Ali A.M., Moury I.J. (2017). A Review on the techniques for quality assurance of fish and fish products. Int. J. Adv. Eng. Res. Sci., 4: 4190–4206.
]Search in Google Scholar
[
Thakur M.S., Ragavan K.V. (2013). Biosensors in food processing. J. Food Sci. Technol., 50: 625–641.
]Search in Google Scholar
[
Tramper J., Zhu Y. (2011). Modern Biotechnology: for Better or for Worse? In: Modern biotechnology. Wageningen Academic Publishers, pp. 273–274.
]Search in Google Scholar
[
Tropea A., Potortì A.G., Lo Turco V., Russo E., Vadalà R., Rando R., Di Bella G. (2021). Aquafeed production from fermented fish waste and lemon peel. Fermentation, 7: 272.
]Search in Google Scholar
[
Tseng C.C., Chu T.W., Danata R.H., Risjani Y., Shih H.T., Hu S.Y. (2020). Hepcidin-expressing fish eggs as a novel food supplement to modulate immunity against pathogenic infection in zebrafish (Danio rerio). Sustainability, 12: 4057.
]Search in Google Scholar
[
Tsironi T.N., Taoukis P.S. (2018). Current practice and innovations in fish packaging. J. Aquat. Food Prod. Technol., 27: 1024–1047.
]Search in Google Scholar
[
Uma S., Jeevan P. (2022). Production of organic manure “FAA”–Fish amino acid. In: Bioentrepreneurship in biosciences – recent approaches. Darshan Publishers, pp. 119–134.
]Search in Google Scholar
[
Urakova I.N., Pozharitskaya O.N., Demchenko D.V., Shikov A.N., Makarov V.G. (2013). The biological activities of fish peptides and methods of their isolation. Russ. J. Mar. Biol., 38: 417–422.
]Search in Google Scholar
[
Vasil I.K. (1998). Agriculture: biotechnology and food security for the 21st century: a real-world perspective. Nat. Biotechnol., 16: 399–400.
]Search in Google Scholar
[
Venugopal V., Lakshmanan R., Doke S.N., Bongirwar D.R. (2009). Enzymes in fish processing, biosensors and quality control: a review. Food Biotechnol., 14: 21–77.
]Search in Google Scholar
[
Verma M.L., Rao N.M., Tsuzuki T., Barrow C.J., Puri M. (2019). Suitability of recombinant lipase immobilised on functionalised magnetic nanoparticles for fish oil hydrolysis. Catalysts, 9: 420.
]Search in Google Scholar
[
Vijayan K.K., Sukumaran S., Pradeep M.A., Sanil N.K., Vijayagopal P. (2013). Biotechnological approaches in fishery management. In: ICAR funded short course on “ICT – oriented strategic extension for responsible fisheries management. CMFRI, pp. 119–125.
]Search in Google Scholar
[
Wagner G., Schmid R.D. (1990). Biosensors for food analysis. Food Biotechnol., 4: 215–240.
]Search in Google Scholar
[
Walker R., Decker E.A., McClements D.J. (2015). Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct., 6: 42–55.
]Search in Google Scholar
[
Waltz E. (2017). First genetically engineered salmon sold in Canada. Nature, 548: 148.
]Search in Google Scholar
[
Wang Y., Hamid N., Jia P.P., Pei D.S. (2021). A comprehensive review on genetically modified fish: key techniques, applications and future prospects. Rev. Aquac., 13: 1635–1660.
]Search in Google Scholar
[
Wankhade V. (2020). Animal-derived biopolymers in food and biomedical technology. In: Biopolymer-based formulations. Elsevier, pp. 139–152.
]Search in Google Scholar
[
Windsor M., Barlow S. (1981). Introduction to fishery by-products. Fishing News Books Ltd., p. 187.
]Search in Google Scholar
[
Wu H., Lu J., Xiao D., Yan Z., Li S., Li T., Wan X., Zhang Z., Liu Y., Shen G., Li S. (2021). Development and characterization of antimicrobial protein films based on soybean protein isolate incorporating diatomite/thymol complex. Food Hydrocoll., 110: 106138.
]Search in Google Scholar
[
Xing D., Su B., Bangs M., Li S., Wang J., Bern L., Simora R.M.C., Wang W., Ma X., Coogan M., Johnson A., Wang Y., Qin Z., Dunham R. (2022). CRISPR/Cas9 – mediated knock-in method can improve the expression and effect of transgene in P1 generation of channel catfish (Ictalurus punctatus). Aquaculture, 560: 738531.
]Search in Google Scholar
[
Xu X., Wu X., Zhuang S., Zhang Y., Ding Y., Zhou X. (2022). Colorimetric biosensor based on magnetic enzyme and gold nanorods for visual detection of fish freshness. Biosensors, 12: 135.
]Search in Google Scholar
[
Xu Y., Zang J., Regenstein J.M., Xia W. (2021). Technological roles of microorganisms in fish fermentation: a review. Crit. Rev. Food Sci. Nutr., 61: 1000–1012.
]Search in Google Scholar
[
Yee L., Blanch H.W. (1993). Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli. Biotechnol. Bioeng., 41: 781–790.
]Search in Google Scholar
[
Zhang Z., Sun Y., Sang S., Jia L., Ou C. (2022). Emerging approach for fish freshness evaluation: principle, application and challenges. Foods, 11: 1897.
]Search in Google Scholar
[
Zhao J., Wei F., Xu W., Han X. (2020). Enhanced antibacterial performance of gelatin/chitosan film containing capsaicin loaded MOFs for food packaging. Appl. Surf. Sci., 510: 145418.
]Search in Google Scholar
[
Zhao Z., Wang H., Zhang D., Guan Y., Siddiqui S.A., Feng-Shan X., Cong B. (2022). Oral vaccination with recombinant Lactobacillus casei expressing Aeromonas hydrophila Aha1 against A. hydrophila infections in common carps. Virulence, 13: 794–807.
]Search in Google Scholar
[
Zhen N., Wang X., Li X., Xue J., Zhao Y., Wu M., Zhou D., Liu J., Guo J., Zhang H. (2022). Protein-based natural antibacterial materials and their applications in food preservation. Microb. Biotechnol., 15: 1324–1338.
]Search in Google Scholar
[
Zhu W., Luan H., Bu Y., Li J., Li X., Zhang Y. (2021). Changes in taste substances during fermentation of fish sauce and the correlation with protease activity. Food Res. Int., 144: 110349.
]Search in Google Scholar
[
Zhu Z., He L., Chen S. (1985). Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). J. Appl. Ichthyol., 1: 31–34.
]Search in Google Scholar
[
Zilda D.Z. (2014). Microbial transglutaminase: source, production and its role to improve surimi properties. Squalen Bull. Mar. Fish. Postharvest Biotechnol., 9: 35–44.
]Search in Google Scholar