1. bookTom 57 (2018): Zeszyt 4 (January 2018)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2545-3149
Pierwsze wydanie
01 Mar 1961
Częstotliwość wydawania
4 razy w roku
Języki
Angielski, Polski
Otwarty dostęp

CHARACTERISTICS AND FUNCTIONS OF HYDROPHOBINS AND THEIR USE IN MANIFOLD INDUSTRIES

Data publikacji: 26 Feb 2022
Tom & Zeszyt: Tom 57 (2018) - Zeszyt 4 (January 2018)
Zakres stron: 374 - 384
Otrzymano: 01 May 2018
Przyjęty: 01 Sep 2018
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2545-3149
Pierwsze wydanie
01 Mar 1961
Częstotliwość wydawania
4 razy w roku
Języki
Angielski, Polski

Arnaouteli S., MacPhee C.E., Stanley-Wall N.R.: Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Curr. Opin. Microbiol. 34, 7–12 (2016)10.1016/j.mib.2016.07.012Search in Google Scholar

Asghari A.K., Norton I., Mills T., Sadd P., Spyropoulos F.: Interfacial and foaming characterisation of mixed protein-starch particle systems for food-foam applications. Food Hydrocoll. 53, 311–319 (2016)10.1016/j.foodhyd.2015.09.007Search in Google Scholar

Askolin S., Linder M., Scholtmeijer K., Tenkanen M., Penttilä M., de Vocht M.L., Wösten H.A.B.: Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Biomacromolecules, 7, 1295–1301 (2006)10.1021/bm050676sSearch in Google Scholar

Bilewicz R., Witomski J., Van der Heyden A., Tagu D., Palin B., Rogalska E.: Modification of electrodes with self-assembled hydrophobin layers. J. Phys. Chem. B.105, 9772–9777 (2001)10.1021/jp0113782Search in Google Scholar

Brandani G.B., Schor M., Morris R., Stanley-Wall N., MacPhee C.E., Marenduzzo D., Zachariae U.: The bacterial hydrophobin BslA is a switchable ellipsoidal janus nanocolloid. Langmuir ACS J. Surf. Colloids, 31, 11558–11563 (2015)Search in Google Scholar

Bromley K.M., Morris R.J., Hobley L., Brandani G., Gillespie R.M.C., McCluskey M., Zachariae U., Marenduzzo D., Stanley-Wall N.R., MacPhee C.E.: Interfacial self-assembly of a bacterial hydrophobin. Proc. Natl. Acad. Sci. USA, 112,5419–5424 (2015)10.1073/pnas.1419016112Search in Google Scholar

Bruns S., Kniemeyer O., Hasenberg M., Aimanianda V., Nietzsche S., Thywissen A., Jeron A., Latgé J.-P., Brakhage A.A., Gunzer M.: Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 6, e1000873 (2010)10.1371/journal.ppat.1000873Search in Google Scholar

Camattari A., Goh A., Yip L.Y., Tan A.H.M., Ng S.W., Tran A., Liu G., Liachko I., Dunham M.J., Rancati G.: Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb. Cell Fact. 15, 139 (2016)10.1186/s12934-016-0540-5Search in Google Scholar

Chaplin M.F., Kennedy J.F. (w) Carbohydrate Analysis: A Practical Approach. Red.: M.F. Chaplin, J.F. Kennedy, IRL Press, Oxford (1994), s. 1–324.Search in Google Scholar

Cicatiello P., Dardano P., Pirozzi M., Gravagnuolo A.M., De Stefano L., Giardina P.: Self-assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnol. Bioeng. 114, 2173–2186 (2017)10.1002/bit.26344Search in Google Scholar

Collén A., Persson J., Linder M., Nakari-Setälä T., Penttilä M., Tjerneld F., Sivars U.: A novel two-step extraction method with detergent/polymer systems for primary recovery of the fusion protein endoglucanase I-hydrophobin I. Acta Biochim. Biophys. – Gen. Subj. 1569, 139–150 (2002)10.1016/S0304-4165(01)00244-6Search in Google Scholar

Cooper A., Kennedy M.W.: Biofoams and natural protein surfactants. Biophys. Chem. 151, 96–104 (2010)Search in Google Scholar

