1. bookTom 72 (2022): Zeszyt 3 (September 2022)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1846-9558
Pierwsze wydanie
28 Feb 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

Potential anti-ageing effects of probiotic-derived conditioned media on human skin cells

Data publikacji: 13 Apr 2022
Tom & Zeszyt: Tom 72 (2022) - Zeszyt 3 (September 2022)
Zakres stron: 359 - 374
Przyjęty: 16 Dec 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1846-9558
Pierwsze wydanie
28 Feb 2007
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

In this study, the protective functions of bacteria-free conditioned media from Bifidobacterium and Lactobacillus species against ultraviolet radiation-induced skin ageing and associated cellular damage were investigated. The effects of ultraviolet radiation-induced reactive oxygen species production were suppressed by all conditioned media; particularly, the loss of cell viability and downregulation of collagen gene expression were significantly reversed by the conditioned media from B. longum and B. lactis. Further exa mination of potential anti-pigmentation effects revealed that the B. lactis-derived conditioned media significantly inhibited tyrosinase activity and alpha-melanocyte-stimulating hormone-induced melanin production in human epidermal melanocytes. Further, the conditioned media suppressed the phosphorylation of extracellular signal- related kinase, which functions as an upstream regulator of melanogenesis. Therefore, B. lactis-derived conditioned media can potentially protect against cellular damage involved in skin-ageing processes.

Keywords

1. H. Chen, Q. Y. Weng and D. E. Fisher, UV Signaling pathways within the skin, J. Invest. Dermatol. 134(8) (2014) 2080–2085; https://doi.org/10.1038/jid.2014.16110.1038/jid.2014.161410264824759085 Search in Google Scholar

2. L. E. Tracy, R. A. Minasian and E. J. Caterson, Extracellular matrix and dermal fibroblast function in the healing wound, Adv. Wound Care 5(3) (2016) 119–136; https://doi.org/10.1089/wound.2014.056110.1089/wound.2014.0561477929326989578 Search in Google Scholar

3. R. Ganceviciene, A. I. Liakou, A. Theodoridis, E. Makrantonaki and C. C. Zouboulis, Skin anti-aging strategies, Dermatoendocrinol. 4(3) (2014) 308–319; https://doi.org/10.4161/derm.2280410.4161/derm.22804358389223467476 Search in Google Scholar

4. M. Kechagia, D. Basoulis, S. Konstantopoulou, D. Dimitriadi, K. Gyftopoulou, N. Skarmoutsou and E. M. Fakiri, Health benefits of probiotics: A review, ISRN Nut. 2013 (2013) Article ID 481651 (7 pages); https://doi.org/10.5402/2013/48165110.5402/2013/481651404528524959545 Search in Google Scholar

5. Y. Ishii, S. Sugimoto, N. Izawa, T. Sone, K. Chiba and K. Miyazaki, Oral administration of Bifido-bacterium breve attenuates UV-induced barrier perturbation and oxidative stress in hairless mice skin, Arch. Dermatol. Res. 306(5) (2014) 467–473; https://doi.org/10.1007/s00403-014-1441-210.1007/s00403-014-1441-224414333 Search in Google Scholar

6. Y. Alzahrani, D. Alesa, H. Alshamrani, D. Alamssi, N. Alzahrani and M. Almohammadi, The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics, J. Family Med. Prim. Care 8(11) (2019) 3496–3503; https://doi.org/10.4103/jfmpc.jfmpc_709_1910.4103/jfmpc.jfmpc_709_19688194231803643 Search in Google Scholar

7. M. R. Roudsari, R. Karimi, S. Sohrabvandi and A. M. Mortazavian, Health effects of probiotics on the skin, Crit. Rev. Food Sci. Nutr. 55(9) (2013) 1219–1240; https://doi.org/10.1080/10408398.2012.68007810.1080/10408398.2012.68007824364369 Search in Google Scholar

8. S. R. Shiou, Y. Yu, Y. Guo, S. M. He, C. H. Mziray-Andrew, J. Hoenig, J. Sun, E. O. Petrof and E. C. Claud, Synergistic protection of combined probiotic conditioned media against neonatal necrotizing enterocolitis-like intestinal injury, PLoS ONE 8 (2013) e65108 (12 pages); https://doi.org/10.1371/journal.pone.006510810.1371/journal.pone.0065108366379023717690 Search in Google Scholar

9. Y. Tao, K. A. Drabik, T. S. Waypa, M. W. Musch, J. C. Alverdy, O. Schneewind, E. B. Chang and E. O. Petrof, Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells, Am. J. Physiol. Cell Physiol. 290(4) (2006) C1018-C1030; https://doi.org/10.1152/ajpcell.00131.200510.1152/ajpcell.00131.200516306130 Search in Google Scholar

10. E. O. Petrof, E. C. Claud, J. Sun, T. Abramova, Y. Guo, T. S. Waypa, S. M. He, Y. Nakagawa and E. B. Chang, Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function, Inflamm. Bowel Dis. 15(10) (2009) 1537–1547; https://doi.org/10.1002/ibd.2093010.1002/ibd.20930274816419373789 Search in Google Scholar

11. M. Montalto, N. Maggiano, R. Ricci, V. Curigliano, L. Santoro, F. D. Nicuolo, F. M. Vecchio, A. Gasbarrini and G. Gasbarrini, Lactobacillus acidophilus protects tight junctions from aspirin damage in HT-29 Cells, Digestion 69(4) (2004) 225–228; https://doi.org/10.1159/00007915210.1159/00007915215205571 Search in Google Scholar

12. I. M. Carroll, J. M. Andrus, J. M. Bruno-Bárcena, T. R. Klaenhammer, H. M. Hassan and D. S. Threadgill, Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis, Am. J. Physiol. Gastrointest. Liver Physiol. 293(4) (2007) G729-G738; https://doi.org/10.1152/ajpgi.00132.200710.1152/ajpgi.00132.200717640978 Search in Google Scholar

13. A. Lee, J. Y. Kim, J. Heo, D. H. Cho, H. S. Kim, I. S. An, S. An and S. Bae, The inhibition of melanogenesis via the PKA and ERK signaling pathways by Chlamydomonas reinhardtii extract in B16F10 melanoma cells and artificial human skin equivalents, J. Microbiol. Biotechnol. 28(12) (2018) 2121–2131; https://doi.org/10.4014/jmb.1810.1000810.4014/jmb.1810.1000830415530 Search in Google Scholar

14. S. Pillai, C. Oresajo and J. Hayward, Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation- induced matrix degradation – a review, Int. J. Cosmet. Sci. 27(1) (2005) 17–34; https://doi.org/10.1111/j.1467-2494.2004.00241.x10.1111/j.1467-2494.2004.00241.x18492178 Search in Google Scholar

15. Q. Liu, Z. Yu, F. Tian, J. Zhao, H. Zhang, Q. Zhai and W. Chen, Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier, Microb. Cell Fact. 19 (2020) Article ID 23 (11 pages); https://doi.org/10.1186/s12934-020-1289-410.1186/s12934-020-1289-4700345132024520 Search in Google Scholar

16. T. Satoh, M. Murata, N. Iwabuchi, T. Odamaki, H. Wakabayashi, K. Yamauchi, F. Abe and J. Z. Xiao, Effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in mice, Benef. Microbes 6(4) (2015) 497–504; https://doi.org/10.3920/BM2014.013410.3920/BM2014.013425809215 Search in Google Scholar

17. B. Nam, S. A. Kim, S. D. Park, H. J. Kim, J. Soo. Kim, C. H. Bae, J. Y. Kim, W. Nam, J. L. Lee and J. H. Sim, Regulatory effects of Lactobacillus plantarum HY7714 on skin health by improving intestinal condition, PloS One 15 (2020) e0231268 (14 pages); https://doi.org/10.1371/journal.pone.023126810.1371/journal.pone.0231268714777032275691 Search in Google Scholar

18. L. Schlegel, S. Lemerle and P. Geslin, Lactobacillus species as opportunistic pathogens in immunocom-promised patients, Eur. J. Clin. Microbiol. Infect. Dis. 17(12) (1998) 887–888; https://doi.org/10.1007/s10096005021610.1007/s10096005021610052559 Search in Google Scholar

19. S. P. Borriello, W. P. Hammes, W. Holzapfel, P. Marteau, J. Schrezenmeir, M. Vaara and V. Valtonen, Safety of probiotics that contain Lactobacilli or Bifidobacteria, Clin. Infect. Dis. 36(6) (2003) 775–780; https://doi.org/10.1086/36808010.1086/36808012627362 Search in Google Scholar

20. M. H. Land, K. Rouster-Stevens, C. R. Woods, M. L. Cannon, J. Cnota and A. K. Shetty, Lactobacillus sepsis associated with probiotic therapy, Pediatrics 115(1) (2005) 178–181; https://doi.org/10.1542/peds.2004-213710.1542/peds.2004-213715629999 Search in Google Scholar

21. Y. S. Nanjundaiah Y, D. A. Wright, A. R. Baydoun, W. T. O’Hare, Z. Ali, Z. Khaled and M. H. Sarker, Lactobacillus rhamnosus GG conditioned media modulates acute reactive oxygen species and nitric oxide in J774 murine macrophages, Biochem. Biophys. Rep. 6 (2016) 68–75; https://doi.org/10.1016/j.bbrep.2016.03.00310.1016/j.bbrep.2016.03.003560034728955864 Search in Google Scholar

22. Y. Yoon, G. Kim, M. G. Noh, J. H. Park, M. Jang, S. Fang and H. Park, Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity, Exp. Mol. Med. 52 (2020) 1574–1586; https://doi.org/10.1038/s12276-020-00502-w10.1038/s12276-020-00502-w808065532917958 Search in Google Scholar

23. S. Shibahara, K. I. Yasumoto, S. Amae, T. Udono, K. Watanabe, H. Saito and K. Takeda, Regulation of pigment cell-specific gene expression by MITF, Pigment Cell Res. 13(Suppl. 8) (2000) 98–102; https://doi.org/10.1034/j.1600-0749.13.s8.18.x10.1034/j.1600-0749.13.s8.18.x11041365 Search in Google Scholar

24. K. Greive, D. Tran, J. Townley and T. Barnes, An antiaging skin care system containing alpha hydroxy acids and vitamins improves the biomechanical parameters of facial skin, Clin. Cosmet. Investig. Dermatol. 8 (2014) 9–17; https://doi.org/10.2147/CCID.S7543910.2147/CCID.S75439427723925552908 Search in Google Scholar

25. A. Kornhauser, S. G. Coelho and V. J. Hearing, Effects of cosmetic formulations containing hydroxy-acids on sun-exposed skin: Current applications and future developments, Dermatol. Res. Pract. 2012 (2012) 1–6; https://doi.org/10.1155/2012/71089310.1155/2012/710893336282922675344 Search in Google Scholar

26. C. Groussard, I. Morel, M. Chevanne, M. Monnier, J. Cillard and A. Delamarche, Free radical scavenging and antioxidant effects of lactate ion: an in vitro study, J. Appl. Physiol. 89(1) (2000) 169–175; https://doi.org/10.1152/jappl.2000.89.1.16910.1152/jappl.2000.89.1.16910904049 Search in Google Scholar

27. S. A. Kim, H. S. Kim, J. W. Jung, S. I. Suh and Y. W. Ryoo, Poly-L-lactic acid increases collagen gene expression and synthesis in cultured dermal fibroblast (Hs68) through the p38 MAPK pathway, Ann. Dermatol. 31(1) (2019) 97–100; https://doi.org/10.5021/ad.2019.31.1.9710.5021/ad.2019.31.1.97799269333911550 Search in Google Scholar

28. M. Karasmani, P. Dallas, M. Kyriazi, A. Dimakopoulou, E. Deli, M. Giakoumaki A. Grigoropoulos, V. Anagnostou and M. Rallis, The effect of anti-aging agents in skin oxidative stress induced by UV Radiation in vivo, Free Radic. Biol. Med. 108(Suppl. 1) (2017) S68; https://doi.org/10.1016/j.freeradbiomed.2017.04.23110.1016/j.freeradbiomed.2017.04.231 Search in Google Scholar

29. C. C. Tsai, C. F. Chan, W. Y. Huang J. S. Lin, P. Chan, H. Y. Liu and Y. S. Lin, Applications of Lacto-bacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications, Molecules 18(11) (2013) 14161–14171; https://doi.org/10.3390/molecules18111416110.3390/molecules181114161627063824248144 Search in Google Scholar

30. M. Rendon, M. Berneburg, I. Arellano and M. Picardo, Treatment of melasma, J. Am. Acad. Dermatol. 54(5, Suppl. 2) (2006) S272-S281; https://doi.org/10.1016/j.jaad.2005.12.03910.1016/j.jaad.2005.12.03916631968 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo