1. bookTom 22 (2022): Zeszyt 3 (July 2022)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

β-glucan as a promising food additive and immunostimulant in aquaculture industry

Data publikacji: 19 Jul 2022
Tom & Zeszyt: Tom 22 (2022) - Zeszyt 3 (July 2022)
Zakres stron: 817 - 827
Otrzymano: 05 Jul 2021
Przyjęty: 11 Oct 2021
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Abd El Hakim Y., Neamat-Allah A.N., Baeshen M., Ali H.A. (2019). Immune-protective, antioxidant and relative genes expression impacts of β-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol., 94: 427–433. Search in Google Scholar

Abdel-Tawwab M., Abdel-Rahman A.M., Ismael N.E. (2008). Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture, 280: 185–189. Search in Google Scholar

Abdelhamid F.M., Elshopakey G.E., Aziza A.E. (2020). Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 96: 213–222. Search in Google Scholar

Adloo M., Soltanian S., Hafeziyeh M., Ghadimi N. (2015). Effects of long term dietary administration of β-glucan on the growth, survival and some blood parameters of striped catfish, Pangasianodon hypophthalmus (Siluriformes: Pangasiidae). Iran. J. Ichthyol., 2: 194–200. Search in Google Scholar

Ai Q., Mai K., Zhang L., Tan B., Zhang W., Xu W., Li H. (2007). Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol., 22: 394–402. Search in Google Scholar

Akramienė D., Kondrotas A., Didžiapetrienė J., Kėvelaitis E. (2007). Effects of ß-glucans on the immune system. Medicina, 43: 597. Search in Google Scholar

Amparyup P., Sutthangkul J., Charoensapsri W., Tassanakajon A. (2012). Pattern recognition protein binds to lipopolysaccharide and β-1,3-glucan and activates shrimp prophenoloxidase system. J. Biol. Chem., 287: 10060–10069. Search in Google Scholar

Anjugam M., Iswarya A., Vaseeharan B. (2016). Multifunctional role of β-1,3 glucan binding protein purified from the haemocytes of blue swimmer crab Portunus pelagicus and in vitro antibacterial activity of its reaction product. Fish Shellfish Immunol., 48: 196–205. Search in Google Scholar

Anjugam M., Vaseeharan B., Iswarya A., Gobi N., Divya M., Thangaraj M.P., Elumalai, P. (2018). Effect of β-1,3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish Shellfish Immunol., 76: 247–259. Search in Google Scholar

Aramli M.S., Kamangar B., Nazari R.M. (2015). Effects of dietary β-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish Shellfish Immunol., 47: 606–610. Search in Google Scholar

Bagni M., Romano N., Finoia M., Abelli L., Scapigliati G., Tiscar P.G., Sarti M., Marino G. (2005). Short-and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish Shellfish Immunol., 18: 311–325. Search in Google Scholar

Boonanuntanasarn S., Wongsasak U., Pitaksong T., Chaijamrus S. (2016). Effects of dietary supplementation with β-glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquac. Nutr., 22: 837–845. Search in Google Scholar

Bricknell I., Dalmo R.A. (2005). The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol., 19: 457–472. Search in Google Scholar

Bridle A., Carter C., Morrison R., Nowak B. (2005). The effect of β-glucan administration on macrophage respiratory burst activity and Atlantic salmon, Salmo salar L., challenged with amoebic gill disease – evidence of inherent resistance. J. Fish Dis., 28: 347–356. Search in Google Scholar

Caipang C.M.A., Lazado C.C. (2015). Nutritional impacts on fish mucosa: immunostimulants, pre-and probiotics, mucosal health in aquaculture. Elsevier, pp. 211–272. Search in Google Scholar

Cao H., Yu R., Zhang Y., Hu B., Jian S., Wen C., Kajbaf K., Kumar V., Yang G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture, 508: 106–112. Search in Google Scholar

Carbone D., Faggio C. (2016). Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol., 54: 172–178. Search in Google Scholar

Castro R., Couso N., Obach A., Lamas J. (1999). Effect of different β-glucans on the respiratory burst of turbot (Psetta maxima) and gilthead seabream (Sparus aurata) phagocytes. Fish Shellfish Immunol., 9: 529–541. Search in Google Scholar

Chang C.F., Su M.S., Chen H.Y., Liao I.C. (2003). Dietary β-1, 3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol., 15: 297–310. Search in Google Scholar

Chen D., Ainsworth A. (1992). Glucan administration potentiates immune defence mechanisms of channel catfish, Ictalurus punctatus Rafinesque. J. Fish Dis., 15: 295–304. Search in Google Scholar

Chotikachinda R., Lapjatupon W., Chaisilapasung S., Sangsue D., Tantikitti C. (2008). Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific white shrimp (Litopenaeus vannamei). Songklanakarin J. Sci. Technol., 30: 687–692. Search in Google Scholar

Choudhury D., Pal A., Sahu N., Kumar S., Das S., Mukherjee S. (2005). Dietary yeast RNA supplementation reduces mortality by Aeromonas hydrophila in rohu (Labeo rohita L.) juveniles. Fish Shellfish Immunol., 19: 281–291. Search in Google Scholar

Cook M.T., Hayball P.J., Hutchinson W., Nowak B., Hayball J.D. (2001). The efficacy of a commercial β-glucan preparation, Eco-Activa™, on stimulating respiratory burst activity of head-kidney macrophages from pink snapper (Pagrus auratus), Sparidae. Fish Shellfish Immunol., 11: 661–672. Search in Google Scholar

Cuesta A., Meseguer J., Esteban M. (2004). Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Vet Immunol Immunopathol., 101: 203–210. Search in Google Scholar

Dalmo R.A., Bøgwald J. (2008). ß-glucans as conductors of immune symphonies. Fish Shellfish Immunol., 25: 384–396. Search in Google Scholar

Dawood M., Koshio S., Ishikawa M., Yokoyama S., El Basuini M., Hossain M., Nhu T., Moss A., Dossou S., Wei H. (2017 a). Dietary supplementation of β-glucan improves growth performance, the innate immune response and stress resistance of red sea bream, Pagrus major. Aquac. Nutr., 23: 148–159.10.1111/anu.12376 Search in Google Scholar

Dawood M.A., Koshio S., El-Sabagh M., Billah M.M., Zaineldin A.I., Zayed M.M., Omar A.A.E.D. (2017 b). Changes in the growth, humoral and mucosal immune responses following β-glucan and vitamin C administration in red sea bream, Pagrus major. Aquaculture, 470: 214–222.10.1016/j.aquaculture.2016.12.036 Search in Google Scholar

Dawood M.A., Koshio S., Esteban M.Á. (2018). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974. Search in Google Scholar

Dawood M.A., Metwally A.E.S., El-Sharawy M.E., Atta A.M., Elbialy Z.I., Abdel-Latif H.M., Paray B.A. (2020). The role of β-glucan in the growth, intestinal morphometry, and immune-related gene and heat shock protein expressions of Nile tilapia (Oreochromis niloticus) under different stocking densities. Aquaculture, 523: 735205. Search in Google Scholar

De Jesus R.B., Petit J., Pilarski F., Wiegertjes G.F., Koch J.F.A., de Oliveira C.A., Zanuzzo F.S. (2019). An early beta-glucan bath during embryo development increases larval size of Nile tilapia. Aquac Res., 50: 2012–2014. Search in Google Scholar

De Mello M.M.M., de Faria C.d.F.P., Zanuzzo F.S., Urbinati E.C. (2019). β-glucan modulates cortisol levels in stressed pacu (Piaractus mesopotamicus) inoculated with heat-killed Aeromonas hydrophila. Fish Shellfish Immunol., 93: 1076–1083. Search in Google Scholar

De Souza F.P., de Lima E.C.S., Pandolfi V.C.F., Leite N.G., Furlan-Murari P.J., Leal C.N.S., Mainardi R.M., Suphoronski S.A., Favero L.M., Koch J.F.A. (2020). Effect of β-glucan in water on growth performance, blood status and intestinal microbiota in tilapia under hypoxia. Aquac. Rep., 17: 100369. Search in Google Scholar

Divya M., Gopi N., Iswarya A., Govindarajan M., Alharbi N.S., Kadaikunnan S., Khaled J.M., Almanaa T.N., Vaseeharan B. (2020). β-glucan extracted from eukaryotic single-celled microorganism Saccharomyces cerevisiae: Dietary supplementation and enhanced ammonia stress tolerance on Oreochromis mossambicus. Microb. Pathog., 139: 103917. Search in Google Scholar

Do Huu H., Sang H.M., Thuy N.T.T. (2016). Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish Shellfish Immunol., 54: 402–410. Search in Google Scholar

Domenico J.D., Canova R., Soveral L.d.F., Nied C.O., Costa M.M., Frandoloso R., Kreutz L.C. (2017). Immunomodulatory effects of dietary β-glucan in silver catfish (Rhamdia quelen). Pesqui. Vet. Bras., 37: 73–78. Search in Google Scholar

Engstad R.E., Robertsen B., Frivold E. (1992). Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish Shellfish Immunol., 2: 287–297. Search in Google Scholar

Gantner B.N., Simmons R.M., Canavera S.J., Akira S., Underhill D.M. (2003). Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med., 197: 1107–1117. Search in Google Scholar

Ghaedi G., Keyvanshokooh S., Azarm H.M., Akhlaghi M. (2015). Effects of dietary β-glucan on maternal immunity and fry quality of rainbow trout (Oncorhynchus mykiss). Aquaculture, 441: 78–83. Search in Google Scholar

Ghaedi G., Keyvanshokooh S., Azarm H.M., Akhlaghi M. (2016). Proteomic analysis of muscle tissue from rainbow trout (Oncorhynchus mykiss) fed dietary β-glucan. Iran J. Vet. Res., 17: 184–189. Search in Google Scholar

Guzmán-Villanueva L.T., Ascencio-Valle F., Macías-Rodríguez M.E., Tovar-Ramírez D. (2014 a). Effects of dietary β-1, 3/1, 6-glucan on the antioxidant and digestive enzyme activities of Pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides. Fish Physiol. Biochem., 40: 827–837.10.1007/s10695-013-9889-024276574 Search in Google Scholar

Guzmán-Villanueva L.T., Tovar-Ramírez D., Gisbert E., Cordero H., Guardiola F.A., Cuesta A., Meseguer J., Ascencio-Valle F., Esteban M.A. (2014 b). Dietary administration of β-1, 3/1, 6-glucan and probiotic strain Shewanella putrefaciens, single or combined, on gilthead seabream growth, immune responses and gene expression. Fish Shellfish Immunol., 39: 34–41.10.1016/j.fsi.2014.04.02424798993 Search in Google Scholar

Herre J., Gordon S., Brown G.D. (2004). Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol. Immunol., 40: 869–876. Search in Google Scholar

Hisano H., Soares M.P., Luiggi F.G., Arena A.C. (2018). Dietary β-glucans and mannanoligosaccharides improve growth performance and intestinal morphology of juvenile pacu Piaractus mesopotamicus (Holmberg, 1887). Aquac.Int., 26: 213–223. Search in Google Scholar

Holland M.C.H., Lambris J.D. (2002). The complement system in teleosts. Fish Shellfish Immunol., 12: 399–420. Search in Google Scholar

Itami T., Takahashi Y., Nakamura Y. (1989). Efficacy of vaccination against vibriosis in cultured kuruma prawns Penaeus japonicus. J. Aquat. Anim. Health., 1: 238–242. Search in Google Scholar

Ji L., Sun G., Li J., Wang Y., Du Y., Li X., Liu Y. (2017). Effect of dietary β-glucan on growth, survival and regulation of immune processes in rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida. Fish Shellfish Immunol., 64: 56–67. Search in Google Scholar

Ji L., Fu S., Ji R., Li X., Liu Y. (2019). β-glucan mitigated trinitrobenzene sulfonic acid-induced enteritis in the rainbow trout (Oncorhynchus mykiss). Aquaculture, 513: 734393. Search in Google Scholar

Jiang C., Wang P., Li M., Liu S., Zhang S. (2016). Dietary β-glucan enhances the contents of complement component 3 and factor B in eggs of zebrafish. Dev. Comp. Immunol., 65: 107–113. Search in Google Scholar

Joyce S.A., Kamil A., Fleige L., Gahan C.G. (2019). The cholesterol-lowering effect of oats and oat beta glucan: Modes of action and potential role of bile acids and the microbiome. Front. Nutr., 6: 171. Search in Google Scholar

Kanlis G., Suzuki Y., Tauchi M., Numata T., Shirojo Y., Takashima F. (1995). Immunoglobulin in oocytes, fertilized eggs, and yolk sac larvae of red sea bream. Fish Sci., 61: 787–790. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850. Search in Google Scholar

Khanjani M.H., Sharifinia M. (2021). Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture, 542: 736912. Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2020 a). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr., 26: 328–337.10.1111/anu.12994 Search in Google Scholar

Khanjani M.H., Sharifinia M., Hajirezaee S. (2020 b). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1471–1486.10.2478/aoas-2020-0036 Search in Google Scholar

Khanjani M.H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquac.Int., 29: 307–321.10.1007/s10499-020-00627-9 Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513. Search in Google Scholar

Khanjani M.H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 c). The effect of adding molasses in different times on performance of Nile tilapia (Oreochromis niloticus) raised in a low-salinity biofloc system. Ann. Anim. Sci., 21: 1–20.10.2478/aoas-2021-0011 Search in Google Scholar

Kobayashi M., Msangi S., Batka M., Vannuccini S., Dey M.M., Anderson J.L. (2015). Fish to 2030: the role and opportunity for aquaculture. Aquac. Econ. Manag., 19: 282–300. Search in Google Scholar

Kumar S., Sahu N., Pal A., Choudhury D., Yengkokpam S., Mukherjee S. (2005). Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol., 19: 331–344. Search in Google Scholar

Lam K., Cheung P. (2013). Non-digestible long chain beta-glucans as novel prebiotics. Bioact. Carbohydr. Diet. Fibre, 2: 45–64. Search in Google Scholar

Lara-Flores M., Olvera-Novoa M.A., Guzmán-Méndez B.E., López-Madrid W. (2003). Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture, 216: 193–201. Search in Google Scholar

Lee J.H., Kim J.W., Kang Y.J., Ko D.W., Kim J.M., Choi S.H., Park K.H. (2018). Effects of β-1,3-glucan on innate immunity responses and mortality induced by Vibrio harveyi, hemorrhagic septicemia virus, or Miamiensis avidus in the olive flounder Paralichthys olivaceus. Aquacult. Int., 26: 743–756. Search in Google Scholar

Lee C.L., Chang C.C., Kuo H.W., Cheng W. (2020 a). Pectin of cacao pod husk, an efficient immunostimulant for white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol., 107: 357–366.10.1016/j.fsi.2020.10.02633132175 Search in Google Scholar

Lee P.T., Liao Z.H., Huang H.T., Chuang C.Y., Nan F.H. (2020 b). β-glucan alleviates the immunosuppressive effects of oxytetracycline on the non-specific immune responses and resistance against Vibrio alginolyticus infection in Epinephelus fuscoguttatus × Epinephelus lanceolatus hybrids. Fish Shellfish Immunol., 100: 467–475.10.1016/j.fsi.2020.03.04632217140 Search in Google Scholar

Li P., Gatlin III D.M. (2003). Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture, 219: 681–692. Search in Google Scholar

Li P., Gatlin III D.M. (2004). Dietary brewers yeast and the prebiotic Grobiotic™ AE influence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops × M. saxatilis) to Streptococcus iniae infection. Aquaculture, 231: 445–456. Search in Google Scholar

Li P., Gatlin III D.M. (2005). Evaluation of the prebiotic GroBiotic®-A and brewers yeast as dietary supplements for sub-adult hybrid striped bass (Morone chrysops × M. saxatilis) challenged in situ with Mycobacterium marinum. Aquaculture, 248: 197–205. Search in Google Scholar

Li H., Xu C., Zhou L., Dong Y., Su Y., Wang X., Qin J.G., Chen L., Li E. (2019). Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity. Fish Shellfish Immunol., 91: 315–324. Search in Google Scholar

Librán-Pérez M., Costa M.M., Figueras A., Novoa B. (2018). β-glucan administration induces metabolic changes and differential survival rates after bacterial or viral infection in turbot (Scophthalmus maximus). Fish Shellfish Immunol., 82: 173–182. Search in Google Scholar

Lin S., Pan Y., Luo L., Luo L. (2011). Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Fish Shellfish Immunol., 31: 788–794. Search in Google Scholar

Liu H., Xie M., Nie S. (2020). Recent trends and applications of polysaccharides for microencapsulation of probiotics. Food Frontiers, 1: 45–59. Search in Google Scholar

Løvoll M., Kilvik T., Boshra H., Bøgwald J., Sunyer J.O., Dalmo R.A. (2006). Maternal transfer of complement components C3-1, C3-3, C3-4, C4, C5, C7, Bf, and Df to offspring in rainbow trout (Oncorhynchus mykiss). Immunogenetics, 58: 168–179. Search in Google Scholar

Lu D.L., Limbu S.M., Lv H.B., Ma Q., Chen L.Q., Zhang M.L., Du Z.Y. (2019). The comparisons in protective mechanisms and efficiencies among dietary α-lipoic acid, β-glucan and l-carnitine on Nile tilapia infected by Aeromonas hydrophila. Fish Shellfish Immunol., 86: 785–793. Search in Google Scholar

Ma K., Bao Q., Wu Y., Chen S., Zhao S., Wu H., Fan J. (2020). Evaluation of microalgae as immunostimulants and recombinant vaccines for diseases prevention and control in aquaculture. Front. Bioeng. Biotechnol., 8: 1331. Search in Google Scholar

Medina-Gali R.M., del Mar Ortega-Villaizan M., Mercado L., Novoa B., Coll J., Perez L. (2018). Beta-glucan enhances the response to SVCV infection in zebrafish. Dev. Comp. Immunol., 84: 307–314. Search in Google Scholar

Meena D., Das P., Kumar S., Mandal S., Prusty A., Singh S., Akhtar M., Behera B., Kumar K., Pal A. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol. Biochem., 39: 431–457. Search in Google Scholar

Miest J.J., Arndt C., Adamek M., Steinhagen D., Reusch T.B. (2016). Dietary β-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota. Fish Shellfish Immunol., 48: 94–104. Search in Google Scholar

Misra C.K., Das B.K., Mukherjee S.C., Pattnaik P. (2006). Effect of multiple injections of β-glucan on non-specific immune response and disease resistance in Labeo rohita fingerlings. Fish Shellfish Immunol., 20: 305–319. Search in Google Scholar

Mohan K., Ravichandran S., Muralisankar T., Uthayakumar V., Chandirasekar R., Seedevi P., Abirami R.G., Rajan D.K. (2019). Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immunol., 86: 1177–1193. Search in Google Scholar

Mokhbatly A.A.A., Assar D.H., Ghazy E.W., Elbialy Z., Rizk S.A., Omar A.A., Gaafar A.Y., Dawood M.A. (2020). The protective role of spirulina and β-glucan in African catfish (Clarias gariepinus) against chronic toxicity of chlorpyrifos: hemato-biochemistry, histopathology, and oxidative stress traits. Environ. Sci. Pollut. Res., 27: 31636–31651. Search in Google Scholar

Montoya L.N.F., Favero G.C., Zanuzzo F.S., Urbinati E.C. (2018). Distinct β-glucan molecules modulates differently the circulating cortisol levels and innate immune responses in matrinxã (Brycon amazonicus). Fish Shellfish Immunol., 83: 314–320. Search in Google Scholar

Morales-López R., Auclair E., Garcia F., Esteve-Garcia E., Brufau J. (2009). Use of yeast cell walls; β-1,3/1, 6-glucans; and mannoproteins in broiler chicken diets. Poultry Sci., 88: 601–607. Search in Google Scholar

Morgan B.P., Marchbank K.J., Longhi M.P., Harris C.L., Gallimore A.M. (2005). Complement: central to innate immunity and bridging to adaptive responses. Immunol. Lett., 97: 171–179. Search in Google Scholar

Mueller A., Raptis J., Rice P.J., Kalbfleisch J.H., Stout R.D., Ensley H.E., Browder W., Williams D.L. (2000). The influence of glucan polymer structure and solution conformation on binding to (1→ 3)-β-D-glucan receptors in a human monocyte-like cell line. Glycobiology, 10: 339–346. Search in Google Scholar

Neamat-Allah A.N., Abd El Hakim Y., Mahmoud E.A. (2020). Alleviating effects of β-glucan in Oreochromis niloticus on growth performance, immune reactions, antioxidant, transcriptomics disorders and resistance to Aeromonas sobria caused by atrazine. Aquacult. Res., 51: 1801–1812. Search in Google Scholar

Nguyen T.M., Mandiki S.N., Tran T.N.T., Larondelle Y., Mellery J., Mignolet E., Cornet V., Flamion E., Kestemont P. (2019). Growth performance and immune status in common carp Cyprinus carpio as affected by plant oil-based diets complemented with β-glucan. Fish Shellfish Immunol., 92: 288–299. Search in Google Scholar

Nieves-Rodríguez K.N., Álvarez-González C.A., Peña-Marín E.S., Vega-Villasante F., Martínez-García R., Camarillo-Coop S., Tovar-Ramírez D., Guzmán-Villanueva L.T., Andree K.B., Gisbert E. (2018). Effect of β-glucans in diets on growth, survival, digestive enzyme activity, and immune system and intestinal barrier gene expression for tropical gar (Atractosteus tropicus) juveniles. Fishes, 3: 27. Search in Google Scholar

Nonaka M., Smith S.L. (2000). Complement system of bony and cartilaginous fish. Fish Shellfish Immunol., 10: 215–228. Search in Google Scholar

Ochoa-Álvarez N.A., Casillas-Hernández R., Magallón-Barajas F.J., Ramirez-Orozco J.M., Carbajal-Millan E. (2021). Protector effect of beta-glucans from shrimp pond-related yeasts in Penaeus vannamei rearing under white spot syndrome virus presence. Lat. Am. J. Aquat. Res., 49: 18–28. Search in Google Scholar

Ogier de Baulny M., Quentel C., Fournier V., Lamour F., Le Gouvello R. (1996). Effect of long-term oral administration of beta-glucan as an immunostimulant or an adjuvant on some non-specific parameters of the immune response of turbot Scophthalmus maximus. Dis. Aquat. Org., 26: 139–147. Search in Google Scholar

Ogundele M.O. (2001). Role and significance of the complement system in mucosal immunity: particular reference to the human breast milk complement. Immunol. Cell Biol., 79: 1–10. Search in Google Scholar

Ooi V.E., Liu F. (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem., 7: 715–729. Search in Google Scholar

Ortuño J., Cuesta A., Rodríguez A., Esteban M.A., Meseguer J. (2002). Oral administration of yeast, Saccharomyces cerevisiae, enhances the cellular innate immune response of gilthead seabream (Sparus aurata L.). Vet. Immunol. Immunopathol., 85: 41–50. Search in Google Scholar

Pauly D., Zeller D. (2017). Comments on FAOs state of world fisheries and aquaculture (SOFIA 2016). Mar. Policy, 77: 176–181. Search in Google Scholar

Picchitti S., Scapigliati G., Fanelli M., Barbato F., Canese S., Mastrolla L., Mazzini M., Abelli L. (2001). Sex-related variations of serum immunoglobulins during reproduction in gilthead sea bream and evidence for a transfer from the female to the eggs. J. Fish Biol., 59: 1503–1511. Search in Google Scholar

Pilarski F., de Oliveira C.A.F., de Souza F.P.B.D., Zanuzzo F.S. (2017). Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish Immunol., 70: 25–29. Search in Google Scholar

Raa J. (2000). The use of immune-stimulants in fish and shellfish feeds. In: Advance en Nutricion Acuicola V, Cruz-Suarez L.E., Ricque-Marie D., Tapia-Salazar M., Olvera-Novoa M.A., Civera-Cerecedo R. (eds). Proc. Memorias del V Simposium Internacional de Nutrcion Acouicola. Merida, Yucatan, pp. 47–56. Search in Google Scholar

Ringø E., Olsen R.E., Vecino J.G., Wadsworth S., Song S. (2012). Use of immunostimulants and nucleotides in aquaculture: a review. J. Mar. Sci. Res. Dev., 2: 104. Search in Google Scholar

Roberti Filho F.D.O., Koch J.F.A., Wallace C., Leal M.C. (2019). Dietary β-1,3/1, 6-glucans improve the effect of a multivalent vaccine in Atlantic salmon infected with Moritella viscosa or infectious salmon anemia virus. Aquac.Int., 27: 1825–1834. Search in Google Scholar

Rodríguez F.E., Valenzuela B., Farías A., Sandino A.M., Imarai M. (2016). β-1,3/1, 6-Glucan-supplemented diets antagonize immune inhibitory effects of hypoxia and enhance the immune response to a model vaccine. Fish Shellfish Immunol., 59: 36–45. Search in Google Scholar

Rop O., Mlcek J., Jurikova T. (2009). Beta-glucans in higher fungi and their health effects. Nutr. Rev., 67: 624–631. Search in Google Scholar

Ross D.A., Wilson M.R., Miller N.W., Clem L.W., Warr G.W., Ross D.A., Wilson M.R., Miller N.W., Clem L.W., Warr G.W. (1998). Evolutionary variation of immunoglobulin μ heavy chain RNA processing pathways: origins, effects, and implications. Immunol.Rev., 166: 143–151. Search in Google Scholar

Russo R., Yanong R.P., Mitchell H. (2006). Dietary beta-glucans and nucleotides enhance resistance of red-tail black shark (Epalzeorhynchos bicolor, fam. Cyprinidae) to Streptococcus iniae infection. J. World Aquac. Soc., 37: 298–306. Search in Google Scholar

Sabioni R.E., Zanuzzo F.S., Gimbo R.Y., Urbinati E.C. (2020). β-glucan enhances respiratory activity of leukocytes suppressed by stress and modulates blood glucose levels in pacu (Piaractus mesopotamicus). Fish Physiol. Biochem., 46: 629–640. Search in Google Scholar

Sahoo P., Mukherjee S. (2001). Effect of dietary β-1,3 glucan on immune responses and disease resistance of healthy and aflatoxin B1-induced immunocompromised rohu (Labeo rohita Hamilton). Fish Shellfish Immunol., 11: 683–695. Search in Google Scholar

Sahoo P., Kumari J., Mishra B. (2005). Non specific immune responses in juveniles of Indian major carps. J. Appl. Ichthyol., 21: 151–155. Search in Google Scholar

Sakai M. (1999). Current research status of fish immunostimulants. Aquaculture, 172: 63–92. Search in Google Scholar

Sang H.M., Fotedar R. (2010). Effects of dietary β–1, 3–glucan on the growth, survival, physiological and immune response of marron, Cherax tenuimanus (Smith, 1912). Fish Shellfish Immunol., 28: 957–960. Search in Google Scholar

Scapigliati G., Scalia D., Marras A., Meloni S., Mazzini M. (1999). Immunoglobulin levels in the teleost sea bass Dicentrarchus labrax (L.) in relation to age, season, and water oxygenation. Aquaculture, 174: 207–212. Search in Google Scholar

Sealey W., Barrows F., Hang A., Johansen K., Overturf K., LaPatra S., Hardy R. (2008). Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim. Feed Sci. Technol., 141: 115–128. Search in Google Scholar

Selim K.M., Reda R.M. (2015). Beta-glucans and mannan oligosaccharides enhance growth and immunity in Nile tilapia. N. Am. J. Aquac., 77: 22–30. Search in Google Scholar

Sherif A.H., Mahfouz M.E. (2019). Immune status of Oreochromis niloticus experimentally infected with Aeromonas hydrophila following feeding with 1, 3 β-glucan and levamisole immunostimulants. Aquaculture, 509: 40–46. Search in Google Scholar

Sirimanapong W., Adams A., Ooi E.L., Green D.M., Nguyen D.K., Browdy C.L., Collet B., Thompson K.D. (2015). The effects of feeding immunostimulant β-glucan on the immune response of Pangasianodon hypophthalmus. Fish Shellfish Immunol., 45: 357–366. Search in Google Scholar

Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol., 41: 125–139. Search in Google Scholar

Soares M.P., Oliveira F.C., Cardoso I.L., Urbinati E.C., de Campos C.M., Hisano H. (2018). Glucan-MOS® improved growth and innate immunity in pacu stressed and experimentally infected with Aeromonas hydrophila. Fish Shellfish Immunol., 73: 133–140. Search in Google Scholar

Soltanian S., Stuyven E., Cox E., Sorgeloos P., Bossier P. (2009). Beta-glucans as immunostimulant in vertebrates and invertebrates. Crit. Rev. Microbiol., 35: 109–138. Search in Google Scholar

Sonck E., Stuyven E., Goddeeris B., Cox E. (2010). The effect of β-glucans on porcine leukocytes. Vet. Immunol. Immunopathol., 135: 199–207. Search in Google Scholar

Tayyab R., Khan N., Ashraf M., Khalique A., Rasool F., Azmat H., Abbas S., Mahmood Anjum K., Hameed Mughal D., Javed Iqbal K. (2019). A comparative study of beta glucan and plant stimulants on the growth, histology and immune response of Labeo rohita. Iran. J. Fish. Sci., 18: 862–872. Search in Google Scholar

Terzi E., Kucukkosker B., Bilen S., Kenanoglu O.N., Corum O., Ozbek M., Parug S.S. (2020). A novel herbal immunostimulant for rainbow trout (Oncorhynchus mykiss) against Yersinia ruckeri. Fish Shellfish Immunol., 110: 55–66. Search in Google Scholar

Thompson K.D. (2017). Chapter 1 – Immunology: Improvement of Innate and Adaptive Immunity. In: Fish Diseases, Jeney G. (ed.). Academic Press, pp. 1–17. Search in Google Scholar

Tovar D., Zambonino J., Cahu C., Gatesoupe F., Vázquez-Juárez R., Lésel R. (2002). Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture, 204: 113–123. Search in Google Scholar

Travassos L.R., Taborda C.P. (2017). Linear epitopes of Paracoccidioides brasiliensis and other fungal agents of human systemic mycoses as vaccine candidates. Front. Immunol., 8: 224. Search in Google Scholar

Velazquez-Carriles C., Macias-Rodríguez M.E., Carbajal-Arizaga G.G., Silva-Jara J., Angulo C., Reyes-Becerril M. (2018). Immobilizing yeast β-glucan on zinc-layered hydroxide nanoparticle improves innate immune response in fish leukocytes. Fish Shellfish Immunol., 82: 504–513. Search in Google Scholar

Verlhac V., Obach A., Gabaudan J., Schuep W., Hole R. (1998). Immunomodulation by dietary vitamin C and glucan in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 8: 409–424. Search in Google Scholar

Waché Y., Auffray F., Gatesoupe F.J., Zambonino J., Gayet V., Labbé L., Quentel C. (2006). Cross effects of the strain of dietary Saccharomyces cerevisiae and rearing conditions on the onset of intestinal microbiota and digestive enzymes in rainbow trout, Onchorhynchus mykiss, fry. Aquaculture, 258: 470–478. Search in Google Scholar

Wang Z., Zhang S., Wang G., An Y. (2008). Complement activity in the egg cytosol of zebrafish Danio rerio: evidence for the defense role of maternal complement components. PloS One, 3: e1463. Search in Google Scholar

Wang P., Jiang C., Liu S., Cui P., Zhang Y., Zhang S. (2017 a). Trans-generational enhancement of C-type lysozyme level in eggs of zebrafish by dietary β-glucan. Dev. Comp. Immunol., 74: 25–31.10.1016/j.dci.2017.04.00628408333 Search in Google Scholar

Wang W., Sun J., Liu C., Xue Z. (2017 b). Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquac Res., 48: 1–23.10.1111/are.13161 Search in Google Scholar

Wang Y., Harding S.V., Thandapilly S.J., Tosh S.M., Jones P.J., Ames N.P. (2017 c). Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism. Br. J. Nutr., 118: 822–829.10.1017/S000711451700283529115200 Search in Google Scholar

Whittington R., Lim C., Klesius P.H. (2005). Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture, 248: 217–225. Search in Google Scholar

Wu Y.S., Liau S.Y., Huang C.T., Nan F.H. (2016). Beta 1, 3/1, 6-glucan and vitamin C immunostimulate the non-specific immune response of white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol., 57: 269–277. Search in Google Scholar

Yamamoto F.Y., Yin F., Rossi Jr W., Hume M., Gatlin III D.M. (2018). β-1,3 glucan derived from Euglena gracilis and Algamune™ enhances innate immune responses of red drum (Sciaenops ocellatus L.). Fish Shellfish Immunol., 77: 273–279. Search in Google Scholar

Yamamoto F.Y., Castillo S., de Cruz C.R., Chen K., Hume M.E., Gatlin III D.M. (2020). Synergistic effects of the β-1,3 glucan paramylon and vitamin C on immunological responses of hybrid striped bass (Morone chrysops × M. saxatilis) were pronounced in vitro but more moderate in vivo. Aquaculture, 526: 735394. Search in Google Scholar

Zeng L., Wang Y.H., Ai C.X., Zheng J.L., Wu C.W., Cai R. (2016). Effects of β-glucan on ROS production and energy metabolism in yellow croaker (Pseudosciaena crocea) under acute hypoxic stress. Fish Physiol. Biochem., 42: 1395–1405. Search in Google Scholar

Zhu F., Du B., Xu B. (2016). A critical review on production and industrial applications of beta-glucans. Food Hydrocoll., 52: 275–288. Search in Google Scholar

Polecane artykuły z Trend MD