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A semi-analytical model is presented for the determination of the electric field in reactors used for cold atmospheric pressure
plasma (CAPP) jet production, based on the concept of dielectric barrier discharge (DBD). These systems are associated
with various applications in contemporary engineering, ranging from material processing to biomedicine, and at the same
time they provide many challenges for fundamental research. Here, we consider a simplified system configuration of a
single driven electrode, surrounding a thin dielectric tube, which does not contribute to the electric field, since the potential
variation is immediate due to its negligible size. By employing the cylindrical coordinate system that perfectly fits the
present plasma jet reactor, we separate the area of electric activity into three distinct domains according to the imposed
external conditions, while our analysis is restricted to the electrostatic limit of Maxwell’s equations. To this end, cylindrical
harmonic field expansions are used for the potential, which produce the corresponding electric fields in each subdomain.
Due to the imposed mixed-type boundary value problem, additional linear terms are incorporated, leading to three pos-
sible analytical solutions of the physical problem under consideration. The efficiency of the method is demonstrated by
comparing the final formulae with a numerical solution, followed by the relevant discussion.
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1. Introduction

Problems in electrostatics, such as the limits of Maxwell’s
equations (Jackson, 1998), stand in the frontline of
scientific research in engineering and modern technology,
while they have always been a fertile ground for the
formulation of new mathematical solutions. The need
to calculate the electric field in engineering applications
has generated interest in exploring mathematical
techniques and combining different approaches in
order to provide solutions for different geometries and
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in various coordinate systems. Before the computer
revolution that has occurred in the past few decades,
analytical solutions were the only means of obtaining
information on the electric fields occurring in engineering
applications. This is reflected in the vast effort that
has been put into producing analytical solutions of the
electrostatic field, by solving various boundary-value
and mixed-type boundary-value problems in complex
geometries (Sneddon, 1966). This painstaking effort of
producing purely analytical solutions is still necessary,
as the need for a stable and secure mathematical basis
becomes the starting point of numerical coding for
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tackling such problems.
The potential of mathematical solutions, however,

should not be underestimated. The combination of
mathematical techniques with numerical methods can
give new semi-analytical approaches that allow us
to harness the best of both parts. This is the
motivation behind the construct work, which endeavors
to present a semi-analytical solution for a mixed-type
boundary value-problem, which is encountered in
physical situations of cold atmospheric pressure plasma
(CAPP) jet reactors based on the concept of the dielectric
barrier discharge (DBD).

The principles of such CAPP jets and the related
applications could be considered one of the most
interdisciplinary scientific topics. In our other works,
we deal with conjugated electro-hydrodynamic effects
governed by the local electric field (Papadopoulos et al.,
2019; 2014; Logothetis et al., 2016; Svarnas et al., 2014),
thermal effects strongly dependent on the externally
applied electrical parameters (Svarnas et al., 2018b),
guided ionization waves propagating with ultrasonic
velocities under the influence of time-varying electric
fields (Svarnas et al., 2018a; Gkelios et al., 2011; Clément
et al., 2011; Gazeli et al., 2013), chemical effects due
to neutral and charged reactive species formation under
complicated kinetics (Popov et al., 2019), radiation over
a wide range of the electromagnetic spectrum (Gazeli
et al., 2015), etc. This highly reactive medium is exploited
by the employment of CAPP jets in state-of-the-art
applications, like plasma biomedicine (Athanasopoulos
et al., 2019; 2018; Svarnas et al., 2019; 2015; 2012).
The ignition of the above plasmas and the subsequent
evolution of main parameters are strongly dependent
on the externally applied field, i.e., on the electrode
configuration and the biasing potential. Thus, the
resolution of the electric field in a CAPP jet reactor is
crucial for the determination of the operational window of
the equipment and the estimation of the involved plasma
parameters.

The scope of this work is to present a semi-analytical
solution for a mixed-type boundary-value problem that
is encountered in CAPP jet reactors. The analytical
approach is based on the separation-of-variables
technique (Moon and Spencer, 1971); however, it is
found that linear terms that satisfy Laplace’s equation
play a significant role in the analysis. The semi-analytical
solution provides us a suitable representation of the
electrostatic potential in terms of cylindrical harmonic
eigenfunctions (Hobson, 1965), which is compared
to a reference, purely numerical solution, offering a
significant correction with respect to a first attempt
(Vafeas et al., 2020) to obtain such closed-form solutions.
The comparison enables the determination of the final
form of the semi-analytical solution and gives useful
information on the behavior of the different parts of

the solution, namely, the exponential, the constant and
the linear part. It is to this end the effectiveness of
the combination of applied mathematics and computer
science is employed (see, e.g., Rabenstein and Trautmann,
2003; Maksimov and Mordukhovich, 2017; Gugat and
Wintergerst, 2018; Bartecki, 2020).

2. Electrostatic problem development

We formulate the described physical problem of the
electrostatic potential activity within the plasma jet reactor
by virtue of the circular cylinder geometry (Moon and
Spencer, 1971), given via the coordinates ρ ∈ [0,+∞),
ϕ ∈ [0, 2π) and z ∈ (−∞,+∞) as

r =

3∑

i=1

xix̂i = z x̂1 + ρ cosϕx̂2 + ρ sinϕx̂3, (1)

in terms of the Cartesian basis x̂k, k = 1, 2, 3 which
defines a clockwise orthogonal system (ρ, ϕ, z). In
this respect, we separate the DBD plasma jet reactor
accordingly into subsectors as shown in Fig. 1.

The z-axis coincides with the symmetry axis of the
plasma system, while the axis of the ρ-variable intersects
the reactor vertically for any ϕ ∈ [0, 2π). Therein, zl
is the length of the electrode, associated with a constant
potential field Ve, which is attached to a thin, as readily
assumed, dielectric tube at ρ = ρ0 that does not contribute
to the field distribution, being a fair approximation to the
forthcoming analysis. Therein, the area of electrostatic
interest is extended up to z = zr, close to the exit of the
jet, while moving towards z → +∞, far from the nozzle,
and for any ρ ∈ [0, ρ0], there is no electrostatic activity,
leading gradually to a zero potential, thus to a zero electric
field.

Hence, assuming the negligible impingement that
the dielectric tube has on the field distribution in the
current model, the electrode attains a direct effect upon
the working gas flow at ρ = ρ0 due to the presence of
the conditions applied on the boundary. Consequently, the
three distinct areas of electrostatic activity in the gaseous

Fig. 1. Geometry of the plasma jet reactor, surrounded by gas
and distinguished areas of electrostatic activity.
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phase, being demonstrated in Fig. 1, are

Ω1 =
{

r ∈ R
3 : ρ ∈ (0, ρ0) , ϕ ∈ [0, 2π) ,

z ∈ (0, zl)} , (2)

Ω2 =
{

r ∈ R
3 : ρ ∈ (0, ρ0) , ϕ ∈ [0, 2π) ,

z ∈ (zl, zr)} , (3)

Ω3 =
{

r ∈ R
3 : ρ ∈ (0, ρ0) , ϕ ∈ [0, 2π),

z ∈ (zr,+∞)} . (4)

Using the unit normal vectors of the coordinate
system ρ̂ρρ, ϕ̂ϕϕ and ẑzz (Moon and Spencer, 1971; Hobson,
1965) , we introduce the gradient

∇ = ρ̂ρρ
∂

∂ρ
+

ϕ̂ϕϕ

ρ

∂

∂ϕ
+ ẑzz

∂

∂z
(5)

and the Laplacian

Δ =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2
(6)

defined for any given ρ ∈ [0,+∞), ϕ ∈ [0, 2π) and z ∈
(−∞,+∞). Therefore, Maxwell’s equations (Jackson,
1998) reduce to the electrostatic counterparts

ΔVj (r) = 0, j = 1, 2, 3, (7)

since

Ej (r) = −∇Vj (r)

∇ · Ej (r) = 0, j = 1, 2, 3
(8)

for every r ∈ Ωj , where Vj and Ej for j = 1, 2, 3 are the
electrostatic potentials and electric fields corresponding to
each area (2)–(4), respectively.

Our priority is to benefit from the rotational
symmetry of the problem, due to its geometrical
construction, the fact that leads to the exclusion of the
angular dependence in any potential or electric field
thereafter, providing the same solution in every half-plane
that corresponds to the ϕ-variable. Thus, keeping the
other two cylindrical variables ρ ∈ [0, ρ0] and z ∈
[0,+∞), according to the physical and mathematical
development, the harmonic electrostatic potential fields
retain azimuthal independence and are expressed by the
series (Hobson, 1965)

V1 (r) = A
(1)
0 z +B

(1)
0

+
+∞∑

n=1

J0

(
λ(1)
n ρ

) [
A(1)

n eλ
(1)
n z

+B(1)
n e−λ(1)

n z
]

(9)

for r ∈ Ω1,

V2 (r) = A
(2)
0 z +B

(2)
0

+

+∞∑

n=1

J0

(
λ(2)
n ρ

) [
A(2)

n eλ
(2)
n z

+B(2)
n e−λ(2)

n z
]

(10)

for r ∈ Ω2 and

V3 (r) = A
(3)
0 z +B

(3)
0

+

+∞∑

n=1

J0

(
λ(3)
n ρ

) [
A(3)

n eλ
(3)
n z

+B(3)
n e−λ(3)

n z
]

(11)

for r ∈ Ω3, all written in terms of the Bessel functions of
the zeroth order (Hobson, 1965), where the linear terms
A

(j)
0 z+B

(j)
0 for j = 1, 2, 3, incorporated within (9)–(11),

define quantities that satisfy Laplace’s equation a pri-
ori and play a crucial role in our forthcoming analysis,
as an additional flexible factor that regulates the general
expansion with respect to further validation via numerical
implementation.

Obviously, similar linear terms concerning the
other two remaining variables are not possible, due
to the inability of the ρ-variable to satisfy Laplace’s
equation and due to the loss of the 2π-periodic property
of the ϕ-variable, even though the latter does not
contribute to the field calculation. Indeed, such terms
are extremely important in mixed-type boundary-value
problems (Sneddon, 1966), as it is the present status
here, since each problem defines a unique physical case,
wherein the analytical counterparts play a crucial role
in the final solution. Besides, the effectiveness of
the analytical formulae will be validated in the sequel
via numerical elaboration. On the other hand, the
linearly independent Neumann solutions (Hobson, 1965)
are readily excluded from expansions (9)–(11), since they
become singular for ρ = 0. The discrete parameters λ(j)

n

for j = 1, 2, 3 with n ≥ 1, coming from the method of
separation of variables to Laplace’s equation, along with
the unknown constant coefficients A(j)

n and B
(j)
n for any

value of j = 1, 2, 3 and for n ≥ 0, have to be calculated
from the appropriate imposed boundary conditions that
perfectly fit the particular physical problem.

In what follows, we analyze the nature of those
conditions, beginning with the symmetry restrictions

∂Vj (0, ϕ, z)

∂ρ
= 0, j = 1, 2, 3 for z ∈ [0,+∞) (12)

and
∂V1 (ρ, ϕ, 0)

∂z
= 0 for ρ ∈ [0, ρ0] , (13)
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which are applied on the symmetry axis of the problem
for ρ = 0 and on the fictitious boundary at the beginning,
as set, of our system for z = 0, respectively. At the exit of
the plasma reactor and far away from the nozzle, the limit
behaviour

lim
z→+∞V3 (ρ, ϕ, z) = 0 (14)

is required in order to secure the vanishing of the relative
field, while around our system and at ρ = ρ0 the
physical analysis, described earlier in detail, demands the
following fixed-type imposed boundary conditions:

V1 (ρ0, ϕ, z) = Ve for z ∈ [0, zl] , (15)

∂V2 (ρ0, ϕ, z)

∂ρ
= 0 for z ∈ [zl, zr] , (16)

V3 (ρ0, ϕ, z) = 0 for z ∈ [zr,+∞) , (17)

being either of Dirichlet or Neumann type. Finally,
standard continuity conditions between the common
boundaries, in the absence of charges, are readily applied,
initially at the intersection z = zl, i.e.,

V1 (ρ, ϕ, zl) = V2 (ρ, ϕ, zl) for ρ ∈ [0, ρ0] ,

(18)

∂V1 (ρ, ϕ, zl)

∂z
=

∂V2 (ρ, ϕ, zl)

∂z
for ρ ∈ [0, ρ0] (19)

and secondary at z = zr, that is,

V2 (ρ, ϕ, zr) = V3 (ρ, ϕ, zr) for ρ ∈ [0, ρ0] ,

(20)

∂V2 (ρ, ϕ, zr)

∂z
=

∂V3 (ρ, ϕ, zr)

∂z
for ρ ∈ [0, ρ0] .

(21)

All the above formulations complete the introduction of a
well-posed boundary-value problem in electrostatics.

3. Potentials in the plasma jet reactor

Primarily, the symmetry condition (12) is automatically
satisfied with respect to the electrostatic potentials
(9)–(11), since J ′

0 (0) = −J1 (0) = 0, according
to the definition of Bessel’s functions (Hobson, 1965).
Proceeding, the limit condition (14), applied on the
expansion (11), yields

A
(3)
0 = B

(3)
0 = 0, A(3)

n = 0, n ≥ 1. (22)

Therefore, the electrostatic field (11) becomes

V3 (r) =

+∞∑

n=1

B(3)
n J0

(
λ(3)
n ρ

)
e−λ(3)

n z for r ∈ Ω3.

(23)

In the sequel, the other symmetry condition (13), applied
to the electrostatic potential (9), leads to

A
(1)
0 +

+∞∑

n=1

λ(1)
n

(
A(1)

n −B(1)
n

)
J0

(
λ(1)
n ρ

)
= 0

for ρ ∈ [0, ρ0] , (24)

which reveals that an acceptable solution is

A
(1)
0 = 0 and A(1)

n −B(1)
n = 0 or B(1)

n = A(1)
n

with n ≥ 1 (25)

and, therefore, the relative field (9) is rewritten as

V1 (r) = B
(1)
0

+

+∞∑

n=1

C(1)
n J0

(
λ(1)
n ρ

)
cosh

(
λ(1)
n z

)

for r ∈ Ω1,

(26)

where C
(1)
n ≡ 2A

(1)
n with n ≥ 1 is the newly

defined constant coefficient of the particular potential
field. Next, we reinforce the prescribed boundary
conditions (15)–(17) on the surroundings of the reactor to
the potentials (26), (10) and (23), respectively. Hence we
conclude with the corresponding relationships

B
(1)
0 +

+∞∑

n=1

C(1)
n J0

(
λ(1)
n ρ0

)
cosh

(
λ(1)
n z

)
= Ve

for z ∈ [0, zl] , (27)

+∞∑

n=1

J ′
0

(
λ(2)
n ρ0

) [
A(2)

n eλ
(2)
n z +B(2)

n e−λ(2)
n z

]
= 0

for z ∈ [zl, zr] (28)

and

+∞∑

n=1

B(3)
n J0

(
λ(3)
n ρ0

)
e−λ(3)

n z = 0

for z ∈ [zr,+∞) . (29)

In order to manipulate Eqns. (27)–(29), we initially
demand from (27) and without loss of generality that

B
(1)
0 = Ve, (30)

whilst in order to obtain non-trivial potential fields that
are not zero and since J ′

0

(
λ
(2)
n ρ0

)
= −J1

(
λ
(2)
n ρ0

)
we

are obliged to evaluate accordingly the corresponding
separation constants as

λ(1)
n = λ(3)

n =
rn
ρ0

and λ(2)
n =

sn
ρ0

with n ≥ 1,

(31)
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by virtue of the roots of Bessel’s function of the zeroth
(rn) and first (sn) order, meaning J0 (rn) = 0 and
J1 (sn) = 0. Bearing in mind (30) and (31), the
implicated potentials (26), (10) and (23) are herein given
by the formulae

V1 (r) = Ve +
1

2

+∞∑

n=1

D(1)
n J0

(
rn

ρ

ρ0

)

×
(
e
rn

z−zl
ρ0 + e

−rn
z+zl
ρ0

)
(32)

for r ∈ Ω1,

V2 (r) = A
(2)
0 z +B

(2)
0 +

+∞∑

n=1

J0

(
sn

ρ

ρ0

)

×
[
C(2)

n esn
z−zr
ρ0 +D(2)

n esn
zl−z

ρ0

]
(33)

for r ∈ Ω2 and

V3 (r) =

+∞∑

n=1

C(3)
n J0

(
rn

ρ

ρ0

)
e
rn

zr−z
ρ0 , (34)

for r ∈ Ω3, where the exponential modifications into
(32)–(34) are a necessary step, made for future numerical
issues, by denoting D

(1)
n ≡ C

(1)
n exp (rnzl/ρ0), C

(2)
n ≡

A
(2)
n exp (snzr/ρ0), D

(2)
n ≡ B

(2)
n exp (−snzl/ρ0) and

C
(3)
n ≡ B

(3)
n exp (−rnzr/ρ0) for every n ≥ 1 as the new

constant coefficients that must be evaluated.
Concluding, we remain with the transmission

conditions (18)–(21), which in terms of the fields
(32)–(34) will provide us with the rest of the unknown
constant coefficients. However, here we are obliged to
make an important remark, concerning the potential field
V2 from (33), which contains the linear term A

(2)
0 z+B

(2)
0 .

In order to demonstrate analytically and numerically how
this term influences the final solution of the problem, we
distinguish three separate cases that lead to three different
possible solutions, namely, A, B and C. Solution A refers
to the case where only the exponential terms are present
(A(2)

0 = B
(2)
0 = 0), solution B retains the constant term

B
(2)
0 �= 0 (A(2)

0 = 0) and solution C assumes the existence

of the full linear term (A(2)
0 �= 0 and B

(2)
0 �= 0). For

this purpose, we interfere with the transmission conditions
(18)–(21), by writing the constant potential Ve as a series
expansion in terms of Bessel eigensolutions (Hobson,
1965) via the expansion

Ve = 2Ve

+∞∑

n=1

1

rnJ1 (rn)
J0

(
rn

ρ

ρ0

)

for any ρ ∈ [0, ρ0] , (35)

which actually comprises the Fourier–Bessel expansion
of Ve. Moreover, since we have to work with different

arguments of Bessel functions of zeroth order (see,
for instance, (32)–(34)), we need to introduce the
orthogonality relation

∫ ρ0

0

ρJ0

(
rn

ρ

ρ0

)
J0

(
rn′

ρ

ρ0

)
dρ

= δnn′
[ρ0J1 (rn)]

2

2
(36)

and the trivial integral

∫ ρ0

0

ρJ0

(
sn

ρ

ρ0

)
J0

(
rn′

ρ

ρ0

)
dρ

=
ρ20rn′J0 (sn)J1 (rn′)

r2n′ − s2n
(37)

with n, n′ ≥ 1. Therefore, we substitute the potential
fields (32)–(34) within the transition conditions (18)–(21)
for each of the three prementioned cases A, B and C with
respect to the term A

(2)
0 z + B

(2)
0 , next we multiply both

the sides of the obtained relations by ρJ0
(
rn′ρ/ρ0

)
for

n′ ≥ 1, we integrate over the interval [0, ρ0] and we finally
use (36) and (37), as well as the convenient notations

Jn/n′ =
2

r2n′ − s2n

J0 (sn)

J1 (rn′)
, Vn′ =

2Ve

rn′J1 (rn′ )
, (38)

and the exponential function

f (z ; qn) = exp

(
qn

z

ρ0

)
, (39)

where

qn =

{
rn,

sn,
(40)

n ≥ 1, so as to obtain the following relations for the
coefficient:

Solution A
(
A

(2)
0 = B

(2)
0 = 0

)
:

[1 + f (−2zl; rn′)]D
(1)
n′ −

− 2rn′

+∞∑

n=1

Jn/n′

[
f (zl − zr; sn)C

(2)
n +D(2)

n

]

= −2Vn′ , (41)

[1− f (−2zl; rn′)]D
(1)
n′

− 2

+∞∑

n=1

snJn/n′

[
f (zl − zr; sn)C

(2)
n −D(2)

n

]
= 0,

(42)
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rn′

+∞∑

n=1

Jn/n′
[
C(2)

n + f (zl − zr; sn)D
(2)
n

]

− C
(3)
n′ = 0 (43)

and

+∞∑

n=1

snJn/n′

[
C(2)

n − f (zl − zr; sn)D
(2)
n

]

+ C
(3)
n′ = 0, (44)

with all the above for every value of n′ ≥ 1.

Solution B
(
A

(2)
0 = 0 and B

(2)
0 = Ve

)
:

[1 + f (−2zl; rn′)]D
(1)
n′

− 2rn′

+∞∑

n=1

Jn/n′

[
f (zl − zr; sn)C

(2)
n +D(2)

n

]
= 0,

(45)

[1− f (−2zl; rn′)]D
(1)
n′

− 2

+∞∑

n=1

snJn/n′
[
f (zl − zr; sn)C

(2)
n −D(2)

n

]
= 0,

(46)

rn′

+∞∑

n=1

Jn/n′
[
C(2)

n + f (zl − zr; sn)D
(2)
n

]
− C

(3)
n′

= −Vn′ (47)

and

+∞∑

n=1

snJn/n′
[
C(2)

n − f (zl − zr; sn)D
(2)
n

]

+ C
(3)
n′ = 0, (48)

with all the above for every value of n′ ≥ 1.

Solution C
(
A

(2)
0 = − Ve

zr−zl
and B

(2)
0 = zr

Ve

zr−zl

)
:

[1 + f (−2zl; rn′)]D
(1)
n′

− 2rn′

+∞∑

n=1

Jn/n′
[
f (zl − zr; sn)C

(2)
n +D(2)

n

]
= 0,

(49)

[1− f (−2zl; rn′)]D
(1)
n′ −

− 2

+∞∑

n=1

snJn/n′

[
f (zl − zr; sn)C

(2)
n −D(2)

n

]

= − 2ρ0Vn′

rn′ (zr − zl)
, (50)

rn′

+∞∑

n=1

Jn/n′
[
C(2)

n + f (zl − zr; sn)D
(2)
n

]

− C
(3)
n′ = 0 (51)

and

+∞∑

n=1

snJn/n′
[
C(2)

n − f (zl − zr; sn)D
(2)
n

]
+ C

(3)
n′

=
ρ0Vn′

rn′ (zr − zl)
, (52)

with all the above for every value of n′ ≥ 1.
The systems of equations (41)–(44) (solution A),

(45)–(48) (solution B) and (49)–(52) (solution C) stand
for an infinite linear system of four sets of algebraic
equations, including the four constant coefficients D

(1)
n′ ,

C
(2)
n , D(2)

n and C
(3)
n′ with n, n′ ≥ 1, which is handled with

cut-off techniques in order to obtain quadratic systems,
whenever the number of sets n′ ≥ 1 of relations
coincides with the number of terms n ≥ 1 of the infinite
series, by assuming a common upper limit N ∈ N

∗ so
as to obtain the desired accuracy during the numerical
implementation for the evaluation of the unknown
constant coefficients. As a matter of fact, we have to
take n′ = 1, 2, . . . , N and

∑+∞
n=1 (· · · ) 	 ∑N

n=1 (· · · ),
concerning (41)–(44) (solution A), (45)–(48) (solution B)
and (49)–(52) (solution C), whereas the controlled value
N is conveniently regulated on the basis of convergence
of the final results. Doing so, we have to solve systems of
type 4 × 4, 8 × 8, . . . ,4N × 4N, thus, by the definition
of N × N blocks of matrixes, each one of type 4 × 4,
which form a total 4N × 4N matrix A of the coefficients
of the unknowns, as well as by means of the vector of the
unknown coefficients x of type 4N × 1 and in view of the
vector of the known constants b of the same type 4N × 1,
the block of systems for each unique solution A, B or C
can be written as

A x = b ⇒ x = A
−1b (53)

for everyn = 1, 2, . . . , N with N ∈ N
∗, since the

determinant of A is proven to be nonzero, hence the
inverse matrix exists. The linear system (53) yields the
calculation of the constant coefficients D

(1)
n , C(2)

n , D(2)
n

and C
(3)
n for n = 1, 2, . . . , N , taking into account every

supposed solution.
Once the unknowns are obtained, the three possible

solutions A, B and C of the given electrostatic potential
boundary value problem are rendered by

V1 (r) = Ve +
1

2

+∞∑

n=1

D(1)
n J0

(
rn

ρ

ρ0

)
[f (z − zl; rn)

+f (−z − zl; rn)] (54)
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for r ∈ Ω1,

V2 (r) =

⎧
⎪⎨

⎪⎩

0, sol. A

Ve, sol. B
zr−z
zr−zl

Ve, sol. C

+

+∞∑

n=1

J0

(
sn

ρ

ρ0

)[
C(2)

n f (z − zr; sn)

+D(2)
n f (zl − z; sn)

]
(55)

for r ∈ Ω2 and

V3 (r) =
+∞∑

n=1

C(3)
n J0

(
rn

ρ

ρ0

)
f (zr − z; rn) (56)

for r ∈ Ω3, provided the definition (40), while the
inserted constant coefficients D

(1)
n , C(2)

n , D(2)
n and C

(3)
n

with n ≥ 1 are calculated for the different examined
situations. Therein, the corresponding electric fields are
computed by (8) in each region and for every solution A,
B and C. Thus we end up with our model solution in CAPP
jet reactor systems.

The final solution is a linear combination of solutions
A, B and C. It is evident that the linear combination could
have been expressed as a single parametric formulation,
which would include the three main contributions, i.e., the
linear term of solution C, the constant term of solution
B and the series expansion, which is standard in all
three solutions (see, for instance, the three different
relationships in (54), while the other two potentials (54)
and (56) retain one formation). The reason why we
have chosen to present the above cumulative solution
as three separate parts is that it is easier to understand
their separate contributions. Besides, when dealing with
such mixed-type boundary value problems, the choice of
the associated eigenfunctions of the implied potentials
becomes a very complicated task that depends each time
on the particular problem and a trial-and-error technique
is eventually inevitable (Sneddon, 1966).

4. Results and a discussion

The three solutions A, B and C that were presented
in the previous section have different characteristics.
Solution A is derived from a well-defined system where
all the unknowns are unique. However, it includes the
contribution only of the exponential terms and lacks any
influence from the constant and the linear term, i.e., from
the terms with the coefficients A

(2)
0 and B

(2)
0 . On the

other hand, solution B, which includes the contribution
of the constant term, and solution C, which includes the
contribution of both the constant and linear terms, are
derived from systems that are over-determined by one and
two variables, respectively. In terms of completeness,

solution C is the best choice, as it incorporates all the
contributions (exponential, constant and linear).

A sound mathematical procedure would be to keep
solution C and try to determine the extra unknowns via
a sensitivity analysis in conjunction with a reference
numerical solution. The numerical solution, which
is unique, can serve as a reference guide for the
determination of the extra variables based on a variational
procedure. However, this variational procedure is
cumbersome and requires extensive try-and-error tests,
because the variational parameters are arbitrary and their
determination lacks physical intuition. In the present
work, we follow a different path to reach the same result,
by examining the forms of solutions A, B and C, and
determining a linear combination of these solutions that
fits the numerical reference solution. The result of this
approach is equivalent to the one that would be obtained
from the variational procedure of the sensitivity analysis,
but it is obviously much easier to perform.

The numerical solution was obtained by solving the
3D problem (i.e., not taking advantage of the symmetry
of the problem) on the OpenFOAM platform (Weller
et al., 1998). The cylindrical domain was meshed using
a standard butterfly-type grid. A grid sensitivity analysis
that was conducted between two meshes, one with 522240
cells (normal mesh) and one with 661500 cells (dense
mesh) revealed a maximum difference of 1.2% in the
value of the potential. Therefore, the normal mesh size
was employed in the computations, while a separate mesh
with the above size was created for each of the cases
considered in this study. Since the computational domain
requires boundary conditions at finite distances, it was
necessary to conduct numerical tests to determine the
axial length of the cylindrical geometry that corresponds
to the boundary condition (14). It was found that an
axial distance of 100 radii was adequate to produce results
independent of the axial length of the cylinder. Regarding
the solution technique, Laplace’s equation was solved
using the finite volume method with a linear, second-order
accurate discretization scheme.

Figure 2 shows the distributions of (a) the electric
potential and (b) the axial component of the electric field,
along the axis of the cylindrical geometry. Each figure
includes the result of the numerical calculation, which
serves as a reference solution, and the curves obtained
from solutions A, B and C. It is evident that none of
the three analytical solutions fit the numerical reference
curve. This was expected taking account of the fact that
solution A lacks the contribution of the constant and linear
terms, while solutions B and C have approximations in the
evaluation of the extra unknowns of their linear systems.
However, each of the solutions has a distinct behaviour,
which is more pronounced in the axial component of the
electric field in Fig. 2(b).

It can be seen in Fig. 2(b) that solution A contributes
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to the electric field mainly in the limit between Region 1,
being inside the electrode, and Region 2, which is
bounded with a Neumann boundary condition. Solution C
contributes to the electric field in the core of Region 2,
while solution B has its main contribution, in the limit
between Regions 2 and 3, which is bounded with a
Dirichlet boundary condition. Although none of the three
curves fits the numerical reference curve, it is relatively
easy to determine a linear combination of the three
analytical solutions that will. It is evident that solution C
will be the main contributor and solutions A and B will
provide the corrections in the limits between the three
regions. It was found that, for the specific geometrical
characteristics, i.e., the electrode inner radius 0.4 cm,
the electrode length 1 cm and the change between the
Neumann and the Dirichlet boundary conditions at 4 cm
from the origin, the coefficients for the linear combination
are 0.3 for solution A, 0.03 for solution B and 0.94 for
solution C. It can be seen from Figs. 2(a) and (b) that, with
the specific linear combination of the three solutions, the
electric potential and the axial component of the electric
field fit perfectly the ones obtained from the numerical
calculations.

Figure 3 shows contours of the electric potential and
the axial and radial components of the electric field in a
slice of the cylindrical domain, which extends along the
radial direction from the origin to 0.2 cm and in the axial
direction from the origin to 8 cm. The distribution of
the electric potential is uniform along the radial direction
and varies only axially. The variation is linear between

Fig. 2. Distribution of the electric potential (a) and the axial
component of the electric field (b) along the axis of the
cylindrical geometry. The electrode inner radius is 0.4
cm and its length is 1 cm. The change between the
Neumann and the Dirichlet boundary conditions is pre-
scribed at 4 cm from the origin.

the end of the electrode and the location where the
Neumann condition changes to Dirichlet. In fact, the axial
distribution of the electric potential at any given radius is
similar to the one along the axis of symmetry, which is
shown in Fig. 2(b). The radial electric field is non-zero
only in the areas where there is an inter-change between
the three regions. In detail, it is positive when close to the
edge of the driven electrode and negative in the area where
the Neumann condition changes to Dirichlet. Finally, the
axial component of the electric field is almost constant in
Region 2 and rapidly drops to zero as we move away from
this region.

The second geometry that was studied had the
same axial distances as the first case, but a different
radius. Specifically, the second geometry has the electrode
inner radius 0.2 cm, the electrode length 1 cm and
the change between the Neumann and the Dirichlet
boundary conditions is prescribed at 4 cm from the origin.
Figures 4(a) and (b) depict the distribution of the electric
potential and of the axial component of the electric field,
for a geometry with half the radius, compared with the
previous one. It is noted that the coefficients of the linear
combination are not constant in the different cases, as they
depend on the geometrical characteristics of the specific
problem.

In general, the three analytical solutions display
similar behaviors as in the first geometry, but with
different magnitudes. It was determined that the
coefficients of the linear combination that fits the
reference numerical curve are 0.02 for solution A, 0.02
for solution B and 0.96 for solution C. The difference
with the coefficients of the previous case is small and the
overall solution is again dominated by the contribution of
solution C.
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Fig. 3. Contours of the electric potential (a), the radial compo-
nent of the electric field (b) and the axial component of
the electric field (c). The electrode inner radius is 0.4 cm
and its length is 1 cm. The change between the Neumann
and the Dirichlet boundary conditions is prescribed at 4
cm from the origin.
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The contours of the electric potential and the axial
and radial components of the electric field in a slice of
the cylindrical domain, which extends along the radial
direction from the origin to 0.1 cm and in the axial
direction from the origin to 8 cm, are shown in Fig. 5.
As expected the plots reveal similar behaviors with the
previous geometry for the three fields. The potential
displays a linear drop from the maximum value to zero
along Region 2, the radial electric field is active only
in the inter-regional areas and the axial electric field is
approximately constant in Region 2 and zero everywhere
else. The magnitude of the components of the electric
field is similar to the one in the previous geometry, despite
the fact that now the radius is halved.

The third geometry that we examined has the same
radial properties as the first one, i.e., the electrode inner
radius is 0.4 cm, but the length is halved, i.e., the electrode
length is 0.5 cm and the change between the Neumann and
Dirichlet boundary conditions is prescribed at 2 cm from
the origin. As shown in Figs. 6(a) and (b), in this case,
solutions A and B contribute a slightly higher part to the
overall solution. It was determined that the coefficients
of the linear combination that fit the reference numerical
curve are 0.05 for solution A, 0.05 for solution B and 0.9
for solution C.

Figure 7 shows contours of the electric potential and
the axial and radial components of the electric field in
a slice of the cylindrical domain, which extends along

Fig. 4. Distribution of the electric potential (a) and the axial
component of the electric field (b) along the axis of the
cylindrical geometry. The electrode inner radius is 0.2
cm and its length is 1 cm. The change between the
Neumann and the Dirichlet boundary conditions is pre-
scribed at 4 cm from the origin.

the radial direction from the origin to 0.2 cm and in the
axial direction from the origin to 4 cm. A comparison
with the previous results shows that in this case there
is an observable variation in the fields in the radial
direction. Although the general behaviour is similar, the
areas around the inter-regional borders, where the changes
in the radial and axial components of the electric field take
place, are wider. Moreover, there is a significant increase
in the magnitude of the electric field, as it is approximately
doubled. This fact highlights the relative importance of
the axial dimensions of the electrode compared with the
radial ones.

Finally, Figs. 8 and 9 show the corresponding results
for a geometry that has half all the distances with respect
to the first one. In fact, it has similar axial properties to the
third case, i.e., the length of the electrode is 0.5 cm and
the change between the Neumann and Dirichlet boundary
conditions is prescribed at 2 cm from the origin, but half
its radius, that is, 0.2 cm.

The coefficients of the linear combination that fits
the reference numerical curve in this case are 0.03 for
solution A, 0.03 for solution B and 0.94 for solution C,
which is similar to the first case. It is interesting to
note that this is the same linear combination that fitted
the first case, which indicates that, if the dimensions
are proportional, the coefficients of solutions A, B and
C are the same. To assess the validity of this
conclusion, we tested an analogous case to the first
geometry, where all the dimensions are reduced tenfold.
The results for the distributions of the electric potential
and the axial component of the electric field, along the
axis of the cylindrical geometry, are shown in Fig. 10.
The coefficients of the linear combination that fits the
reference numerical curve are 0.03 for solution A, 0.03
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Fig. 5. Contours of the electric potential (a), the radial compo-
nent of the electric field (b) and the axial component of
the electric field (c). The electrode inner radius is 0.2 cm
and its length is 1 cm. The change between the Neumann
and the Dirichlet boundary conditions is prescribed at 4
cm from the origin.
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for solution B and 0.94 for solution C in this case as
well, confirming the fact that geometries with proportional
dimensions have the same coefficients.

A general comment, based on the evaluation of the
change in the linear combination coefficients among the
different geometries that have been examined, is that, as
the radius of the electrode decreases, the contributions
of solutions A and B become less significant. This is
evident from the first two geometries that were studied,

Fig. 6. Distribution of the electric potential (a) and the axial
component of the electric field along the axis of the
cylindrical geometry (b). The electrode inner radius is
0.4 cm and its length is 0.5 cm. The change between
the Neumann and the Dirichlet boundary conditions is
prescribed at 2 cm from the origin.
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Fig. 7. Contours of the electric potential (a), the radial compo-
nent of the electric field (b) and the axial component of
the electric field (c). The electrode inner radius is 0.4
cm and its length is 0.5 cm. The change between the
Neumann and the Dirichlet boundary conditions is pre-
scribed at 2 cm from the origin.

where the reduction in the electrode inner radius from
0.4 cm to 0.2 cm resulted in an increase of the weight
of solution C from 0.94 to 0.96. To further assess this
trend, we examined the geometry with an electrode inner
radius of 0.1 cm. As expected, the weight of solution C
increased to 0.98 at the expense of solutions A and B,
wherein their coefficients were both 0.01. The trend is the
same when the axial lengths are increased for a constant

Fig. 8. Distribution of the electric potential (a) and the axial
component of the electric field along the axis of the
cylindrical geometry (b). The electrode inner radius is
0.2 cm and its length is 0.5 cm. The change between
the Neumann and the Dirichlet boundary conditions is
prescribed at 2 cm from the origin.
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Fig. 9. Contours of the electric potential (a), the radial compo-
nent of the electric field (b) and the axial component of
the electric field (c). The electrode inner radius is 0.2
cm and its length is 0.5 cm. The change between the
Neumann and the Dirichlet boundary conditions is pre-
scribed at 2 cm from the origin.
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electrode inner radius. It is probable that these three
coefficients have a dependence on the three parameters
of the geometry, namely, the radius and the length of
the electrode and the position where the transition from
Neumann to Dirichlet is prescribed. An important role is
played by the location of the boundary between Region 2
and Region 3, which is a mathematical approximation and
is not based on the geometry of the physical system, i.e.,
the electrode-dielectric tube configuration.

5. Conclusions

The current research was focused on the presentation of a
semi-analytical solution of a mixed-type boundary-value
problem, related to the evaluation of the electrostatic
potential and the electric field in DBD-based cold plasma
jets. The presented model concerned a single biased
electrode configuration with different dimensions and it
was based on the construction of a three-region domain
within a gaseous phase. The contribution of the dielectric
tube to the field was neglected, as a fair approximation,
based on physical argumentation, although it could affect
the electrostatic potential and the produced electric field.

The solution technique for harmonic electrostatic
potentials was based on the method of separation
of variables of Laplace’s equation in the cylindrical
coordinate system, which was introduced as the best fitted
geometry to the problem. The developed mathematical

Fig. 10. Distribution of the electric potential (a) and the axial
component of the electric field (b) along the axis of the
cylindrical geometry. The electrode inner radius is 0.04
cm and its length is 0.1 cm. The change between the
Neumann and the Dirichlet boundary conditions is pre-
scribed at 0.4 cm from the origin.

analysis led to elliptic-type boundary-value problems with
either the Dirichlet or the Neumann boundary conditions,
accompanied by the vanishing behaviour of the fields
at infinity. Therein, apart from the standard terms that
were based on the cylindrical harmonic eigenfunctions,
the formulae included the contribution of two linear terms
that satisfy Laplace’s equation a priori. In fact, three
formulations of the solution were produced, one of which
depended only on the exponential terms, the second one
included the contribution of the constant term and the third
one incorporated both the constant and the linear terms.

The results were compared with a numerical,
reference solution of the same physical problem. The
plotting of the electrostatic potential and of the electric
field of the three formulations of the solution revealed that
each variant has different characteristics. This observation
was helpful in determining a linear combination of the
three formulations that, potentially, can be utilized to
produce a unified solution. However, the coefficients
of the linear combination depend on the geometric
characteristics of the problem, rendering the formulation
of a unified solution difficult. Despite the adversities, this
is left for future research works.
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