[
Aitken R.J. (2020). Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction, 159: R189–R201.
]Search in Google Scholar
[
Ali A.A., Bilodeau J.F., Sirard M.A. (2003). Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology, 59: 939–949.
]Search in Google Scholar
[
Ali I., Liu H.X., Zhong-Shu L., Dong-Xue M., Xu L., Shah S.Z.A., Ullah O., Nan-Zhu F. (2018). Reduced glutathione alleviates tunicamycin-induced endoplasmic reticulum stress in mouse preimplantation embryos. J. Reprod. Dev., 64: 15–24.
]Search in Google Scholar
[
Altenhöfer S., Radermacher K.A., Kleikers P.W.M., Wingler K., Schmidt H.H.H.W. (2015). Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid. Redox Sign., 23: 406–427.
]Search in Google Scholar
[
Alvarez G., Morado S., Soto M., Dalvit G., Cetica P. (2015). The control of reactive oxygen species influences porcine oocyte in vitro maturation. Reprod. Domest. Anim., 50: 200–205.
]Search in Google Scholar
[
Bienert G.P., Schjoerring J.K., Jahn T.P. (2006). Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta - Biomembr., 1758: 994–1003.
]Search in Google Scholar
[
Blondin P., Coenen K., Sirard M.A. (1997). The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J. Androl., 18: 454–460.
]Search in Google Scholar
[
Buck T., Hack C.T., Berg D., Berg U., Kunz L., Mayerhofer A. (2019). The NADPH oxidase 4 is a major source of hydrogen peroxide in human granulosa-lutein and granulosa tumor cells. Sci. Rep., 9: 1–11.
]Search in Google Scholar
[
Carbone M.C., Tatone C., Delle Monache S., Marci R., Caserta D., Colonna R., Amicarelli F. (2003). Antioxidant enzymatic defences in human follicular fluid: Characterization and age-dependent changes. Mol. Hum. Reprod., 9: 639–643.
]Search in Google Scholar
[
Cetica P.D., Dalvit G.C., Beconi M.T. (1999). Study of evaluation criteria used for in vitro bovine oocyte selection and maturation. Biocell, 23: 125–133.
]Search in Google Scholar
[
Cetica P.D., Pintos L.N., Dalvit G.C., Beconi M.T. (2001). Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life, 51: 57–64.
]Search in Google Scholar
[
Christou-Kent M., Dhellemmes M., Lambert E., Ray P.F., Arnoult C. (2020). Diversity of RNA-binding proteins modulating post-transcriptional regulation of protein expression in the maturing mammalian oocyte. Cells, 9: 662.
]Search in Google Scholar
[
Combelles C.M.H., Holick E.A., Paolella L.J., Walker D.C., Wu Q. (2010). Profiling of superoxide dismutase isoenzymes in compartments of the developing bovine antral follicles. Reproduction, 139: 871–881.
]Search in Google Scholar
[
Cui M.S., Wang X.L., Tang D.W., Zhang J., Liu Y., Zeng S.M. (2011). Acetylation of H4K12 in porcine oocytes during in vitro aging: Potential role of ooplasmic reactive oxygen species. Theriogenology, 75: 638–646.
]Search in Google Scholar
[
Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., et al. (2017). European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol., 13: 94–162.
]Search in Google Scholar
[
El-Shahat K.H., Kandil M. (2012). Antioxidant capacity of follicular fluid in relation to follicular size and stage of estrous cycle in buffaloes. Theriogenology, 77: 1513–1518.
]Search in Google Scholar
[
García-Martínez T., Vendrell-Flotats M., Martínez-Rodero I., Ordóñez-León E.A., Álvarez-Rodríguez M., López-Béjar M., Yeste M., Mogas T. (2020). Glutathione ethyl ester protects in vitro-maturing bovine oocytes against oxidative stress induced by subsequent vitrification/warming. Int. J. Mol. Sci., 21: 1–26.
]Search in Google Scholar
[
Goud A.P., Goud P.T., Diamond M.P., Gonik B., Abu-Soud H.M. (2008). Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic. Biol. Med., 44: 1295–1304.
]Search in Google Scholar
[
Gupta S., Choi A., Yu H.Y., Czerniak S.M., Holick E.A., Paolella L.J., Agarwal A., Combelles C.M.H. (2011). Fluctuations in total antioxidant capacity, catalase activity, and hydrogen peroxide levels of follicular fluid during bovine folliculogenesis. Reprod. Fertil. Dev., 23: 673–680.
]Search in Google Scholar
[
Gutnisky G., Morado S., Gadze T., Donato A., Alvarez G., Dalvit G., Cetica P. (2020) Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology, 143: 18–26.10.1016/j.theriogenology.2019.11.037
]Search in Google Scholar
[
Hancock J.T., Desikan R., Neill S.J. (2001). Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans., 29: 345–349.
]Search in Google Scholar
[
Herrick J.R., Brad A.M., Krisher R.L. (2006). Chemical manipulation of glucose metabolism in porcine oocytes: Effects on nuclear and cytoplasmic maturation in vitro. Reproduction, 131: 289–298.
]Search in Google Scholar
[
Kala M., Shaikh M.V., Nivsarkar M. (2017). Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reprod. Med. Biol., 16: 28–35.
]Search in Google Scholar
[
Lamirande De E., Gagnon C. (1993). A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int. J. Androl., 16: 21–25.
]Search in Google Scholar
[
Leyens G., Knoops B., Donnay I. (2004 a). Expression of peroxiredoxins in bovine oocytes and embryos produced in vitro. Mol. Reprod. Dev., 69: 243–251.10.1002/mrd.20145
]Search in Google Scholar
[
Leyens G., Verhaeghe B., Landtmeters M., Marchandise J., Knoops B., Donnay I. (2004 b). Peroxiredoxin 6 is upregulated in bovine oocytes and cumulus cells during in vitro maturation: role of intercellular communication. Biol. Reprod., 71: 1646–1651.10.1095/biolreprod.104.030155
]Search in Google Scholar
[
Li W., Young J.F., Sun J. (2018). NADPH oxidase-generated reactive oxygen species in mature follicles are essential for Drosophila ovulation. Proc. Natl. Acad. Sci., 115: 7765–7770.
]Search in Google Scholar
[
Lopes A., Lane M., Thompson J.G. (2010). Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Human Reprod., 25: 2762–2773.
]Search in Google Scholar
[
Von Mengden L., Klamt F., Smitz J. (2020). Redox biology of human cumulus cells: basic concepts, impact on oocyte quality, and potential clinical use. Antioxid. Redox Sign., 32: 522–535.
]Search in Google Scholar
[
Morado S.A., Cetica P.D., Beconi M.T., Dalvit G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro. Reprod. Fert. Develop., 21: 608–614.
]Search in Google Scholar
[
Morado S., Cetica P., Beconi M., Thompson J.G., Dalvit G. (2013). Reactive oxygen species production and redox state in parthenogenetic and sperm-mediated bovine oocyte activation. Reproduction, 145: 471–478.
]Search in Google Scholar
[
Mouatassim El S., Guérin P., Ménézo Y. (1999). Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol. Hum. Reprod., 5: 720–725.
]Search in Google Scholar
[
Mourot M., Dufort I., Gravel C., Algriany O., Dieleman S., Sirard M.-A. (2006). The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mol. Reprod. Dev., 73: 1367–1379.
]Search in Google Scholar
[
Nishihara T., Matsumoto K., Hosoi Y., Morimoto Y. (2018). Evaluation of antioxidant status and oxidative stress markers in follicular fluid for human in vitro fertilization outcome. Reprod. Med. Biol., 17: 481–486.
]Search in Google Scholar
[
O’Flaherty C., Breininger E., Beorlegui N., Beconi M.T. (2005). Acrosome reaction in bovine spermatozoa: Role of reactive oxygen species and lactate dehydrogenase C4. Biochim. Biophys. Acta - Gen. Subj., 1726: 96–101.
]Search in Google Scholar
[
Pandey A.N., Chaube S. K. (2014). A moderate increase of hydrogen peroxide level is beneficial for spontaneous resumption of meiosis from diplotene arrest in rat oocytes cultured in vitro. Biores. Open Access, 3: 183–191.
]Search in Google Scholar
[
Song B.S., Jeong P.S., Lee J.H., Lee M.H., Yang H.J., Choi S.A., Lee H.Y., Yoon S.B., Park Y.H., et al., (2018). The effects of kinase modulation on in vitro maturation according to different cumulus oocyte complex morphologies. PLoS One, 13: 1–20.
]Search in Google Scholar
[
Takahashi Y., First N.L. (1992) In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology, 37: 963–978.10.1016/0093-691X(92)90096-A
]Search in Google Scholar
[
Vandaele L., Thys M., Bijttebier J., Van Langendonckt A., Donnay I., Maes D., Meyer E., Van Soom A. (2010). Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development. Reproduction, 139: 505–511.
]Search in Google Scholar
[
Velez-Pardo C., Tarazona Morales A., Jimenez Del Rio M., Olivera-Angel M. (2007). Endogenously generated hydrogen peroxide induces apoptosis via mitochondrial damage independent of NF-κB and p53 activation in bovine embryos. Theriogenology, 67: 1285–1296.
]Search in Google Scholar
[
van der Vliet A. (2008). NADPH oxidases in lung biology and pathology: Host defense enzymes, and more. Free Radic. Biol. Med., 44: 938–955.
]Search in Google Scholar