1. bookTom 23 (2023): Zeszyt 4 (November 2023)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Influence of Dietary Chitosan Supplementation on Growth Indicators, Nutrient Digestibility, Immunity, Cecal Microbiota, and Intestinal Morphology of Growing Male Rabbits

Data publikacji: 13 Nov 2023
Tom & Zeszyt: Tom 23 (2023) - Zeszyt 4 (November 2023)
Zakres stron: 1211 - 1220
Otrzymano: 12 Nov 2022
Przyjęty: 14 Mar 2023
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Abd El-Hack M.E., El-Saadony M.T., Shafi M.E., Zabermawi N.M., Arif M., Batiha G.E., Khafaga A.F., Abd El-Hakim Y.M., Al-Sagheer A.A. (2020). Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol., 164: 2726–2744. Search in Google Scholar

Abd El-Hakim Y.M., Abdel-Rahman M.A., Khater S.I., Arisha A., Metwally M.M., Nassan M.A., Hassan M.E. (2021). Chitosan-stabilized selenium nanoparticles and metformin synergistically rescue testicular oxidative damage and steroidogenesis-related genes dysregulation in high-fat diet/streptozotocin-induced diabetic rats. Antioxidants, 10: 17. Search in Google Scholar

Abd El-Naby F.S., Naiel M.A.E., Al-Sagheer A.A., Negm S.S. (2019). Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture, 501: 82–89. Search in Google Scholar

Abou-Okada M., AbuBakr H.O., Hassan A., Abdel-Radi S., Aljuaydi S.H., Abdelsalam M., Taha E., Younis N.A., Abdel-Moneam D.A. (2021). Efficacy of Acriflavine for controlling parasitic diseases in farmed Nile tilapia with emphasis on fish health, gene expression analysis, oxidative stress, and histopathological alterations. Aquaculture, 541: 736791. Search in Google Scholar

Al-Sagheer A.A., Abdel-Rahman G., Ayyat M.S., Gabr H.A., Elsisi G.F. (2020). Productive performance response of growing rabbits to dietary protein reduction and supplementation of pyridoxine, protease, and zinc. An. Acad. Bras. Ciênc., 92: e20180989. Search in Google Scholar

Al-Sagheer A.A., Abdel Monem U.M., Sayed-Ahmed E.E., Khalil B.A. (2021). Navel orange peel hydroethanolic extract as a phytogenic feed supplement: impacts on growth, feed intake, nutrient digestibility, and serum metabolites of heat stressed growing rabbits. Anim. Biotechnol., 1–12. Search in Google Scholar

Al-Sagheer A.A., Abdel-Rahman G., Elsisi G.F., Ayyat M.S. (2022). Comparative effects of supplementary different copper forms on performance, protein efficiency, digestibility of nutrients, immune function and architecture of liver and kidney in growing rabbits. Anim. Biotechnol., 1–11. Search in Google Scholar

Alagawany M., Bassiony S.S., El-Kholy M.S., El-Naggar K., El-Metwally A.E., Al-Sagheer A.A. (2023). Comparison of the effects of probiotic-based formulations on growth, feed utilization, blood constituents, cecal fermentation, and duodenal morphology of rabbits reared under hot environmental conditions, Ann. Anim. Sci., 10.2478/aoas-2023-0004. Search in Google Scholar

AOAC (2006). Official Methods of Analysis, 18th ed., Assoc. Off. Anal. Chem., Arlington, VA, USA. Search in Google Scholar

Arshami J., Pilevar M., Azghadi M.A., Raji A.R. (2013). Hypolipidemic and antioxidative effects of curcumin on blood parameters, humoral immunity, and jejunum histology in Hy-line hens. Avicenna J. Phytomed., 3: 178. Search in Google Scholar

Ayyat M.S., Abd El-Latif K.M., Helal A.A., Al-Sagheer A.A. (2021 a). Interaction of supplementary L-carnitine and dietary energy levels on feed utilization and blood constituents in New Zealand White rabbits reared under summer conditions. Trop. Anim. Health Prod., 53: 279. Search in Google Scholar

Ayyat M.S., Abd El-Latif K.M., Helal A.A., Al-Sagheer A.A. (2021 b). New Zealand White rabbits tolerance to chronic thermal stress at different dietary energy/protein levels. Anim. Feed Sci. Technol., 278: 114992. Search in Google Scholar

Barbosa J.R., de Carvalho Junior R.N. (2021). Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against Covid-19. Trends Food Sci. Technol., 108: 223–235. Search in Google Scholar

Bassiony S.S., Al-Sagheer A.A., El-Kholy M.S., Elwakeel E.A., Helal A.A., Alagawany M. (2021). Evaluation of Enterococcus faecium NCIMB 11181 and Clostridium butyricum probiotic supplements in post-weaning rabbits reared under thermal stress conditions. Ital. J. Anim. Sci., 20: 1232–1243. Search in Google Scholar

Bueter C.L., Specht C.A., Levitz S.M. (2013). Innate sensing of chitin and chitosan. Plos Pathog., 9: e1003080. Search in Google Scholar

Chang S.-H., Wu C.-H., Tsai G.-J. (2018). Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym., 181: 1026–1032. Search in Google Scholar

Chen J., Chen L. (2019). Effects of chitosan-supplemented diets on the growth performance, nonspecific immunity and health of loach fish (Misgurnus anguillicadatus). Carbohydr. Polym., 225: 115227. Search in Google Scholar

Cullere M., Dalle Zotte A. (2018). Rabbit meat production and consumption: State of knowledge and future perspectives. Meat Sci., 143: 137–146. Search in Google Scholar

Dahiya J., Wilkie D., Van Kessel A., Drew M. (2006). Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol., 129: 60–88. Search in Google Scholar

Dalle Zotte A. (2014). Rabbit farming for meat purposes. Anim. Front., 4: 62–67. Search in Google Scholar

De Blas C., Mateos G.G. (2020). Feed formulation. In: Nutrition of the rabbit, De Blas C., Wiseman J. (eds.). CABI, Oxfordshire, London, UK, pp. 243–253. Search in Google Scholar

Dhillon G.S., Kaur S., Brar S.K., Verma M. (2013). Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol., 33: 379–403. Search in Google Scholar

Edwards E.A., Hilderbrand R.L. (1976). Method for identifying Salmonella and Shigella directly from the primary isolation plate by coagglutination of protein A-containing staphylococci sensitized with specific antibody. J. Clin. Microbiol., 3: 339–343. Search in Google Scholar

Fernandes J.C., Spindola H., De Sousa V., Santos-Silva A., Pintado M.E., Malcata F.X., Carvalho J.E. (2010). Anti-inflammatory activity of chitooligosaccharides in vivo. Mar. Drugs, 8: 1763–1768. Search in Google Scholar

Geng X., Dong X.-H., Tan B.-P., Yang Q.-H., Chi S.-Y., Liu H.-Y., Liu X.-Q. (2011). Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol., 31: 400–406. Search in Google Scholar

Gopalakannan A., Arul V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255: 179–187. Search in Google Scholar

Goto Y., Kiyono H. (2012). Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol. Rev., 245: 147–163. Search in Google Scholar

Goy R., Britto D., Assis O. (2009). A review of the antimicrobial activity of chitosan. Polim.-Cienc. Tecnol. Polim., 19: 241–247. Search in Google Scholar

Grindem C.B. (2011). Schalm’s Veterinary Hematology, 6th edition, Weiss D.J., Wardrop K.J. (eds). Vet. Clin. Pathol., 40: 270–270. Search in Google Scholar

Helander I.M., Nurmiaho-Lassila E.L., Ahvenainen R., Rhoades J., Roller S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Micro-biol., 71: 235–244. Search in Google Scholar

Hernandez P., Gondret F. (2006). Rabbit meat quality. In: Recent advances in rabbit sciences, Maertens L., Coudert P. (eds.). Institute for Agricultural and Fisheries Research, Scheldeweg, Melle, Belgium, pp. 269–290. Search in Google Scholar

Huang R., Yin Y., Wu G., Zhang Y., Li T., Li L., Li M., Tang Z., Zhang J., Wang B. (2005). Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poultry Sci., 84: 1383–1388. Search in Google Scholar

Huang R.L., Deng Z.Y., Yang C.b., Yin Y.L., Xie M.Y., Wu G.Y., Li T.J., Li L.L., Tang Z.R., Kang P. (2007). Dietary oligochitosan supplementation enhances immune status of broilers. J. Sci. Food Agric., 87: 153–159. Search in Google Scholar

Jiao D., Zeng L., Yang D., Yang L., Huang Y., Cong L., Wei H., Pan W. (2016). The effect of adding chitosan in feed on growth performance and slaughter performance of Peking duck. J. Yunnan Agric. Univ., 31: 410–415. Search in Google Scholar

Kamali Najafabad M., Imanpoor M.R., Taghizadeh V., Alishahi A. (2016). Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol. Biochem., 42: 1063–1071. Search in Google Scholar

Khambualai O., Yamauchi K., Tangtaweewipat S., Cheva-Isarakul B. (2008). Effects of dietary chitosan diets on growth performance in broiler chickens. J. Poult. Sci., 45: 206–209. Search in Google Scholar

Khambualai O., Yamauchi K., Tangtaweewipat S., Cheva-Isarakul B. (2009). Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br. Poult. Sci., 50: 592–597. Search in Google Scholar

Li J., Zhuang S. (2020). Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J., 138: 109984. Search in Google Scholar

Li Q., Wang R., Pan W., Zhao Y., Jiang G., Huang X. (2015). Effects of different molecular weight chitosans on growth, slaughter performance, meat quality and nutrient metabolism of frizzled chickens. J. Henan Agric. Sci., 44: 128–151. Search in Google Scholar

Masschalck B., Michiels C.W. (2003). Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol., 29: 191–214. Search in Google Scholar

Menconi A., Pumford N.R., Morgan M.J., Bielke L.R., Kallapura G., Latorre J.D., Wolfenden A.D., Hernandez-Velasco X., Hargis B.M., Tellez G. (2014). Effect of chitosan on Salmonella Typhimurium in broiler chickens. Foodborne Pathog. Dis., 11: 165–169. Search in Google Scholar

Miao Z., Guo L., Liu Y., Zhao W., Zhang J. (2020). Effects of dietary supplementation of chitosan on carcass composition and meat quality in growing Huoyan geese. Poultry Sci., 99: 3079–3085. Search in Google Scholar

Miao Z.G., Wei P.P., Yang Z.G., Wang S., Zhang J.Z., Liu Y., Chai M.Y. (2018). Effect of expanded chitosan particle on carcass composition and meat quality characteristics of growing–finishing pigs. China Feed, 15: 54–57. Search in Google Scholar

Moran H.B., Turley J.L., Andersson M., Lavelle E.C. (2018). Immunomodulatory properties of chitosan polymers. Biomaterials, 184: 1–9. Search in Google Scholar

Niu J., Li C.H., Tian L.X., Liu Y.J., Chen X., Wu K.C., Jun W., Huang Z., Wang Y., Lin H.Z. (2015). Suitable dietary chitosan improves the growth performance, survival and immune function of tiger shrimp, Penaeus monodon. Aquac. Res., 46: 1668–1678. Search in Google Scholar

Nuengjamnong C., Angkanaporn K. (2018). Efficacy of dietary chitosan on growth performance, haematological parameters and gut function in broilers. Ital. J. Anim. Sci., 17: 428–435. Search in Google Scholar

Nyachoti C., Kiarie E., Bhandari S., Zhang G., Krause D. (2012). Weaned pig responses to Escherichia coli K88 oral challenge when receiving a lysozyme supplement. J. Anim. Sci., 90: 252–260. Search in Google Scholar

Perez J., Cervera C., Falcao e Cunha L., Maertens L., Villamide M., Xiccato G. (1995). European ring-test on in vivo determination of digestibility in rabbits: reproducibility of a reference method in comparison with domestic laboratory procedures. World Rabbit Sci., 3: 171–178. Search in Google Scholar

Razdan A., Pettersson D. (1994). Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br. J. Nutr., 72: 277–288. Search in Google Scholar

Rosenthal R., Günzel D., Finger C., Krug S.M., Richter J.F., Schulzke J.-D., Fromm M., Amasheh S. (2012). The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials, 33: 2791–2800. Search in Google Scholar

Salam M.A., Rahman M.A., Paul S.I., Islam F., Barman A.K., Rahman Z., Shaha D.C., Rahman M.M., Islam T. (2021). Dietary chitosan promotes the growth, biochemical composition, gut microbiota, hematological parameters and internal organ morphology of juvenile Barbonymus gonionotus. Plos One, 16: e0260192 Search in Google Scholar

Sarvestani F.S., Rahmanifar F., Tamadon A. (2015). Histomorphometric changes of small intestine in pregnant rat. Vet. Res. Forum, 6: 69–73. Search in Google Scholar

Seyyedin S., Nazem M.N. (2017). Histomorphometric study of the effect of methionine on small intestine parameters in rat: an applied histologic study. Folia Morphol., 76: 620–629. Search in Google Scholar

Sheiha A.M., Abdelnour S.A., Abd El-Hack M.E., Khafaga A.F., Metwally K.A., Ajarem J.S., Maodaa S.N., Allam A.A., El-Saadony M.T. (2020). Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals, 10: 430. Search in Google Scholar

Shi-bin Y., Hong C. (2012). Effects of dietary supplementation of chitosan on growth performance and immune index in ducks. Afr. J. Biotechnol., 11: 3490–3495. Search in Google Scholar

Shi B., Li D., Piao X., Yan S. (2005). Effects of chitosan on growth performance and energy and protein utilisation in broiler chickens. Br. Poult. Sci., 46: 516–519. Search in Google Scholar

Soon C.Y., Tee Y.B., Tan C.H., Rosnita A.T., Khalina A. (2018). Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int. J. Biol. Macromol., 108: 135–142. Search in Google Scholar

Srinivasan H., Kanayairam V., Ravichandran R. (2018). Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int. J. Biol. Macromol., 107: 662–667. Search in Google Scholar

Szabo R.A., Todd E.C., Jean A. (1986). Method to isolate Escherichia coli O157: H7 from food. J. Food Prot., 49: 768–772. Search in Google Scholar

Tang Z.-R., Yin Y.-L., Nyachoti C.M., Huang R.-L., Li T.-J., Yang C., Yang X.-j., Gong J., Peng J., Qi D.-S. (2005). Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol., 28: 430–441. Search in Google Scholar

Tufan T., Arslan C., Sari M., Önk K., Deprem T., Çelik E. (2015). Effects of chitosan oligosaccharides addition to Japanese quail’s diets on growth, carcass traits, liver and intestinal histology, and intestinal microflora. Kafkas Univ. Vet. Fak. Derg., 21: 665–671. Search in Google Scholar

Van Soest P., Robertson J., Lewis B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597. Search in Google Scholar

Xiao D., Tang Z., Yin Y., Zhang B., Hu X., Feng Z., Wang J. (2013). Effects of dietary administering chitosan on growth performance, jejunal morphology, jejunal mucosal sIgA, occluding, claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli. Int. Immunopharmacol., 17: 670–676. Search in Google Scholar

Xu H., Wang X., Liang Q., Xu R., Liu J., Yu D. (2022). Dietary chitosan moderates the growth rate, antioxidant activity, immunity, intestinal morphology and resistance against Aeromonas hydrophila of juvenile hybrid sturgeon (Acipenser baerii♀ × Acipenser schrenckii♂). Int. J. Biol. Macromol., 224: 1012–1024. Search in Google Scholar

Xu Y., Shi B., Yan S., Li J., Li T., Guo Y., Guo X. (2014). Effects of chitosan supplementation on the growth performance, nutrient digestibility, and digestive enzyme activity in weaned pigs. Czech J. Anim. Sci., 59: 156–163. Search in Google Scholar

Yin Y.-L., Tang Z., Sun Z., Liu Z., Li T., Huang R., Ruan Z., Deng Z., Gao B., Chen L. (2008). Effect of galacto-mannan-oligosaccha-rides or chitosan supplementation on cytoimmunity and humoral immunity in early-weaned piglets. Asian-Australas. J. Anim. Sci., 21: 723–731. Search in Google Scholar

Zaharoff D.A., Rogers C.J., Hance K.W., Schlom J., Greiner J.W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25: 2085–2094. Search in Google Scholar

Zhang J., Zhang W., Mamadouba B., Xia W. (2012). A comparative study on hypolipidemic activities of high and low molecular weight chitosan in rats. Int. J. Biol. Macromol., 51: 504–508. Search in Google Scholar

Polecane artykuły z Trend MD