Cox A., Aldred D.L., Russell A.B.: Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocoll.23, 366–376 (2009)10.1016/j.foodhyd.2008.03.001Search in Google Scholar

Cox P. W., P. Hooley.: Hydrophobins: New prospects for biotechnology. Fungal Biol. Rev.23,40–47 (2009)Search in Google Scholar

Dagenais T.R.T., Giles S.S., Aimanianda V., Latgé J.-P., Hull C.M., Keller N.P.: Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect. Immun.78, 823–829 (2010)10.1128/IAI.00980-09Search in Google Scholar

Daly R., Hearn M.T.: Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit.18,119–138 (2005)10.1002/jmr.687Search in Google Scholar

Danov K.D., Kralchevsky P.A., Radulova G.M., Basheva E.S., Stoyanov S.D., Pelan E.G.: Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Adv. Colloid Interface Sci. 222, 148–161 (2015)10.1016/j.cis.2014.04.009Search in Google Scholar

de Vocht M.L. de Reviakine I., Wösten H.A.B., Brisson A., Wessels J.G.H., Robillard G.T.: Structural and functional role of the disulfide bridges in the hydrophobin SC3. J. Biol. Chem.275, 28428–28432 (2000)Search in Google Scholar

de Vocht M.L., Reviakine I., Ulrich W.-P., Bergsma-Schutter W., Wösten H.A.B., Vogel H., Brisson A., Wessels J.G.H., Robillard G.T.: Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates. Protein Sci. Publ. Protein Soc.11, 1199–1205 (2002)10.1110/ps.4540102Search in Google Scholar

de Vries O.M.H., Fekkes M.P., Wösten H.A.B., Wessels J.G.H.: Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch. Microbiol. 159, 330–335 (1993)Search in Google Scholar

Dimitrova L.M., Boneva M.P., Danov K.D., Kralchevsky P.A., Basheva E.S., Marinova K.G., Petkov J.T., Stoyanov S.D.: Limited coalescence and Ostwald ripening in emulsions stabilized by hydrophobin HFBII and milk proteins. Colloids Surf. Physicochem. Eng. Asp. 509, 521–538 (2016)Search in Google Scholar

Ebbole D.J.: Hydrophobins and fungal infection of plants and animals. Trends Microbiol.5, 405–408 (1997)10.1016/S0966-842X(97)01130-XSearch in Google Scholar

Gandier J.-A., Master E.R.: Pichia pastoris is a suitable host for the heterologous expression of predicted class I and class II hydrophobins for discovery, study, and application in biotechnology. Microorganisms, 6, 3–23 (2018)10.3390/microorganisms6010003587461729303996Search in Google Scholar

Gravagnuolo A.M., Morales-Narváez E., Matos C.R.S., Longobardi S., Giardina P., Merkoçi A.: On-the-spot immobilization of quantum dots, graphene oxide, and proteins via hydrophobins. Adv. Funct. Mater. 25, 6084–6092 (2015)Search in Google Scholar

Grove S.N., Bracher C.E., Morre D.J.: An ultrastructural basis for hyphal tip growth in Pythium ultimum. Am. J. Bot.57, 245–255 (1970)10.1002/j.1537-2197.1970.tb09814.xSearch in Google Scholar

Haas Jimoh Akanbi M., Post E., Meter-Arkema A., Rink R., Robillard G.T., Wang X., Wösten H.A.B., Scholtmeijer K.: Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids Surf. B Biointerfaces, 75, 526–531 (2010)10.1016/j.colsurfb.2009.09.03019836932Search in Google Scholar

Hobleya L., Ostrowski A., Francesco R.V., Keith B. M., Portera M., Prescottd A.R., MacPheeb C.E., van Aaltena D.M.F, Stanley-Walla N.R.: BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc. Natl. Acad. Sci. USA.110, 13600–13605 (2013)10.1073/pnas.1306390110374688123904481Search in Google Scholar

Hou S., Yang K., Qin M., Feng X.-Z., Guan L., Yang Y., Wang C.: Patterning of cells on functionalized poly(dimethylsiloxane) surface prepared by hydrophobin and collagen modification. Biosens. Bioelectron.24, 918–922 (2008)10.1016/j.bios.2008.07.04518782664Search in Google Scholar

Houmadi S., Ciuchi F., De Santo M.P., De Stefano L., Rea I., Giardina P., Armenante A., Lacaze E., Giocondo M.: Langmuir-blodgett film of hydrophobin protein from Pleurotus ostreatusat the air-water interface. Langmuir, 24, 12953–12957 (2008)10.1021/la802306r18925762Search in Google Scholar

Hungund B., Habib, C., Hiregoudar V., Umloti S., Wandkar S., Tennalli G.: Production and characterization of hydrophobins from fungal source. (w) Biotechnology and Biochemical Engineering. Select Proceedings of ICACE, red. B.D. Prasanna, N.G. Sathyanarayana, V.V. Praven, Springer SBM, Singapore, 2016, s. 48–5310.1007/978-981-10-1920-3_5Search in Google Scholar

Kaufman G., Liu W., Williams D.M., Choo Y., Gopinadhan M., Samudrala N., Sarfati R., Yan E.C.Y., Regan L., Osuji C.O.: Flat drops, elastic sheets, and microcapsules by interfacial assembly of a bacterial biofilm protein, BslA. Langmuir, 33, 13590–13597 (2017)10.1021/acs.langmuir.7b0322629094950Search in Google Scholar

Kerr S.C., Fischer G.J., Sinha M., McCabe O., Palmer J.M., Choera T., Lim F.Y., Wimmerova M., Carrington S.D., Yuan S., Lowell C.A., Oscarson S., Keller N.P., Fahy J.V.: FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS Pathog. 12, 1005555 (2016)10.1371/journal.ppat.1005555482592627058347Search in Google Scholar

Kershaw M.J., Wakley G., Talbot N.J.: Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J.17, 3838–3849 (1998)10.1093/emboj/17.14.383811707199670001Search in Google Scholar

Khalesi M., Gebruers K., Derdelinckx G.: Recent advances in fungal hydrophobin towards using in industry. Protein J.34, 243–255 (2015)10.1007/s10930-015-9621-226208665Search in Google Scholar

Kisko K.: Characterization of hydrophobin proteins at interfaces and in solutions using X-rays. Academic Dissertation. Acad. Diss. University of Helsinki, Faculty of Science, Department of Physics. (2008)Search in Google Scholar

Kottmeier K., Günther T.J., Weber J., Kurtz S., Ostermann K., Rödel G., Bley T.: Constitutive expression of hydrophobin HFB1 from Trichoderma reesei in Pichia pastoris and its pre-purification by foam separation during cultivation. Eng. Life Sci. 12, 162–170 (2012)10.1002/elsc.201100155Search in Google Scholar

Kubicek C.P., Baker S., Gamauf C., Kenerley C.M., Druzhinina I.S.: Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the Ascomycete Trichoderma/Hypocrea. BMC Evol. Biol.8, 4–20 (2008)10.1186/1471-2148-8-4225351018186925Search in Google Scholar

Kulkarni S., Nene S., Joshi K.: Production of hydrophobins from fungi. Process Biochem.61, 1–11 (2017)10.1016/j.procbio.2017.06.012Search in Google Scholar

Kupski L., Pagnussatt F.A., Buffon J.G., Furlong E.B.: Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Appl. Biochem. Biotechnol. 172, 458–468 (2014)10.1007/s12010-013-0518-224092451Search in Google Scholar

Kwan A.H., Macindoe I., Vukasin P.V., Morris V.K., Kass I., Gupte R., Mark A.E., Templeton M.D., Mackay J.P., Sunde M.: The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J. Mol. Biol. 382, 708–720 (2008).Search in Google Scholar

Ley K., Christofferson A., Penna M., Winkler D., Maclaughlin S., Yarovsky I.: Surface-water interface induces conformational changes critical for protein adsorption: implications for monolayer formation of EAS hydrophobin. Front. Mol. Biosci. 2, 1–12 (2015)10.3389/fmolb.2015.00064464481126636091Search in Google Scholar

Li B., Wang X., Li Y., Paananen A., Szilvay G., Qin M., Wang W., Cao Y.: Single-molecule force spectroscopy reveals self-assembly enhanced surface binding of hydrophobins. Chem. Weinh. Bergstr. Ger. (2018)10.1002/chem.20180173029687928Search in Google Scholar

