1. bookTom 21 (2021): Zeszyt 4 (October 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Sex Dependent Action of Aroclor 1254 on Basal and sGnRHa-Stimulated Secretion of LH from the Pituitary Cells of Common Carp, Cyprinus carpio L.

Data publikacji: 28 Oct 2021
Tom & Zeszyt: Tom 21 (2021) - Zeszyt 4 (October 2021)
Zakres stron: 1393 - 1402
Otrzymano: 06 May 2020
Przyjęty: 08 Oct 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Andric N. L., Kostic T. S., Zoric S. N., Stanic B. D., Andric S. A., Kovacevic R. Z. (2006). Effect of a PCB-based transformer oil on testicular steroidogenesis and xenobiotic-metabolizing enzymes. Reprod. Toxicol., 22: 102–110.Search in Google Scholar

Benninghoff A. D., Thomas P. (2005). Involvement of calcium and calmodulin in the regulation of ovarian steroidogenesis in Atlantic croaker (Micropogonias undulatus) and modulation by Aroclor 1254. Gen. Comp. Endocrinol., 144: 211–223.Search in Google Scholar

Berg V., Lyche J. L., Karlsson C., Stavik B., Nourizadeh-Lillabadi R., Hårdnes N., Skaare J. U., Alestrøm P., Lie E., Ropstad E. (2011). Accumulation and effects of natural mixtures of persistent organic pollutants (POP) in Zebrafish after two generations of exposure. J. Toxicol. Environ. Health A, 74: 407–423.Search in Google Scholar

Berninger J. P., Tillitt D. E. (2019). Polychlorinated biphenyl tissue-concentration thresholds for survival, growth, and reproduction in fish. Environ. Toxicol. Chem., 38: 712–736.Search in Google Scholar

Brandt I. (1977). Tissue localization of polychlorinated biphenyls. Chemical structure related to pattern of distribution. Acta Pharmacol. Toxicol. (Copenh), 40: 1–108.Search in Google Scholar

Bratberg M., Olsvik P. A., Edvardsen R. B., Brekken H. K., Vadla R., Meier S. (2013). Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua). Chemosphere, 90: 2157–2171.Search in Google Scholar

Braun J. M. (2017). Early life exposure to endocrine disrupting chemicals and childhood obesity and neurodevelopment. Nat. Rev. Endocrinol., 13: 161–173.Search in Google Scholar

Coimbra A. M., Reis-Henriques M. A. (2007). Tilapia larvae Aroclor 1254 exposure: effects on gonads and circulating thyroid hormones during adulthood. Bull. Environ. Contam. Toxicol., 79: 488–493.Search in Google Scholar

Desaulniers D., Leingartner K., Wade M., Fintelman E., Yagminas A., Foster W. G. (1999). Effects of acute exposure to PCBs 126 and 153 on anterior pituitary and thyroid hormones and FSH isoforms in adult Sprague Dawley male rats. Toxicol. Sci., 47: 58–69.Search in Google Scholar

Desotelle J., Splett C., Scheffen J. (2005). PCB exposure alters anterior pituitary sensitivity to gonadotropin-releasing hormone (GnRH) in adult female rats. BIOS, 76: 68–76.Search in Google Scholar

Garcia M. S., Constantino D. H., Silva A. P., Perobelli J. E. (2016). Fish pollutants MeHg and Aroclor cause permanent structural damage in male gonads and kidneys after prepubertal exposure. Int. J. Exp. Pathol., 97: 360–368.Search in Google Scholar

Gregoraszczuk E. L., Zemla M., Ptak A., Grabic R. (2005). The action of low- and highchlorinated biphenyl mixture on prepubertal porcine ovary: steroid secretion and cells apoptosis. Endocr. Regul., 39: 33–41.Search in Google Scholar

Heindel J. H., Blumberg B., Cave M., Machtinger R., Mantovani A., Mendez M. A., Nadal A., Palanza P., Panzica G., Sargis R., Vandenberg L. N., Saal F. (2017). Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol., 68: 3–33.Search in Google Scholar

Jansen H. T., Cooke P. S., Porcelli J., Liu T. C., Hansen L. G. (1993). Estrogenic and antiestrogenic actions of PCBs in the female rat: in vitro and in vivo studies. Reprod. Toxicol., 7: 237–248.Search in Google Scholar

Jobling S., Tyler C. R., Nolan M., Sumpter J. P. (1998). The identification of estrogenic effects in wild fish. R&D Technical Report W119, Environment Agency, Bristol, UK.Search in Google Scholar

Kah O., Ponent A., Rodriguez J. N., Calas A., Breton B. (1989). Development of enzymelinked immunosorbent assay for goldfish gonadotropin. Biol. Reprod., 40: 68–73.Search in Google Scholar

Kah O., Anglade I., Linard B., Pakdel F., Salbert G., Bailhache T., Ducouret B., Saligaut C., Le Goff P., Valotaire Y., Jégo P. (1997). Estrogen receptors in the brainpituitary complex and the neuroendocrine regulation of gonadotropin release in rainbow trout. Fish Physiol. Biochem., 17: 53–62.Search in Google Scholar

Kautzky-Willer A., Harreiter J., Pacini G. (2016). Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev., 37: 278–316.Search in Google Scholar

Khan I. A., Thomas P. (1997). Aroclor 1254-induced alterations in hypothalamic monoamine metabolism in the Atlantic croaker (Micropogonias undulatus): correlation with pituitary gonadotropin release. Neurotoxicology, 18: 553–560.Search in Google Scholar

Khan I. A., Thomas P. (2001). Disruption of neuroendocrine control of luteinizing hormone secretion by Aroclor 1254 involves inhibition of hypothalamic tryptophan hydroxylase activity. Biol. Reprod., 64: 955–964.Search in Google Scholar

Khan I. A., Thomas P. (2006). PCB congener-specific distribution of reproductive neuroendocrine function in Atlantic croaker. Mar. Envir. Res., 62: 25–28.Search in Google Scholar

Khan I. A., Mathews S., Okuzawa K., Kagawa H., Thomas P. (2001). Alterations in the GnRH-LH system in relation to gonadal stage and Aroclor 1254 exposure in Atlantic croaker. Comp. Biochem. Physiol. B, 129: 251–259.Search in Google Scholar

Kraugerud M., Aleksandersen M., Nyengaard J. R., Ostby G. C., Gutleb A. C., Dahl E., Berg V., Farstad W., Schweder T., Skaare J. U., Ropstad E. (2012). In utero and lactational exposure to PCB 118 and PCB 153 alter ovarian follicular dynamics and GnRHinduced luteinizing hormone secretion in female lambs. Environ. Toxicol., 27: 623–634.Search in Google Scholar

Lerner D. T., Björnsson B. T., Stephen D., Mc Cormick S. D. (2007). Effects of aqueous exposure to polychlorinated biphenyls (Aroclor 1254) on physiology and behavior of smolt development of Atlantic salmon. Aquatic Toxicol., 81: 329–336.Search in Google Scholar

Li D. L., Huang Y-J., Gao S., Chen L-Q., Zhang M. L., Du Z. Y. (2019). Sex-specific alterations of lipid metabolism in zebrafish exposed to polychlorinated biphenyls. Chemosphere, 221: 768–777.Search in Google Scholar

Luthe G., Jacobus J. A., Robertson L. W. (2008). Receptor interactions by polybrominated diphenyl ethers versus polychlorinated biphenyls: a theoretical structure-activity assessment. Envir. Toxicol. Pharmacol., 25: 202–210.Search in Google Scholar

Maisano M., Cappello T., Oliva S., Natalotto A., Giannetto A., Parrino V., Battaglia P., Romeo T., Salvo A., Spanò N., Mauceri A. (2016). PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the Mediterranean Sea. Mar. Environ. Res., 121: 40–48.Search in Google Scholar

Mikolajczyk T., Weil C., Epler P., Breton B. (1990). Involvement of voltage-dependent calcium channels (VDCC) in the action of GnRH on GtH release in common carp (Cyprinus carpio L): comparison with K+ action. Reprod. Nutr. Dev., 30: 619–628.Search in Google Scholar

Pěnčíková K., Svr ž ková L., Strapáčová S., Neča J., Bartoňková I., Dvořák Z., Hý ž ďalová M., Pivnička J., Pálková L., Lehm Ler H. J., Li X., Vondráček J., Machala M. (2018). In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Environ. Pollut., 237: 473–486.Search in Google Scholar

Raggi F., Russo D., Urbani C., Sardella C., Manetti L., Cappellani D., Lupi I., Tomisti L., Martino E., Marcocci C., Bogazzi F. (2016). Divergent effects of dioxin- or non-dioxin-like polychlorinated biphenyls on the apoptosis of primary cell culture from the mouse pituitary gland. PLoS One, 11: e0146729.Search in Google Scholar

Socha M., Sokołowska-Mikołajczyk M., Szczerbik P., Chyb J., Mikołajczyk T., Epler P. (2012). The effect of polychlorinated biphenyls mixture (Aroclor 1254) on the embryonic development and hatching of Prussian carp, Carassius gibelio, and common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae). Acta Ichthyol. Piscat., 42: 31–35.Search in Google Scholar

Socha M., Sokołowska-Mikołajczyk M., Szczerbik P., Chyb J., Epler P. (2013 a). Effects of Aroclor 1254 on LH and 17,20b-P secretion in female Prussian carp (Carassius gibelio Bloch) in the spawning season. Czech J. Anim. Sci., 58: 375–380.10.17221/6904-CJASSearch in Google Scholar

Socha M., Sokołowska-Mikołajczyk M., Szczerbik P., Chyb J., Gosiewski G. (2013 b). The effects of a highly chlorinated biphenyl-Delor 106-on the in vivo and in vitro luteinizing hormone secretion in female Prussian carp, Carassius gibelio (Actinopterygii: Cypriniformes: Cyprinidae). Acta Ichthyol. Piscat., 43: 195–200.10.3750/AIP2013.43.3.03Search in Google Scholar

Thomas P., Doughty K. (2004). Disruption of rapid, nongenomic steroid actions by environmental chemicals: interference with progestin stimulation of sperm motility in Atlantic croaker. Environ. Sci. Technol., 38: 6328–6332.Search in Google Scholar

Van Geest J. L., Mackay D., Poirier D. G., Sibley P. K., Solomon K. R. (2011). Accumulation and depuration of polychlorinated biphenyls from field-collected sediment in three freshwater organisms. Environ. Sci. Technol., 45: 7011–7018.Search in Google Scholar

Vos J. G., Dybing E ., Greim H. A., Ladefoged O., Lambré C., Tarazona J. V., Brandt I., Vethaak A. D. (2000). Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit. Rev. Toxicol., 30: 71–133.Search in Google Scholar

Wahlang B., Jin J., Hardesty J. E., Head K. Z., Shi H., Falkner K. C., Prough R. A., Klinge C. M., Cave M. C. (2019). Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease. Food Chem. Toxicol., 129: 64–76.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo