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ABSTRACT. Let K be a pure number field generated by a root « of a monic
irreducible polynomial f(z) = ™ — m with m a rational integer and 3 < n < 9
an integer. In this paper, we calculate an integral basis of Zx, and we study the
monogenity of K, extending former results to the case when m is not necessarily
square-free. Collecting and completing the corresponding results in this more
general case, our purpose is to provide a parallel to [Gadl,.—Remete, L.: Power
integral bases and monogenity of pure fields, J. Number Theory, 173 (2017),
129-146], where only square-free values of m were considered.

1. Introduction

Let K be a number field of degree n with ring of integers Zg, and absolute
discriminant dg. The number field K is called monogenic if it admits a power
integral basis, that is an integral basis of type (1,c,...,a" ') with some a € Zx.
Monogenity of number fields is a classical problem of algebraic number theory,
going back to Dedekind, Hasse and Hensel, cf., e.g., [2223] and [I7] for the
present state of this area. It is called a problem of Hasse to give an arithmetic
characterization of those number fields which have a power integral basis [22/23]
26
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For any primitive element o of Zg (that is « € Zi with K = Q(«)) we

denote by ind(a) = (Zg : Z[a))

the index of a, that is the index of the Z-module Z[a] in the free-Z-module Z g
of rank n. As it is known [I7], we have

A(a) = ind(a)?- dk,

where A(a) is the discriminant of «.
Let (1,w1,...,wp—1) be an integral basis of Zy . The discriminant

A(L(X1, ..., Xn))
of the linear form
K Xn—l) = lel R Wn—an—l

AL(Xy,.. ., X 1)) = (ind(Xq,..., X, 1)) dx,

where ind(Xy,...,X,,_1) is the index form corresponding to the integral basis
(1,w1,...,wp—1) having the property that for any
a=x9g+wixy+ - +wp_1Tn_1 € Zx (with zg,z1,...,2,-1 €Z)
we have ind(«) = |ind(x1,...,2,-1)|
Obviously, ind(a) = 1 if and only if (1, ...,a" 1) is an integral basis of Z.
Therefore « is a generator of a power integral basisif and only if x1,..., 2,1 € Z
is a solution of the index form equation

ind(xl, ... ,xn_l) =41 in x1,...,2p_1 € Z.
If f € Z[z] is a monic irreducible polynomial having « as a root, then
ind(f) = (Zk : Z[a])
is called the index of the polynomial f, where K is the number field generated
by «a. Analogously, ) 9
A(f) = ind(f)” - dk

A(f) denoting the discriminant of f.
Throughout the paper v,(a) denoted the p-exponent of the rational integer a.

The problem of testing the monogenity of number fields and constructing
power integral bases have been intensively studied during the last decades, see
for instance [2[18,29].

An especially delicate and intensively studied problem is the monogenity
of pure fields K generated by a root a of an irreducible polynomial z" — m.
In all former results it was assumed that m # +1 is a square-free integer.
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Funakura [I0] studied the integral basis in pure quartic fields. Gadl and
Remete [19] calculated the elements of index 1 (that is generators of power
integral bases), with coefficients of absolute value < 101°%° in an integral basis,
of pure quartic fields generated by mi for 1 <m < 107 and m = 2,3 (mod 4).
Ahmad, Nakahara, and Husnine [I] proved that if m = 2,3 (mod 4) and
m Z F1 (mod 9), then the sextic number field generated by m® is monogenic.
They also showed [2] that if m = 1 (mod 4) and m #Z F1 (mod 9), then the sextic
number field generated by m? is not monogenic. Based on prime ideal factor-
ization, El Fadil [I1] showed that if m = 1 (mod 4) or m = 1 (mod 9), then
the sextic number field generated by m# is not monogenic. Hameed and Naka-
hara [5], proved that if m = 1 (mod 16), then the octic number field generated by
m!/® is not monogenic, but if m = 2,3 (mod 4), then it is monogenic. Applying
the explicit form of the index forms, Gadl and Remete [20] obtained new results
on monogenity of the number fields generated by mo, where 3 < n < 9. While
Gaal’s and Remete’s techniques are based on determining elements of index 1,
El Fadil used a new method based on Newton polygons to study the monogenity
of some pure fields.

In this paper, we calculate an integral basis and we study the monogenity
of pure fields K for degrees 3 < n < 9, without assuming that m is square-free.
In this way, our results generalize those given in [IL[2,[5,[11,1620]. For n = 6,8,
we shall refer to the results of El Fadil [I12] and El Fadil and Gaél [I4] where pure
sextic resp. pure octic fields were studied without assuming that m is square-free.

2. Pure cubic fields

In this section, K is a pure cubic number field generated by o = m3 with
m = aja3, a1 and az two coprime square free integers and m # +1. The following
theorem allows the calculation of an integral basis of Zg (cf. also Alaca [3],
El Fadil [9]).

THEOREM 2.1.
(1) If m # £1 (mod 9), then (1, «, 3—2) is a Z-basis of Lk .

(2) If m = £1 (mod 9), then (1, «, C“2++C;+m2) is a Z-basis of Lk .

Based on these integral bases we have

COROLLARY 2.2. Z[a] is the ring of integers of K if and only if m £ +1 (mod 9)
and m is a square free integer.

For pure cubic number fields, the explicit form of the index form is obtained
by direct calculations:
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LEMMA 2.3. Let xg,x1,22 € Z.

(1) If m # £1 (mod 9), then for any 0 = xo + x100 + 2202 ¢ 7. we have

az
ind(9) = |a2x:12’ — a1x§| :
In particular, if m is a square free integer, then

ind(9) = |2f — ma3|.

(2) If m =41 (mod 9), then for any 6 = TotTr0+pp oEmetmt ¢ 70 we have

3(12
: 3 2 2 1-m? 4
ind(0) = |3agz] + (2m + 1)aizs + majazz125 — a1 o L2
In particular, if m is a square free integer, then
: 3 2 2. .2 1-m? 4
ind(#) = [3z7 + (2m + 1)z{ze + m*z125 — M L

As a special case, we have

COROLLARY 2.4. Assume that m = a® with a # +1 a square free integer.
Then if a £ +1 (mod 9), then K is monogenic.

REMARK.

(1) If @ = 1 (mod 9), then let a = 1 + 9k for some integer k. Based on the
results given in [20], the index form equation is solvable for k = 27,37, but
not solvable for £ = 10,11, 12.

(2) If a = —1 (mod 9), then let a = —1 + 9k for some integer k. Based on the
results given in [20], the index form equation is solvable for k = 1,4,12,
but not solvable for £k = 2,3,5,6,7.

3. Pure quartic fields

In this section, K is a pure quartic number field generated by o = mi, with
m = aja3a3, a1, az, and az pairwise coprime square free integers and m # =+1.
Let A1 =1, Ay = asas, and Az = agag. The following theorem explicitly gives
an integral basis of Zg (cf. also Alaca and Williams [4]).

THEOREM 3.1.

(1) If va(m) is odd or va(m — 1) =1, then (1, «, 2_2’ 3—2) is a Z-basis of L.

(2) If m =4 (mod 16), then (1, QZX?Z,%) is a Z-basis of L .
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2 3 2
(3) If m = 12 (mod 32), then (1,a, < +éij_A2> B +A§j3_’430‘) is a Z-basis
Of ZK.

(4) If m = 28 (mod 32), then (1,q, 0‘2+‘;‘j‘;‘+’42, a3+Ai’i§z+A3a) is a Z-basis
OfZK.

5) If m =5 (mod 8), then (1, «, 0‘2+m, o’ tma’tmatmy o o 7 basis o L.
2A2 2A3

(6) If m =1 (mod 8), then (1,a, "‘22:{;”, 0‘3+m"£4+3m0‘+m) is a Z-basis of L.

Based on these integral bases we have:

COROLLARY 3.2. Z[a] is the ring of integers of K if and only if m # +1 is a
square free integer and m Z 1 (mod 4).

Also for pure quartic number fields, the explicit form of the index form can
be obtained by direct calculations. For brevity we only give it in case (1).

LEMMA 3.3. Let xg, 21, %2, 23EZ. If va(m) is odd or vo(m—1)=1, then for any

562042 + 1‘3053
As As

0=x0+ 100+
we have
ind(9) = |(aza? — a123)
x ((aza3)?z} + 2a1a3a3zi23 + darasws
—8ajasazx1x3w3 + (a1a2)2x§)| )
As a special case, we have

COROLLARY 3.4. Assume that m = a* with a # £1 a square free integer and
u € {1,3} a positive integer. Then

(1) If a # 1 (mod 4), then K is monogenic.

(2) If a Z 1 (mod 16), then K is not monogenic.

REMARK. Based on the results given in [20], if = 1 (mod 4), then K is mono-
genic for a € {—3,73,89}.

REMARK. Similarly to the case (1) in Lemmal[3.3] the index form in pure quartic
fields is a product of a quadratic factor F> and a quartic factor Fy in all cases.
Eliminating x7 from a linear combination of F and Fy we obtain a divisibility
relation which is a necessary condition for the monogenity of pure quartic fields.

COROLLARY 3.5. The following are the necessary conditions for monogenity
of pure quartic number fields:

(1) If va(m) is odd or va(m — 1) = 1, then 4ajas divides (a3 +1).
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2) If m =4 (mod 16), then ajas divides (4a3 + 1).

3) If m =12 (mod 32), then 4aiasz divides (a3 + 16).

(2)
(3)
(4) If m = 28 (mod 32), then ajas divides (a3 + 64).
(5) If m =5 (mod 8), then aiaz divides (4a3 £ 1).

(

6) If m =1 (mod 8), then ajaz divides (a3 +1).

4. Pure quintic fields

In this section, K is a pure quintic number field generated by a = m%,
where m € Z is not necessarily a square free integer and m # +1. It is well
known that we can assume that v,(m) < 4 for every prime integer p, and
so m = ala%agaﬁ, where aq,...,a4 are pairwise coprime square-free integers.
Let Ay = 1, Ay = asas, A3 = agazai, and Ay = aza3a3. The following
theorem explicitly gives an integral basis of Zg (cf. also El Fadil [10]). For every
positive integer n and for every integer x, the notation m = Z (mod n) means

that m = x (mod n).
THEOREM 4.1.

(1) If mg{1,7,18,24} (mod 25), then (1,@, j—z, o 0‘4> 1s a Z-basis of L.

A3 Ay

24}
(2) Ifme{1,7,18,24} (mod 25), then (1, a, 10‘4—2, 10‘4—2, (a;A”Z)4> is a Z-basis of Z .

Based on these integral bases we have:

COROLLARY 4.2. Z[a] is the ring of integers of K if and only if m # £1 is a

square free integer and m ¢ {1,7,18,24} (mod 25).

The index form can be directly calculated, for brevity we give it in case (1)
only.

LEMMA 4.3. Let zo,21,22,23,74 € Z. If m & {1,7,18,24} (mod 25), then

for any
2 3 4
Tolx Tr3cx Ty
0 —
o +x100 + Ag + A3 A4
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we have

5

ind(0) = |11afadaza’zda]

3,33 355
— 2ajaya3a,27T,

——a%agaixéo

2 4 6,10
+ asasazxy

10,4 2 6
+ x3 asazaqy

+ 5ajasaiaszixons
5,33 2,7
— 15aja5a3a41 232,

3,33 355
+ 2aja5a3a3573

— Thatalaiaie, virda]
+ 40ajazaiaiec w33
— T5a2a3aiairiririn,
+ 45a3a3a3atrd iz’
+ T5a3a3asaird vonsa?
+ 50a3a3a3airivonsa]
+ 200a3a3a3alciriciad
— 45a3a3aiaie  viria?
+ 25aja3asairivia]

+ 25aja3a3airivias
— 10ata3aiaizizias
— 15a1a3a3alzixix,
+ 5ayaiazalaasa,

+ 20a2a5azairiacir,
%—25a%a%a§a3x%m§xi
%—25a%a§a§a3x§m§x§
—-10a%a%a§aix?x§xi

— 35a3azajaiririey

— 35aja5azairiwa;
+ 15a3a5azairchrsr?

3.2 4.3 4.3 3
— 25aja5a3a5x 73Ty

524 55
— 1lajajaza4x532,

——a%agaimﬁo

2 5455
+ 1lajasaza,zizs

4.2 555
— 1layasazayxizy

542 2 7
— 20ajas03a405737

+ 35aja3a3asrorias

4.3 3.2 3 6
—bajasa3a,7T3T,

4 5.2 7 2

+ 20ajaza3a521 252
4332 2 25

+ 45aja3a3a, 2722252,

4.2 4 2 5.3
— 40aja5a5a51 T2y

—40a?a3aiairirirsny
+ 40a3a3azairs voxia,
+ T5a3a3a3airiviasas
—200a%a3a3alx3v3aia’

3.2 4.3 2 25
— 45aja5a3a, 2] T5T3 Ty

— 50a3a3aiair  vyrin,

4.4 .2 2 4.2 4
— 20a7a50305 X537,

4—5a%a2agaix2x§x4
+ 10aja3asairixSas
— 20a;a3a3alx] voxd
+ 35a1a3a3alrSrias
—-5a%aga§aix?x2xi

2.2 4.4 4.2 4
— 25aia505a,77 05T

— 5a2ajazairrhrs

+—10a%a§a§a3x%mgx§
+—15a§a2a§aix%m2x;
+ 5adalazair aias
+ 5adazaiadaSaia,

3423 3 3 4
— 28ajaya3a5x 15T, |
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We also prove the following statement

COROLLARY 4.4. Assume that m = a* with a # +1 a square free integer and
1 <wu <4 a positive integer. Then

(1) Ifa ¢ {1,7,18,24} (mod 25), then K is monogenic.

(2) Ifa € {1,7,18,24} (mod 25), then K is not monogenic with the exception
of a =17, in which case K is monogenic.

5. Pure sextic fields

. . . . 1.
In this section, K is a pure sextic number field generated by o = m#s, with
m = aja3aiaial, where ay, as, as, a4, and as are pairwise coprime square free

integers and m # +1. Let
A =1, Az = azasas ,

— 2.2 — 0on20203
Az = agagaja;, Aq = asazajayi,

and 5 3 4
As = agazajay.

A detailed table of integral bases is given in [12] that we do not repeat here.
Based on these integral bases we have:

COROLLARY 5.1. Z[a] is the ring of integers of K if and only if m # +1 is a
square free integer, m Z 1 (mod 4), and m £ +1 (mod 9).

The index form can be directly calculated, for brevity we only give it explicitly
in case the integral basis (1, o, a?/Ay, a3 /A3, a /Ay, a®/As) is valid.

LEMMA 5.2. Assume that 6 divides m, vo(m) is odd, and vs(m) # 3. Let
(w0, x1, T2, T3, T4, x5) € Z5. Then for any
2 ad ol ob

«
0= - - - -
x0+x1a—|—x2A2+x3A3—|—x4A4+x5A5

we have

ind(9) == ‘G1 . G2 . G3|

with sextic factors G1, Gz and a cubic factor Go, where
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2.3 .4 4.6

(1) G1 = aja3a,057] — 216a%a3aza3alrsvsrsTs

— T2a1a3a3a3a3 23 wow3 1y — 216030303050t e  vowsa?

— bda2adaiadaiaiverax? — T2a3ada3al asrorzr s

(3)

Gy =

Gs =

+ 27a3a3ajasx

+ afasaiaixd

+ 9atayaialasraws

— 96a%azaiasaiz x3es

4—288a%a2a§a4a§x2x§x4
+ 36aia3a3ataiziziat

+ 54ala3azaiasroric?

+ 108a1a3a3a3alx3x3a’
+ 5dayasazaiaizizie,

+ 12aya3a3a3adziars

+ 2ata3a3alaiaad

— bdaia3aiaizyr]

— 16ayazajaiaizizs

+ 64a’asaiaiss

2.2 2.2 2 2 2
+ 324aiasa3aia5x5737],

- 3(11(12&4&55611‘3565
3
+ ajasx3
2 2 2,.2 2
18afazazasasrizoxsxs

3,22 2 4
— 3ajasa5a5T5T

2. 2.2 2 4
+ 3ajazazasriTy

+ 2a}azaqsaizia’
4—6a§a2a§a4a5x1xix§
— 6ajagaiasaizizias
+fa%a§a§xg

— ara3aizd

+ 162a2a3azaa?x xiries

+ 27ara5a3aizs
+ 9aja3a3ajaizia’

2, 222 3 2
+ 144ajaza5a5a5c1 T3]

+12d3a3a3aiasr i v3xs
— 108a3a3asalasrsrics

3.3 2 3 2.3
— 18ajasazajasri 257

+ 108a3a3aiaasxiciac?

3233 3 2
— 18aja3a3a asx72575

3. 2.3 4
— 108aya5a3a3a51 53

2.2 4.2 2 4
+ 27ajaza3a,05T7 Ty

+ 27a%ayazaiaicyr?
— 16a3a3a3asa5257;

+ 144a3a3a3a.a3 252575

2.2.3
+ asajazxy

2 2 3
+ ajasa4xy,

4—18a%a2a3a4a§x1x%xix5

2, 3, 233
— 2ajaza304052 Ty

2.2 2.4 2
+ 3ajasazasryTs

2.2 3 4 2
— 3aia3a3a5T7 Ty

3 3.2
+ 6ajazasasasroxy Ty

+76a1a2a3a4a§x%x§x4

—a3ajasl

3246
+ azajasxy.
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REMARK. In other cases, the integral basis and the index form is more compli-
cated but the index form has similarly three factors. By eliminating z$ from a
linear combination of G and G2, we obtain a divisibility relation which is a nec-
essary condition for monogenity of pure sextic number fields defined by 2% — m
as follows.

COROLLARY 5.3.

(1) If va(m) is odd and vs(m) # 3, then ajas divides (a3 + a3a?)
s a necessary condition for monogenity of K.

(2) If m = 4 (mod 16) and vs(m) # 3, then ajas divides (a3 + 64a3a?)
s a necessary condition for monogenity of K.

(3) If m = 12 (mod 16) and v3(m) # 3, then ajas divides (—a3 + 4a3)
s a necessary condition for monogenity of K.

In the remaining cases the formulas become far too complicated.
The following results are proved in [12].

COROLLARY 5.4. Assume that m = e° such that e # F1 is a square free rational

integer. Then

(1) Ife # 1 (mod 4) and e # £1 (mod 9), then K is monogenic and Zyx = Z[0]
with 0 = ‘2—45

(2) Ife=1 (mod 4) ore=+1 (mod 9), then K is not monogenic.

REMARK. When m # +1 is a square free integer, we refer to [20] for further
results on the monogenity of pure sextic number fields defined by 2% —m. For in-
tegral bases and monogenity of sextic fields with a quadratic and a cubic subfield
see Charkani and Sahmoudi [6].

6. Pure septic fields

In this section, K is a pure septic number field generated by o = m%, where
m € Z is not necessarily a square free integer and m # +1. It is well-known that
we can assume that v,(m) < 6 for every prime integer p, and so

m= alagagaiagag
, where aq, ..., ag are pairwise coprime square-free integers. Let
A =1, Ay = agasag, Az = azaqaia?,
Ay = agagaiagag, As = agagaiagaé and Ag = agagaiagag.

The following theorem explicitly gives an integral basis of Zg.
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THEOREM 6.1.
(1) If m ¢ {£1,£18,£19} (mod 49), then (1,@,3—2,3—3,3—4,3—5,3—6) is a
Z-basis of Z .
(2) If m € {£1,+18,+19} (mod 49), then
<1 aa_2 a_3 (a—m)4 a_5 aS—aP+at—a’d+ai—a+1
O A A, As TAq

) is a Z-basis of Ly .

Based on these integral bases we have

COROLLARY 6.2. Z[a] is the ring of integers of K if and only if m # +1 is a
square free integer and m ¢ {£1, £18,4+19} (mod 49).

As a special case, we have:

COROLLARY 6.3. Assume that m = a* with a # +1 a square free integer
and 1 < u < 6 a positive integer. If @ ¢ {£1,+18,£19} (mod 49), then K is
monogenic.

7. Pure octic fields

In this section K is a pure octic number field generated by ms, with m # +1

; ; : _ 2.3.4.5 6.7
a rational integer, not necessarily square-free. Let m = aja3azajazagay, where
ai,...,a7 are pairwise coprime square free rational integers. Let
_ _ 2.2 _ 223 3
As = aqasagar, Az = azasasagas, Ay = azazaiazagas,

As = agaza3aialat, A = azalaialaiad, and A7 = azalalaiadal.

A detailed table for integral bases is given in [I4] that we do not repeat here.

Based on these integral bases we have:

COROLLARY 7.1. Z[a] is the ring of integers of K if and only if m # £1 is a
square free integer and m # 1 (mod 4).

The following theorem will appear in [14], it gives sufficient conditions on m
for the non-monogenity of K. It relaxes the condition m is a square free rational
integer required in [520].

THEOREM 7.2. If one of the following conditions holds:
(1) m =1 (mod 32),

(2) m =272 (mod 512),

(3) v2(m) is odd and azas (mod 8) € {2,6},

then K is not monogenic.
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The following theorem will appear in [14].

THEOREM 7.3. Assume that m = al with a # %1 is a square free rational
integer and t € {3,5,7}. Then
(1) If a #1 (mod 4), then K is monogenic and Zy = Z[0] with 6 = a—v, where
a
(u,v) € Z? is a solution of tu — 8v = 1 with u < 8 and u,v > 0.

(2) If a =1 (mod 4), then K is not monogenic with the exception on a = —3.

8. Pure nonic fields

In this section, K is a pure nonic number field generated by mé, where m € Z

is not necessarily a square free integer and m # +1. It is well known that we can
assume that v,(m) < 8 for every prime integer p, and so m = aya3a3atalala’al,
where a1, ...,ag are pairwise coprime square-free integers. Let
2.2 2
A1 = ]., A2 = asagaras, Ag = a3040a50ag0a70ag,
_ 2,233 _ 2.2 3 3 4 — . 2.2.3 4 45
Ay = agaqasagazag, As = agazaiazagarag, As = a203045043060703,
_ 233456 _ .23 45 67
A7 = agazajazagazag, and Ag = asaszajasagarag.

The following theorem gives explicitly an integral basis B of Zg.

THEOREM 8.1. In the following Tablell, B is a Z-integral basis of Zy. The
notation ms stands for m/3v3(™),

Based on these integral bases we have

COROLLARY 8.2. Z[a] is the ring of integers of K if and only if m # +1 is a
square free integer and m # £+1 (mod 9).

As a special case, we have

COROLLARY 8.3. Assume that m = a“ with a # +1 a square free integer,
1 <wu < 8 a positive integer. If a Z +1 (mod 9), then K is monogenic.

9. Preliminaries

In order to prove our results, we recall some fundamental facts on Newton
polygon techniques. Namely, the theorems of index and prime ideal factorization.
Let f(x) € Z[z] be the defining polynomial of a and let f(z) = H:Zlmli
modulo p be the factorization of m into powers of monic irreducible coprime
polynomials of F,[z]. Recall Dedekind’s well known theorem says
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THEOREM 9.1 ([27] Chapter I, Proposition 8.3). If p does not divide the index
(Zr : Z[a]), then pZi = [[_, p%i, where every p; = pZx + ¢i(a)Zx and the
residue degree of p; is f(p;) = deg(¢;).

In order to apply this theorem in an efficient way one needs a criterion to test

whether p divides the index (Zk : Z[a]). In 1878, Dedekind gave the following
criterion

THEOREM 9.2 (Dedekind’s Criterion [7], Theorem 6.1.4 and [§]). For a number
field K generated by a root o of a monic irreducible polynomial
f(z) € Z[z] and a rational prime integer p, let f(x) = H:Zlall(x) (mod p)
be the factorization of f(z) in Fy,[z], where the polynomials ¢; € Z[x] are monic
with their reductions irreducible over ¥, and ged (o, ¢_J) =1 for every i # j.

If we set . L
p
then M(x) € Z[z] and the following statements are equivalent:

1. p does not divide the index (Zk : Z|a]).

2. For everyi=1,...,r, eitherl; =1 orl; > 2 and ¢;(x) does not divide M (x)
in Fplz].

)

When Dedekind’s criterion fails, then we use the Newton polygon method,
which is an alternative approach developed by Ore for obtaining the index
(Zk : Z]a]), the absolute discriminant, and the prime ideal factorization of the
rational primes in a number field K (see [I5,2528], for more details [I3]21]).
For a prime p, let v, be the p-adic valuation of Q, Q, its p-adic completion,
and Z, the ring of p-adic integers. Let also v, be the Gauss’s extension of v,
to Qp(x). For any polynomial

P= Z a;z" € Qplz]
i=0
set vp(P) = min(up(ai), 1 =0,... ,n), and for every nonzero polynomials P
and @Q of Qp[x] set
vp(P/Q) = vp(P) — 15,(Q).

Let ¢ € Z,[x] be a monic polynomial whose reduction is irreducible in F,[x],

let Fy, be the field ]ng] . For any monic polynomial f(x) € Z,[z]. Using Euclidean

division by successive powers of ¢, we expand f(z) as
l
f(x) = Zal(x)d)(x)z,
i=0

called the ¢-ezpansion of f(z) (for every i, deg(a;(z)) < deg(¢)). The ¢-Newton
polygon of f(x) with respect to p, is the lower boundary convex envelope of the
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set of points { (i, vp(ai(x))), ai(z) # 0} in the Euclidean plane, which we denote
by Ng(f). Geometrically, the ¢-Newton polygon of f(x) is the process of joining
the obtained segments S, ..., S ordered by the increasing slopes, which can be
expressed as Ny(f) = 51+ -+ + S¢. These segments are called the sides of the
polygon Ng(f). For every j =1,...,t, let [(S;) be the length of the projection
of S; to the z-axis and h(S;) the length of its projection to the y-axis. Then
[(S;) is called the length of S;, h(S;) is its height, and —\; = —h(S;)/l(S;)
is its slope. The principal ¢-Newton polygon of f(z), denoted N;r(f), is the
part of the polygon Ny (f), which is determined by joining all sides of negative
slopes. For every side S of the polygon N;(f) of length I(S) and height h(S),
let d(S) = ged(I(S),h(S)) be the degree of S. For every side S of N;(f),
with initial point (s,us) and length I, and for every 0 < ¢ < [, we attach the
residue coefficient ¢; € Fy:

0, if (s 41, usy;) lies strictly above S,

Ci = As+i(T . . .

(p%y) (mod (p,(b(x))), if (s +14, usy;) lies on S,

where (p, ¢(x)) is the maximal ideal of Z, [x] generated by p and ¢. Let —A=—h/e
be the slope of S, where h and e are two positive coprime integers.
Then d = [/e is the degree of S. Notice that, the points with integer coordi-
nates lying on S are exactly

(s,us), (s+e,us—h), -+, (s+de,us — dh).

Thus, if ¢ is not a multiple of e, then (s+1, us4;) does not lie in S, and so ¢; = 0.
The polynomial

fs(y) = tay® +ta_1y® 4+ + tiy +to € Fy[y]

is called the residual polynomial of f(x) associated to the side S, where for every
i=0,...,d, t; = cje. Notice that as ty # 0, deg(fs) = d.

Let Nq‘f(f) = S1 4+ -+ S; be the principal ¢-Newton polygon of f with
respect to p. We say that f is a ¢-regular polynomial with respect to p, if fs,(y)
is square free in Fy[y] for every ¢ = 1,...,r. The polynomial f is said to be

p-regularif f(z) =[]i_, El’ for some monic polynomials ¢, ..., ¢, of Z[z] such
that ¢y, ..., ¢, are irreducible coprime polynomials over F, and f is a ¢;-regular
polynomial with respect to p for every i =1,...,r.
The theorem of Ore plays a key role for proving our main Theorems.

Let ¢ € Zy[z] be a monic polynomial, assume that ¢(z) is irreducible in F,[x].
As defined in [I5], Def. 1.3], the ¢-index of f(x), denoted by indy(f), is deg(¢)
times the number of points with natural integer coordinates that lie below or
on the polygon NJ( f), strictly above the horizontal axis, and strictly beyond
the vertical axis (see Figure [I).
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FIGURE 1. N(;—(f)

Now assume that f(z) = []\_, Eli is the factorization of f(x) in F,[z], where
every ¢; € Z[z] is monic polynomial, such that ¢;(z) is irreducible in F, [x], ¢;(z)

and ¢;(x) are coprime when ¢ # j and ¢,j =1,...,r. For every i = 1,...,r, let
N;:_ (f)=Sir+- - -+Sir, be the principal ¢;-Newton polygon of f with respect to p.
Forevery j =1,...,r;,let fs,. (y) = [1.%, Z’fc’“ (y) be the factorization of fg, (y)
in Fy,[y]. Then we have the following index theorem of Ore (see [I5, Theorem 1.7
and Theorem 1.9]).

THEOREM 9.3 (Theorem of Ore).

vo((Zx : Z[a))) > indy, (f).
The equality holds if f(x) is p-regular. =
If f(x) is p-reqular, then

T 7T Sij

v = [T 1T I vijie

i=1j=1k=1

s the factorization of pZyk into powers of prime ideals of Zy lying above p,
where e;; = l;;/d;j, lij is the length of Sij, di; is the ramification degree of S;;,
and fi;i = deg(¢;) X deg(1iji) is the residue degree of the prime ideal p;;i, over p.

If some factors of f(z) provided by Hensel’s factorization and refined by first
order Newton polygon (Ore program) are not irreducible over Q,, then in order
to complete the factorization of f(x), Guardia, Montes, and Nart introduced the
notion of high order Newton polygon. Using the theorem of index they showed
that after a finite number of iterations this process yields all monic irreducible
factors of f(z), all prime ideals of Zk lying above a prime integer p, the index
(Zk : Z[a]), and the absolute discriminant of K. We recall here some funda-
mental techniques of Newton polygons of high order. For more details, we refer
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to [21]. As introduced in [21], a type of order r — 1 is a data

t= (91(96), =1, 92(x), = A2, ..., gr—1(2), *)\r—l,qu(x)),
where every g;(z) is a monic polynomial in Z,[z], A; € QT, and ¢,_1(y) is a poly-
nomial over a finite field of p elements with H = H:;g fi, here f; = deg(vi(x)),
satisfying the following recursive properties:

(1) g1(x) is irreducible modulo p, 1 (y) € Fly] (Fy = F,) being the polynomial
obtained by reduction of gi(x) modulo p, and Fy := Fo[y]/ (o (y)).

(2) For every i = 1,...,r — 1, the Newton polygon of ith order, N;(g;+1(x)),
has a single side of slope —A;.

(3) Foreveryi=1,...,r—1, the residual polynomial of i*" order, R;(gi11)(y) is
an irreducible polynomial in F;[y], ¥;(y) € F;[y] being the monic polynomial
determined by R;(gi+1)(y) =~ ;(y) are equal up to multiplication by a
nonzero element of F;, and F;, = F; [y]/(q/)z(y)) Thus, Fo CF; C--- CF,
is a tower of finite fields.

(4) For every i = 1,...,7 — 1, g;4+1(z) has minimal degree among all monic
polynomials in Z,[z] satisfying (2) and (3).

(5) ¥r—1(y) € F,r_1[y] is a monic irreducible polynomial, 1,_1(y) # y, and
F, = Fr—l[y]/(wr—l(y))'

Here the field F; should not be confused with the finite field of ¢ elements.
Let wy = [vp,x,0] be the Gauss’s extension of v, to Q,(x). Since R;(gi+1)(y)
(¢=1,...,r —1) is irreducible in F;[y] hence according to MacLane’s notations
and definitions (cf. [24]), giy+1(x) is a key polynomial of w;, and so it induces
a valuation on Q,(z), denoted by wit+1 = eit1|wi, git1, Ni+1], where Ay =
hiti/€it1, €i+1 and h;41 are positive coprime integers. The valuation w;41 is
called the augmented valuation of v, with respect to ¢ and A is defined over Q,,[x]

as follows -
wit1(f(z)) = min{e;11w; (G;Jr (2)) + jhiz1, 5 =0,...,ni11},

where f(X)=3 7" aé“(x)ggﬂ(x) is the g;11(x)-expansion of f(x). According
to the terminology in [21I], the valuation w, is called the rth-order valuation
associated to the data t. For every order r > 1, the g,.- Newton polygon of f(x),
with respect to the valuation w, is the lower boundary of the convex enve-
lope of the set of points {(i,;),s = 0,...,n,} in the Euclidean plane, where
i = or (0] (2)g} (@)

The following are the relevant theorems from Montes-Guardia-Nart’s work
on high order Newton polygons

THEOREM 9.4 ([2I] Theorem 3.1). Let f € Zy[x] be a monic polynomial such
that f(z) is a positive power of ¢. If Ny.(f) = S1 + -+ S, has g sides, then
we can split f(x) = fi x -+ x fg(x) in Zy[X], such that N,(f;) = S; and
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R.(fi)(y) = R-(f)(y) up to multiplication by a nonzero element of F, for every

THEOREM 9.5 ([2I] Theorem 3.7). Let f € Zy[x] be a monic polynomial such
that N.(f) = S has a single side of finite slope —A.. If R,.(f)(y) = [1'_y wi(y)®
is the factorization in F,.[y], then f(x) splits as f(x) = fi(x)x---X fi(z) in Z,[x]
such that N,(f;) = S has a single side of slope —\, and R, (f:)(y) = ¥i(y)*
up to multiplication by a nonzero element of F,. for everyi=1,...,t.

In |21} Definition 4.15], the authors introduced the notion of rth-order index
of @ monic polynomial f € Z[x] as follows.
For a fixed data

t = (91(2), —A1,92(2), = A2y . .., gro1 (@), = Apo1, Uro1(2)),
let N,.(f) be the Newton polygon of r*#-order with respect to the data t and
ind; (f) = fo- - fr—1ind(N:(f)),
where ind(N,(f)) is the index of the polygon N, (f); the number of points
with natural integer coordinates that lie below or on the polygon qu( f), strictly
above the horizontal line of equation y = w,.(f), and strictly beyond the verti-

cal axis. In [21, Theorem 4.18], they showed the following index formula which
generalizes the theorem of index of Ore

ind(f) > indy (f) + -+ - + ind,.(f).

10. Proofs of main results

10.1. Pure cubic fields

Proof of Theorem EIl  Since the discriminant of f(z) = 2% — m is

A(f) = —3%m?, thank to the formula A(f) = (Zg : Zla])?*dk, linking the

absolute discriminant of dx of K, the index (Zgx : Z[a]) and A(f), we need

only to calculate v,((Zk : Z[a])) and a p-integral basis of Zg for every prime

integer p dividing 3 - m. Let p be a prime integer dividing 3 - m.

(1) Assume p divides m. In this case f(zr) = ¢° in F,[z], where ¢ = .
Let v = vp(m). Then Ny(f) = S has a single side joining (0,v) and (3,0).
As v € {1,2}, then d = 1 is the degree of fs(y), and so by Theorem [0.3]
we get v,((Zk : Z[a])) = indg(f) and (1, ‘;—z) is a p-integral basis of Z.

(2) For p = 3 and 3 does not divide m, f(x) = ¢ + 3me¢? + 3m?¢ + m3 —m,
where ¢ = x — m. It follows that:
(a) If v3(m? — 1) = 1, then v,((Zg : Z[a])) = 0 and (1, «, 3‘—2) is an integral
basis of Z.
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(b) If v3(m? — 1) > 2; m = &1 (mod 9), then v3((Zx : Z[a])) = 1 and

2 2
(17 a, a’+ma+m

3q. ) is an integral basis of Z. O

Proof of Corollary 24 Under the hypothesis a3 = +1 and as = a.
So if a Z +1 (mod 9), then
ind(9) = |axi’:|:x§|.

is the index from of K. Thus for (x1,22) = (0,1), we have ind(f) = 1 and
K is monogenic. O

10.2. Pure quartic fields

Proof of Theorem Bl Since the discriminant of f(z) = 2% — m is
A(f)=—4*m?, thank to the formula linking the discriminant of K,
the index, and A(f), we need only to calculate vy, (ind(f)) and a p-integral
basis of Zg for every prime integer p dividing 2 - m. Let p be a prime integer
dividing 2 - m.

(1) p divides m. In this case f(z) = ¢* in F,[z], where ¢ = z. Let v = v,(m).
Then Ny4(f) = S has a single side joining (0, v) and (4, 0). Let ged(v,4) = d.
Then d € {1, 2}. It follows that
(a) If p# 2 or d =1, then fs(y) is square-free in [F,[z]. By Theorem [0.3]
we get vp((Zg : Z[a])) = indg(f) and (1, o, j—z, j—i) is a p-integral basis
of ZK

(b) For p = 2 and d = 2; va(m) = 2, we have fs(y) = (y — 1)%. Thus,
we have to use second order Newton polygon techniques. The follow-
ing table gives the adequate ¢ in order to have v,((Zx : Z[a])) =
ind; (f) + ind2(f) and a lower bound of V(¢2(«)) for any valuation V'
of K extending vs.

‘ Conditions H @2 ‘ V(p2(a)) ‘
m = 4 (mod 16) %+ 2 >2

m=12 (mod 32) || 22 -2z +6 | >5/2
m = 28 (mod 32) || 2% — 2z + 2 >5/2

oes not divide m, then f(x) = ¢~ +4me> + 6m +4m o +m=—m
(2) If2d divide m, then f(x) = ¢* + 4mg® + 6m2¢? + 4m3é + m* — m,
where ¢ = x — m.
(a) If va(m — 1) = 1, then v,((Zx : Z[a])) = 0 and (l,a, @ ;}—)
is an integral basis of Zy .

(b) If va(m — 1) = 2, then v,((Zx : Z]a])) = 2 and (l,a, algm? as;;;ja)

is an integral basis of Zg .

79



LHOUSSAIN EL FADIL — ISTVAN GAAL

(c) If va(m —1) > 3, then v,((Zk : Z[a])) = 3 and

2 2

(1 a a”+m a3—ma2—m2a+2m4—m3)
24, 443

is an integral basis of Zg. O

Proof of Corollary B4l If m = a, then a; = a and ay = a3 = 1.
So if a # £1 (mod 4), then

ind(0) = | (27 — az3) (2] + 2a*at23 + daxy — 8aw123w3 + a’a3)| .

is the index from of K. Thus for (x1,%2,23) = (1,0,0), we have ind(§) = 1.
Similarly, if m = a3, then a3 =a and az = a; = 1. So if a # +1 (mod 4), then
ind(6) =|(az} — x%)(a o + 2ax?23 + dax} — 8aziz3ws + 23)|. is the index form
of K. Thus for (x1,x2,23) = (0,0,1), we have ind(f) = 1. In both cases, K is

monogenic. (Il

10.3. Pure quintic fields

Proof of Theorem Il Since the discriminant of f(z) = 2° — m is

A(f) = 5°m*, thank to the formula linking the discriminant of K, the index,

and A(f), we need only to calculate v, (ind(f)) and a p-integral basis of Z for

every prime integer p dividing 5 - m. Let p be a prime integer dividing 5 - m.

(1) If p divides m, then f(z) = ¢° in F,[z], where ¢ = z. Let v = v,(m).
Then Ny(f) = S has a single side joining (0,v) and (5,0). Since 1 < v < 4,
ged(v, 5) = 1, and so the side is of degree 1. Thus fs(y) is irreducible over F.
By Theorem [0.3] we get v,((Zk : Z]a])) = indg(f) and (1, «
a p-integral basis of Zg.

(2) If p = 5 and 5 does not divide m, then f(z) = ¢° is the factorization
of f(x) in F5[z], where ¢ = = — m. By considering f(x + m), let f(z) =
° +5met +10m2¢3 + 10m3¢? 4+ 5m*¢ +m> — m be the ¢-expansion of f(x)
with ¢ = & — m. Thus, if v5(m® —m) = 1, then NJ(f) has a single side
of height 1, and so 5 does not divide (Zg : Z[a]). If vs(m® —m) > 2, then
N;r(f) = 51 + Sz has two sides joining (0,v), (1,1), and (5,0). Thus each
side is of degree 1, and so by Theorem 0.3 v5((Zk : Z[a])) = indg(f) =1

and (1, o, j—z, j—z, ‘?)(Ti)) is a Z-basis of Zy, where ¢(a) = o —m. d

(0% (0% (0% :
>A—23A—33A—4) 18

Proof of Lemma A3l I
If 5 divides m or vs(m* — 1) = 1, then (1,c . ) is a Z-integral

’A ) Ay ’A
basis of Zx and (Z[f)] : [ D) = a2a3a4 Now for every (xg, 1, T2, 73, 24) € Z°,
4
let 0 = xg + z100 + 2o a3a4 4+ 3a2a3a2 + 24 pr . If we replace
L2 L3 L4
(x17x27x371‘4) by (xla 2 3)

a3a4 a2a3a4 ag0a30y

80



PURE FIELDS WITH NON-SQUARE FREE PARAMETERS UP TO DEGREE 9

in the index formula given in [20] 5.3, p. 139], we can compute the index (Z[«] :
Z[6)). Thus,
(Zk :Z[0)) = (Zk : Za]) - (Z]c] :Z[G]):‘agaéag -ind(xl,

2,3

T2 T3 T4 )‘
asay’ asazai’ azaial

and we conclude the desired index form ind(z1, z2, x3,x4). d

Proof of Corollary 4

(1) If m*#1 (mod 25) that is m=1,7,18,24 (mod 25), then (I, a, &, &, &) is
a Z-basis of Zg. Denote by ind(z1, z2, x3,24) the index form corresponding
to this integral basis. We can apply the index formula given in Lemma

We have, ind(z1, 22, 23, 74) = £B;z}° (mod a;,) with

o _ 2,46 S 2.6 4
1 =1, Bi = azazay, J2 =3, By = —ajazay,
L _ _4.6.2 S _ 6,42

j3s =2, B3 = —ajaiai, and jus =4, By= ajasa;3.

Let 5j be the Kronecker symbol, that is 6: = 1 and 5j = 0 for ¢ # j.
Thus for m = aj, we have a = 1 for every k # j;, and so B; = *+1, and

ind (07,02 ,6% ,67) = 1'% = +1. Therefore K is monogenic.
(2) Ifm = a*, then let (xo, yo) € 72 be the unique solution of uzy—>5yy = 1 with
1 < zg < 4; g is the unique integer satisfying 1 < zg < 4 and uxg—>5yg = 1.
Since 6° = a, g(z) = 2° — a is the minimal polynomial of § = = over Q,
and so 6 is a primitive element of K. Since a # +1 is a square free integer,
by [20, 5.3, Remark 6], we conclude that if a* = 1 (mod 25), then K is not

monogenic with the unique exception a = 7. ([l

10.4. Pure septic fields

Proof of Theorem Since the discriminant of f(z) = 27 —m is A(f) =

—7"m5, thank to the formula linking the discriminant of K, the index, and A(f),

we need only to calculate v, (ind(f)) and a p-integral basis of Zk for every prime

integer p dividing 7 - m. Let p be a prime integer dividing 7 - m.

(1) If p divides m, then f(z) = ¢7 in F,[z], where ¢ = z. Let v = v,(m).
Then Ng(f) = S has a single side joinining (0,v) and (7,0) with v = v, (m).
Since 1 < v <6, ged(v,7) =1, and so the side is of degree 1. Thus fs(y) is
irreducible over Fy. By Theorem [0.3] we get v,((Zx : Z[a])) = indg(f) and

6 . . .
(1 a, A—2, vl vl 3—6) is a p-integral basis of Z.

(2) If p = 7 and 7 does not divide m, then f(z) = ¢7 is the factorization
of f(z) in F7[z], where ¢ = x — m. By considering f(z + m), let f(z) =
AT+ Tm@+21m2p° +35m>p* +35m* ¢ +21m5p? +TmSd+m” —m be the ¢-
expansion of f(z) with ¢ = z—m. Thus, if v7(m®—1) = 1, then N;(f) has a
single side of height 1, and so 7 does not divide (Z : Z[a]). If v7(m5—1) > 2;
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m = =+1,+18,4+19, then N;r(f) = 51 + S2 has two sides joining (0,v),
(1,1), and (7,0). Thus each side is of degree 1, and so by Theorem [0.3]

v7((Zk : Z]a])) =indg(f) = 1 and (1 a, A_z’ j—z, j—i, j—i, d)?(j{) ) is a Z-basis
of Zg, where ¢(a) = o — m. O
Proof of Corollary 63
Let (z,y) be the unique solution of u-x — 7y = 1 and 0 <2 <6. Let § = O‘—y
Then 6 is a complex root of the polynomial g(z) = 7 — a. Since a # +1 is
a square free integer and @ ¢ {+1,+18,+19} (mod 49), then by Theorem [6.1]
(1,0,...,0%) is a Z-basis of Zg, which means that K is monogenic. d

10.5. Pure nonic fields

Proof of Theorem RIl Since the discriminant of f(x) = 2% — m is
A(f) = 99m?, thank to the formula linking the absolute discriminant dx of K,
the index, and A(f), we need only to calculate v, (ind(f)) and a p-integral basis
of Z for every prime integer p dividing 3 - m. Let p be a prime integer dividing
3-m.

(1):

If p divides m, then f(z) = ¢° in Fp[z], where ¢ = z. Let v = v,(m). Then
Ng(f) = S has a single side joining (0,v) and (9,0). Let d =gcd(v,9). If 3 does
not divide v, then d = 1, and so the side S is of degree 1 and fs(y) is irreducible
over Fy. By Theorem 0.3, we get

vp((Zk : Zla]))

Similarly if d € {3,6} and p # 3, then fs(y) = y —m is a separable polynomlal
over I5F¢ = F,, and so v,((Zk : Z[a])) = indy(f). In both cases (1,a, YT

A Ao A—:, A—Z) is a p-integral basis of Zg. For p = 3, 3 divides m, and

vs(m) € {3,6}.
(1/a):
If v3(m) = 3, then for ¢ = z, Ny(f) = S has a single side of slope —\ = —1/3,
and fs(y) = (y — m3)3. Thus we have to use second order Newton polygon
techniques. According to Nart’s notations in [21], let wo be the valuation of sec-
ond order Newton polygon associated to the data (¢, \,¥) with ¢ (y) =y — ms
and ¢p = x® — 3mg, where mz = m/3"™). Let also f(z) = &3 + Imz¢3 +
27Tm3¢ps + 27ms(m3 — 1) be the ¢o-expansion of f(z) and Na(f) be the ¢o-
-Newton polygon of f with respect to wa. Then wo(¢3) = 9, wa(IMzh3) = 12,
and wo(27m3¢2) = 12. It follows that:
(1/a/1):
If v3(m3 —1) > 2, then w(27m3(m3 —1)) > 15, and so Na(f) = S1 + S5 has two
sides joining the points (0, v), (1,12), and (3, ) with v > 15. Thus, each side S;
is of degree 1, and so v3(ind(f)) = ind;(f) + inda(f) =9+ 4 =13. Let V be a

= indg(f).
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valuation of K extending v3 and r = V(¢pa(a)). Since ¢o() is integral over Z,
then r > 0. As V(f(a)) = oo, and Na(f) = S1 + Sa, we conclude that 3r = 3+r
or 3+r =wv/3). Thus 2r = 3 or r > 2. Hence V(¢2(a)) > 3/2. Let us show that

<1 N a_2 a_3 a_4 a® —3mza? ab — 6mza® + 9m3
T Ay AT Ay 3As5 ’ 3Ag ’
o’ — 6msat + 9m§a a® — 6msa® + 9m§o¢2
e )

is a Z-basis of Zy . Based on the calculation of the index ind(f), we need to show
that every element of this basis is integral. In order to show that each of these
elements is integral, we need to verify that for every valuation V of K extending
vz, we have the V-valuations of these elements are greater than or equal to 0.
This technique will be repeated in all of the following cases.

(1/a/ii):

If v3(m% — 1) = 1, then No(f) = S has a single side of slope —1. Replace ¢
by ¢2 — 3mzuxr with u = (m% — 1)/3, we get No(f) = S; + S has two sides
joining the points (0,v), (1,12), and (3,9) with v > 15. Therefore,

vs(ind(f)) = indy (f) + inda(f) =9+ 4 =13
and
<1 N a_2 a_3 a_4 a® — 3maua — 3mza? $a(a)? age(a)? a2¢2(a)2>
T Ay AT Ay 3As " 34 T 3A; T 3Ag
is a Z-basis of Zg, where ¢o(x) = 23 — 3mauz — 3ms.
(1/D):
If v3(m) = 6, then for ¢ = z, Ny(f) = S has a single side of slope —\ = —2/3,
and fs(y) = (y—m3)3. Let wo be the valuation of second order Newton polygon
associated to the data (¢, \, 1) with ¥ (y) = y —ms3 and ¢ = x® —9ms. Let also
fx) = 6% + 2Tmsd? + 243m2¢s + 729ms(m3 — 1) be the ¢o-expansion of f(z)
and Ny(f) be the ¢o-Newton polygon of f with respect to we. Similarly to the
previous case, we have the following cases
(1/b/1):
If v3(m) = 6, then for ¢ = z, Ny(f) = S has a single side of slope —\ = —2/3,
and fs(y) = (y — m3)>. Let wa be the valuation of second order Newton poly-
gon associated to the data (¢, A, 1) with 1 (y) = y — m3 and ¢ = 23 — 3%ms.
Let also f(z) = ¢3 + 27Tm3d3 + 243m3pe + 729m3(m3 — 1) be the ¢a-expansion
of f(z) and Na(f) be the ¢o-Newton polygon of f with respect to ws.
It follows that
(1/b/i/A):
If v3(m3 — 1) > 2, then Na(f)
(0,v), (1,21), and (3,18) with v

S1 + S2 has two sides joining the points
24. Thus, each side is of degree 1, and so

VA
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v3(ind(f)) = indy (f) +inda(f) = 21+4 = 25. Let V be a valuation of K extend-
ing v3 and r = V(¢2()).Based on Na(f), we conclude that V (¢2(a)) > 5/2.
Therefore

< a? o® ot —9Imza @ ¢a(a)? agy(a)? a2¢2(a)2>

]-aaa

Ay’ A3’ 3As T As’ 3As | 3A, | 3Ag

is a Z-basis of Zg, where ¢o(x) = 23 — 3%ms.

(1/b/i/B):

If v3(m3 — 1) = 1, then Ny(f) = S has a single side joining (0,21) and (3, 18),
and so is of slope —1. By replacing ¢2 by ¢2 — 3mzux? with u = (m3 —1)/3, we
get Na(f) = S1 + Sz has two sides joining the points (0,v), (1,21), and (3,18)
with v > 24. Therefore, v3(ind(f)) = ind; (f) + ind2(f) = 21 + 4 = 25 and so

) a? a® at —9mzua® — Imza a® @a(a)? aga(a)? apa(a)?
o e o
Al iy 34, A 34y ' 34, 34

is a Z-basis of Zx, where ¢o(z) = 23 — 3mauz? — 3%ms.

(1/b/ii):
For p=3 and 3 does not divide m, f(x)=¢? is the factorization of f(z) in F3[z],
where ¢ = x — m. Let f(z) = ¢? + 9me® + 36m2¢” + 84m3¢° + 126m*¢° +
126m5¢* + 84mS¢3 + 36m7¢? + 9Im®p + m® — m be the ¢-expansion of f(x)
with ¢ = x — m.
(1/b/ii/A):
If v3(m? — 1) = 1; v3(m? —m) = 1, then NJ(f) has a single side of height 1,
and so 3 does not divide (Zk : Z[a]). Then
o o at a® af o of
Lo, & & o oo o is a Z-basis of Zx.

< b O[, A2 ) AS b) A4 9 A5 9 AG Pl A7 Pl A8> 1S a asls O K
(1/b/ii/B):
If v3(m?® — 1) = 2, then N (f) has two sides joining (0,2), (3,1), and (9,0).

Thus each side of N;(f) has degree 1, and so v5((Zk : Z[a])) = 2 and

) a? o ot a® oS+ maP+m o +mat+ma of + ma® + ma?
P
O A Ay A A 34 34, ’ 345

is a Z-basis of Zk.

(1/b/ii/C):

If v3(m? — 1) > 3, then N;(f) has a three sides joining (0,v), (1,2), (3,1),
and (9,0). Thus each side of N;(f) has degree 1, and so v3((Zk : Z[a])) = 4
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and
<1aa_2 a_3 a_4 a_5 ol +ma®+m a” + mat + ma
Ay AgT Ay AsT 3Ag ’ 3A7 ’
a® +ma” 4+ 4a8 — 2ma® — 2a* + 302 + ma — 2+ 3m
i )
i1s a Z-basis of Z. O

Proof of Corollary
Since GCD(u,9) = 1, let (x,y) be the unique solution of u - x — 9y = 1 and

9

0<z<8 Leth= 3—: Then 6 is a complex root of the polynomial g(x) = z” —a.
Since a # +1 is a square free integer and a Z +1 (mod 9), then by Corollary 82]

(1,0,...,0%) is a Z-basis of Z, which means that K is monogenic. (]
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