Li X., Hou S., Feng X., Yu Y., Ma J., Li L.: Patterning of neural stem cells on poly(lactic-co-glycolic acid) film modified by hydrophobin. Colloids Surf. B Biointerfaces, 74, 370–374 (2009)10.1016/j.colsurfb.2009.07.03919716276Search in Google Scholar

Lienemann M., Grunér M.S., Paananen A., Siika-Aho M., Linder M.B.: Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions. Biomacromolecules, 16, 1283–1292 (2015)10.1021/acs.biomac.5b0007325724119Search in Google Scholar

Linder M., Szilvay G.R., Nakari-Setälä T., Söderlund H., Penttilä M.: Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Sci. Publ. Protein Soc.11, 2257–2266 (2002)10.1110/ps.0207902237358612192081Search in Google Scholar

Linder M.B., Qiao M., Laumen F., Selber K., Hyytiä T., Nakari-Setälä T., Penttilä M.E.: Efficient purification of recombinant proteins using hydrophobins as tags in surfactant-based two-phase systems. Biochem.43, 11873–11882 (2004)10.1021/bi048820215362873Search in Google Scholar

Linder M.B., Szilvay G.R., Nakari-Setälä T., Penttilä M.E.: Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev.29, 877–896 (2005)10.1016/j.femsre.2005.01.00416219510Search in Google Scholar

Linder M.B.: Hydrophobins: Proteins that self assemble at interfaces. Curr. Opin. Colloid Interface Sci.14, 356–363 (2009)10.1016/j.cocis.2009.04.001Search in Google Scholar

Lo V.C., Ren Q., Pham C.L.L., Morris V.K., Kwan A.H., Sunde M.: Fungal hydrophobin proteins produce self-assembling protein films with diverse structure and chemical stability. Nanomaterials, 4, 827–843 (2014)10.3390/nano4030827530469228344251Search in Google Scholar

Michelz Beitel S., Fontes Coelho L., Sass D.C., Contiero J.: Environmentally friendly production of D(–) lactic acid by Sporolactobacillus nakayamae: investigation of fermentation parameters and fed-batch strategies. Int. J. Microbiol. 2017, 4851612 (2017)10.1155/2017/4851612561084029081803Search in Google Scholar

Murray B.S., Dickinson E., Wang Y.: Bubble stability in the presence of oil-in-water emulsion droplets: influence of surface shear versus dilatational rheology. Food Hydrocoll.23, 1198–1208 (2009)10.1016/j.foodhyd.2008.07.015Search in Google Scholar

Niu B., Gong Y., Gao X., Xu H., Qiao M., Li W.: The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Amino Acids. 46, 2615–2625 (2014)10.1007/s00726-014-1805-025240738Search in Google Scholar

Niu B., Li B., Wang H., Guo R., Xu H., Qiao M., Li, W.: Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Colloids Surf. B Biointerfaces, 150, 344–351 (2017)10.1016/j.colsurfb.2016.10.04827842929Search in Google Scholar

Niu B., Wang D., Yang Y., Xu H., Qiao M.: Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry. Amino Acids. 43, 763–771 (2012)10.1007/s00726-011-1126-522038182Search in Google Scholar

Palomo J.M., Peñas M.M., Fernández-Lorente G., Mateo C., Pisabarro A.G., Fernández-Lafuente R., Ramírez L., Guisán J.M.: Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases. Biomacromolecules, 4, 204–210 (2003)10.1021/bm020071l12625713Search in Google Scholar

Pawłowska B.K., Sobieszczańska B.M.: Amyloidy, białka po- wszechne wśród drobnoustrojów. Post. Mikrobiol.56, 77–87 (2017)10.21307/PM-2017.56.1.077Search in Google Scholar

Portaccio M., Gravagnuolo A.M., Longobardi S., Giardina P., Rea I., De Stefano L., Cammarota M., Lepore M.: ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for teflon membrane bio-functionalization. Appl. Surf. Sci. 351, 673–680 (2015)Search in Google Scholar

Postulkova M., Riveros-Galan D., Cordova-Agiular K., Zitkova K., Verachtert H., Derdelinckx G., Dostalek P., Ruzicka M.C., Branyik T.: Technological possibilities to prevent and suppress primary gushing of beer. Trends Food Sci. Technol. 49, 64–73 (2016)Search in Google Scholar

Raffaini G., Milani R., Ganazzoli F., Resnati G., Metrangolo P.: Atomistic simulation of hydrophobin HFBII conformation in aqueous and fluorous media and at the water/vacuum interface. J. Mol. Graph. Model. 63, 8–14 (2016)Search in Google Scholar

Richter M.J., Schulz A., Subkowski T., Böker A.: Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces. J. Colloid Interface Sci. 479, 199–206 (2016)10.1016/j.jcis.2016.06.06227388134Search in Google Scholar

Sallada N.D., Dunn K.J., Berger B.W.: A structural and functional Role for Disulfide Bonds in a Class II Hydrophobin. Biochemistry, 57, 645–653 (2018)10.1021/acs.biochem.7b0116629277996Search in Google Scholar

Sarlin T., Nakari-Setälä T., Linder M., Penttilä M., Haikara A.: Fungal hydrophobins as predictors of the gushing activity of malt. J. Inst. Brew. 111, 105–111 (2005)10.1002/j.2050-0416.2005.tb00655.xSearch in Google Scholar

Scholtmeijer K., Janssen M.I., Leeuwen M.B.M. van Kooten T.G., van Hektor H., Wosten H.A.B.: The use of hydrophobins to functionalize surfaces. In: Bio-Medical Materials and Engineering. IOS Press. 447–454 (2004)Search in Google Scholar

Scholtmeijer K., Wessels J.G., Wösten H.A.: Fungal hydrophobins in medical and technical applications. Appl. Microbiol. Biotechnol. 56, 1–8 (2001)Search in Google Scholar

Schor M., Reid J.L., MacPhee C.E., Stanley-Wall N.R.: The diverse structures and functions of surfactant proteins. Trends Biochem. Sci. 41, 610–620 (2016)Search in Google Scholar

Schuurs T.A., Schaeffer E., Wessels J.G.: Homology dependent silencing of the SC3 gene in Schizophyllum commune. G. Genetics, 147, 589–596 (1997)10.1093/genetics/147.2.58912081819335596Search in Google Scholar

Schwarzhans J.-P., Wibberg D., Winkler A., Luttermann T., Kalinowski J., Friehs K.: Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microb. Cell Factories, 15, 84 (2016)10.1186/s12934-016-0486-7487401827206580Search in Google Scholar

Stanimirova R.D, Gurkov T.D., Kralchevsky P.A., Balashev K.T, Stoyanov S.D., Pelan E.G: Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging. Langmuir, 29,6053-6067 (2013)10.1021/la400510423611592Search in Google Scholar

Stanley-Walla N.R., MacPheeb C.E.: Connecting the dots between bacterial biofilms and ice cream. Phys. Biol.12, 063001 (2015)10.1088/1478-3975/12/6/06300126685107Search in Google Scholar

Sunde M., Pham C.L.L., Kwan A.H.: Molecular characteristics and biological functions of surface-active and surfactant proteins. Annu. Rev. Biochem. 86, 585–608 (2017)Search in Google Scholar

Szilvay G.R., Nakari-Setälä T., Linder M.B.: Behavior of Tricho- derma reesei hydrophobins in solution: interactions, dynamics, and multimer formation. Biochem.45, 8590–8598 (2006)10.1021/bi060620y16834333Search in Google Scholar

Szilvay G.R., Paananen A., Laurikainen K., Vuorimaa E., Lemmetyinen H., Peltonen J., Linder M.B.: Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Biochem. 46, 2345–2354 (2007)10.1021/bi602358h17297923Search in Google Scholar

Tchuenbou-Magaia F.L., Norton I.T., Cox P.W.: Hydrophobins stabilised air-filled emulsions for the food industry. Food Hydrocoll.23, 1877–1885 (2009)10.1016/j.foodhyd.2009.03.005Search in Google Scholar

Valo H.K., Laaksonen P.H., Peltonen L.J., Linder M.B., Hirvonen J.T., Laaksonen T.J.: Multifunctional hydrophobin: toward functional coatings for drug nanoparticles. ACS Nano.4, 1750–1758 (2010)10.1021/nn901755820210303Search in Google Scholar

Wang K., Xiao Y., Wang Y., Feng Y., Chen C., Zhang J., Zhang Q., Meng S., Wang Z., Yang H.: Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Sci. Rep.6, (2016)10.1038/srep23061479166026976627Search in Google Scholar

Wang X., Graveland-Bikker J.F., de Kruif C.G., Robillard G.T.: Oligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly. Protein Sci. Publ. Protein Soc.13, 810–821 (2004)10.1110/ps.03367304228673714978312Search in Google Scholar

Wang X., Shi F., Wösten H.A.B., Hektor H., Poolman B., Robillard G.T.: The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties. Biophys. J.88, 3434–3443 (2005)10.1529/biophysj.104.057794130549015749774Search in Google Scholar

Wang Z., Feng S., Huang Y., Li S., Xu H., Zhang X., Bai Y., Qiao M.: Expression and characterization of a Grifola frondosahydrophobin in Pichia pastoris. Protein Expr. Purif. 72, 19–25 (2010)10.1016/j.pep.2010.03.01720347985Search in Google Scholar

Wessels J.G., de Vries O.M., Asgeirsdóttir S.A., Springer J.: The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. J. Gen. Microbiol.137, 2439–2445 (1991)10.1099/00221287-137-10-24391770359Search in Google Scholar

Wessels J.G.H.: Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol.32, 413–437 (1994)10.1146/annurev.py.32.090194.002213Search in Google Scholar

Whiteford J.R., Spanu P.D.: Hydrophobins and the interactions between fungi and plants. Mol. Plant Pathol. 3, 391–400 (2002)Search in Google Scholar

Wösten H.A., de Vocht M.L.: Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta. 1469, 79–86 (2000)Search in Google Scholar

Wösten H.A.: Hydrophobins: multipurpose proteins. Annu. Rev. Microbiol. 55, 625–646 (2001)10.1146/annurev.micro.55.1.62511544369Search in Google Scholar

Wösten H.A.B., de Vries O.H.H., Wessels J.G.H.: lnterfacial selfassembly a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell, 5, 1567–1574 (1993)10.2307/3869739Search in Google Scholar

Wösten H.A.B., Scholtmeijer K. Applications of hydrophobins: current state and perspectives. Appl. Microbiol. Biotechnol. 99, 1587–1597 (2015)10.1007/s00253-014-6319-x25564034Search in Google Scholar

Wu Y., Li J., Yang H., Shin H.-J.: Fungal and mushroom hydrophobins: A review. J. Mushroom, 15, 1–7 (2017)10.14480/JM.2017.15.1.1Search in Google Scholar

Wurster S., Thielen V., Weis P., Walther P., Elias J., Waaga- Gasser A.M., Dragan M., Dandekar T. Einsele H., Löffler J., Ullmann A.J.: Mucorales spores induce a proinflammatory cytokine response in human mononuclear phagocytes and harbor no rodlet hydrophobins. Virulence, 8, 1708–1718 (2017)10.1080/21505594.2017.1342920581049228783439Search in Google Scholar

Yamasaki R., Takatsuji Y., Asakawa H., Fukuma T., Haruyama T.: Flattened-top domical water drops formed through self-organization of hydrophobin membranes: a structural and mechanistic study using atomic force Microscopy. ACS Nano. 10, 81–87 (2016)10.1021/acsnano.5b0404926595357Search in Google Scholar

Yu L., Zhang B., Szilvay G.R., Sun R., Jänis J., Wang Z., Feng S., Xu H., Linder M.B., Qiao M.: Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiol. Read. Engl.154, 1677–1685 (2008)10.1099/mic.0.2007/015263-018524922Search in Google Scholar

Zhao L., Xu H., Li Y., Song D., Wang X., Qiao M., Gong M.: Novel application of hydrophobin in medical science: a drug carrier for improving serum stability. Sci. Rep. 6, 26461 (2016)10.1038/srep26461487643727212208Search in Google Scholar

Żuchowska A., Kwiatkowski P., Jastrzębska E., Chudy M., Dybko A., Brzozka Z.: Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis, 37, 536–544 (2016)10.1002/elps.20150025026311334Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo