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ABSTRACT. The Eisenstein criterion is a particular case of the Schönemann’s
irreducibility criterion stated in 1846. In 1906, based on Newton polygon tech-
niques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we
extend this last generalization. Some applications on factorization of polynomials,

and prime ideal factorization will be given, too.

1. Introduction

Factorization of monic polynomials over a henselian field is very useful in al-
gebraic number theory; it plays a crucial role in prime ideal factorization. It is
also very important in the study of extensions of valuations. For a valued field
extension, the determination of irreducible polynomials is the focus of inter-
est of many authors (cf. [1, 3, 5, 10]). In 1850, Eisenstein gave one of the most
popular criteria to determine irreducible polynomials [5]. A criterion which was
generalized in 1906 by Dumas in [3], who showed that for a polynomial

f = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Q[x] (a0 �= 0),

if νp(an) = 0, nνp(ai) ≥ (n − i)νp(a0) > 0 for every 0 = i, . . . , n − 1, and
gcd

(
νp(a0), n

)
= 1 for some prime integer p, then f is irreducible over Q,

where νp is the p-adic valuation ofQ. In 2008, R. Brown gave what is known to be
the most general version of Eisenstein-Schönemann’s irreducibility criterion [1].
Namely, let (K, ν) be a rank one discrete valued field, with Rν its valuation
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ring and kν the residue field. For every polynomial f = anφ
n + an−1φ

n−1 +
· · · + a0 ∈ Rν [x], with φ a monic polynomial in Rν [x], φ irreducible over kν ,
ai ∈ Rν [x], deg(ai) < deg(φ), ν(an) = 0, and nν(ai) ≥ (n − i)ν(a0) > 0
for every 0 = i, . . . , n − 1. If gcd

(
n, ν(a0)

)
= 1, then f is irreducible over the

field K. In this paper, based on Newton polygon techniques, we extend this
last version of Eisenstein-Schönemann’s irreducibility criterion. Some applica-
tions to the factorization of polynomials, and prime ideal factorization will be
given, too. Our results are illustrated by some applications and examples.

2. Notations

For any number field L = Q(α) generated by a complex root α of a monic irre-
ducible polynomial f ∈ Z[x], in 1894, K. Hensel developed a powerful approach
by showing that the prime ideals of ZL lying above a prime p are in one-to-one
correspondence with monic irreducible factors of f in Qp[x], where ZL is the ring
of integers of L. For every prime ideal corresponding to any irreducible factor
in Qp[x], the ramification index and the residue degree together are the same as
those of the local field defined by the irreducible factor associated to the prime
ideal (see for instance [8]). Let (K, ν) be a rank one discrete valued field, Rν its
valuation ring, Mν its maximal ideal, kν its residue field, (Kν , ν) its completion,
and Kh its henselization; the separable closure of K in Kν . By normalization,
we can assume that ν(K∗) = Z, and so Mν is a principal ideal of Rν generated
by an element π ∈ K satisfying ν(π) = 1. Let L = K(α) be a simple extension
generated by α ∈ K a root of a monic irreducible polynomial f ∈ Rν [x], where K
is a fixed algebraic closure ofK. By [13, Chapter I, Proposition 8.3], the Hensel’s
correspondence, given in [8], remains valid. By [4], it was suggested that we can
replace Kν by Kh. So, in order to describe all prime ideals of ZL lying above
the maximal ideal (π), we need to factorize the polynomial f(x) into monic ir-
reducible polynomials of Kh[x]. The first step of the factorization is based on
Hensel’s lemma. Unfortunately, the factors provided by Hensel’s lemma are not
necessarily irreducible over Kh. The Newton polygon techniques could refine the
factorization. Namely, theorem of the product, theorem of the polygon, and the-
orem of the residual polynomial say that we can factorize any factor provided
by Hensel’s lemma, with as many sides of the polygon and as many irreducible
factors of every residual polynomial. For more details, see [7,14] for Newton poly-
gons over p-adic numbers and [2,6] for Newton polygons over rank one discrete
valuations. As our proof is based on Newton polygon techniques, we recall some
fundamental facts on Newton polygons. For a monic polynomial φ∈Rν [x] whose
reduction modulo Mν is irreducible in kν [x], let kφ be the residue field kν [x]

(φ)
.
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A GENERALIZATION OF EISENSTEIN-SCHÖNEMANN’S IRREDUCIBILITY CRITERION

Let f ∈Rν [x] be a monic polynomial. Upon the Euclidean division by successive
powers of φ, we can expand f(x) as follows

f =

l∑
i=0

aiφ
i,

called the φ-expansion of f (for every i, deg(ai) < deg(φ)). The φ-Newton poly-
gon of f , denoted by Nφ(f) is the lower boundary of the convex envelop of the
set of points

{(
i, ν(ai)

)
, i = 0, . . . , n

}
in the Euclidean plane. For every edge Sj ,

of the polygon, let Aj−1 =
(
ij−1, ν(aij−1

)
)
its initial point and Aj =

(
ij , ν(aij )

)
its end point. Let lj = ij − ij−1 be its length, −λj =

ν(aij )−ν(aij−1
)

ij−ij−1
∈ Q

its slope, and Hj = λj l(Sj) = ν(aij−1
) − ν(aij ) its height. Remark that li is

the length of the projection of Si to the x-axis and Hi is the length of its
projection to the y-axis. Geometrically, Nφ(f) is the process of joining the ob-
tained edges S1, . . . , Sr ordered by the increasing slopes, which can be expressed
by Nφ(f) = S1 + · · · + Sr. The segments S1, . . . , and Sr are called the sides

of Nφ(f). The principal φ-Newton polygon of f , denoted by N+
φ (f), is the part

of the polygon Nφ(f), which is determined by joining all sides of negative slopes.
For every side S of the polygon Nφ(f) with initial point (s, us), let l be its length,

H its height, d = gcd(l, H), and e = l
d . For every i = 0, . . . , l, we attach the

following residual coefficient ci ∈ kφ:

ci =

⎧⎪⎨
⎪⎩

0 if (s+ i, us+i) lies strictly above S,(
as+i(x)

πus+i

) (
mod(π, φ)

)
if (s+ i, us+i) lies on S.

where (π, φ) is the maximal ideal of Rν [x] generated by π and φ. That means
if (s+ i, us+i) lies on S, then

ci =
as+i(β)

πus+i
, where β ∈ K is a root of φ.

Let −λ = −h/e be the slope of S, where h and e are two non-negative
integers with −h/e an irreducible fraction. Then d = l/e is called the degree of S.
Notice that, the points with integer coordinates lying in S are exactly (s, us),
(s + e, us − h), . . . , (s + de, us − dh). Thus, if i is not a multiple of e, then
(s+i, us+i) does not lie in S, and so, ci = 0. Let Rλ(f)(y) = tdy

d+td−1y
d−1+· · ·

· · · + t1y + t0 ∈ kφ[y] be the residual polynomial of f associated to the side S,
where for every i = 0, . . . , d, ti = cie.

������ 1�

(1) If φ = x, then kφ = kν .
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(2) If ν(as+l)=0 and ν(as)=0 (λ=0), then ci=as+i (mod π). Thus this notion
of residual coefficient generalizes the reduction modulo a maximal ideal.
In this case, for every i = 0, . . . , d, (s + i, us+i) lies on S if and only if
ν(as+i) = 0.

(3) If λ = 0 and φ = x, then ci = as+i (mod π) and Rλ(f)(y) ∈ kν [y] coincides
with the reduction of f modulo the maximal ideal Mν = (π).

If for some factor provided by the applications of Hensel’s lemma and Ore’s
work, namely theorem of the polygon and theorem of the residual polynomial is
reducible, then Guardia, Montes, and Nart introduced the notion of high order
Newton polygon over p-adic number fields. In this paper, we partially extend
this technique to any discrete rank one valued field: Let φ ∈ Rν [x] be a monic
with φ irreducible over kν . Then φ is a key polynomial of ν. Thus according
to MacLane notations and terminologies [12], for every λ ∈ Q+, φ induces a
valuation V of K(x), called the augmented valuation of ν with respect to φ and
λ ∈ Q. V is defined on K[x] by V (P ) = min{eν(pi) + ih, i = 0, . . . , n} for every
P =

∑n
i=0 piφ

i with deg(pi) < m and extended by V (A/B) = V (A)− V (B) for

every nonzero polynomials A and B of K[x], where m =deg(φ), λ = h
e , h and e

are two coprime positive integers. The valuation V is denoted by [ν, φ, λ]. This
is exactly what the authors of [7], called the valuation of second order Newton
polygon. Let ψ ∈ kφ[y] be a monic irreducible factor of Rλ(f)(y). Then we can
construct a monic polynomial φ2 ∈Rν [x] such that Nφ(φ2) has a single side T
of slope −λ and Rλ(φ2) = ψ. Such a polynomial exists and called a lifting of ψ
with respect to φ and λ. Indeed, let ψ(y) = yt+ct−1y

t−1+ · · ·+c0, where ci ∈ kφ
for every i = 0, . . . , t−1. For every i = 0, . . . , t−1, let Ai ∈ Rν [x] with deg(Ai) <
m =deg(φ), and ci ≡ Ai (mod π, φ). As ψ is irreducible over kφ, c0 �= 0, and

so φ does not divide A0. The fact that deg(A0) < m implies that ν(A0) = 0.
Now, let e be the smallest positive integer satisfying eλ ∈ Z, u ∈ Rν such
that ν(u) = eλ, and φ2 = φet + uAt−1φ

t−1 + u2At−2φ
t−2 + · · · + utA0. Then

φ2 ∈ Rν [x], φ2 = φ
et
, Nφ(φ2) = T has a single side of slope − tν(u)

te = −λ,
and Rλ(φ2) = ψ. Now, let f =

∑l2
i=0Aiφ

i
2 be the φ2-expansion of f . For every

i = 0, . . . , l2, let μi = V (Aiφ
i
2). According to Nart’s terminology in [7], the

second order Newton polygon of f , with respect to φ2 and V , denoted by N2(f),
is the lower convex envelope of the set of points {(i, μi), i = 0, . . . , l2} in the
Euclidean plane.

3. Main results

Let f(x) ∈ Rν [x] be a monic polynomial. If f is not a power of an irre-
ducible polynomial of kν [x], then Hensel’s lemma assures that f is not irreducible

over Kh. Thus, in the remainder of this paper, we assume that f is a power of φ
for some monic polynomial φ ∈ Rν [x], with φ irreducible over kν .
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We start by the following theorem, which relaxes the condition φ = x required
in [9, Theorem 1.1 and Theorem 1.2].

�	�
��� 3.1� Assume that f is a power of φ for some monic polynomial
φ ∈ Rν [x], with φ irreducible over kν . Let f = φn + an−1φ

n−1(x) + · · ·+ a0 be
the φ-expansion of f(x). If ν(ai) ≥ ν(a0) − iλ for every i = 0, . . . , n − 1, with

λ = ν(a0)
n , then f(x) has at most d = gcd(ν(a0), n) irreducible factors over the

field Kh and each irreducible factor has degree at least e ·m, where e = n/d and
deg(φ) = m.

According to the notations and terminologies of Section 2, Eisenstein-Schöne-
mann’s irreducibility criterion could be reformulated as follows:

Let f ∈Rν [x] be a polynomial. If f =φ
l
for some monic polynomial φ∈Rν [x],

whose reduction is irreducible over kν , and Nφ(f)=S has a single side of degree
d=1, with respect to ν, then f is irreducible over K.

Note that in [11], Khanduja gave a generalization of Eisenstein-Schönemann’s
irreducibility criterion over a valued field of arbitrary rank. The meaning of this
generalization is if Nφ(f) = S has a single side of degree 1, then f is irreducible
over K. The problem is what happens when Nφ(f) has a single side of degree
d ≥ 2?

The following theorem gives a partial answer, it drops the condition d = 1
required in the Eisenstein-Schönemann’s irreducibility criterion.

�	�
��� 3.2� Let f(x)∈Rν [x] be a monic polynomial, f =φn+an−1φ
n−1+· · ·

· · ·+ a0 the φ-expansion of f , and nν(an−i) ≥ iν(a0) for every i = 0, . . . , n− 1.

(1) If Rλ(f) = ψ1ψ2 with ψ1 and ψ2 are two coprime polynomials of kφ[y], then
f is not irreducible over Kh.

(2) Assume that Rλ(f) = cψa for some c ∈ k∗φ and some monic irreducible

polynomial ψ ∈ kφ[y] of degree t. Let φ2 be a lifting of ψ with respect to φ

and λ and let f = φa2 + Aa−1φ
a−1
2 + · · · + A0 be the φ2-expansion of f .

Then if a
(
V (Aa−i) − aeth

) ≥ i
(
V (A0) − aeth

)
for every i = 0, . . . , a − 1

and gcd
(
V (A0), a

)
=1, then f is irreducible over Kh, where λ= ν(a0)

n = h
e ,

h and e are two coprime integers, and V = [ν, φ, λ].

������ 2� Under the hypothesis and notations of Theorem 3.2,

(1) If Rλ(f) is irreducible over kφ, then Rλ(f) = cψa with a = 1. Thus
gcd

(
a, V (A0)

)
= 1, and so f is irreducible over Kh.

(2) In particular, if gcd
(
n, ν(a0)

)
= 1, then deg

(
Rλ(f)

)
= 1, and so Rλ(f) is

irreducible over kφ. Thus, by the first point, f is irreducible over Kh.
As a result, Theorem 3.2 generalizes the Eisenstein-Schönemann irredu-
cibility criterion given in [1].
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Let L = K(α) be a simple extension of K generated by α ∈ K a root of a
monic irreducible polynomial f ∈ Rν [x]. Thanks to the one-one correspondence
between monic irreducible factors of f in Kh[x] and distinct prime ideals of RL
lying above π, where RL is the integral closure of Rν in L, we have the following
corollary

�
�
����
 3.3� Under the hypothesis and notations of Theorem 3.2, if
gcd

(
a, V (A0)

)
= 1, then there is a unique prime ideal p of RL lying above π.

Furthermore, πRL = pea, where p =
(
π, φ(α)

u

πv

)
, (u, v) ∈ Z2 is the unique

solution of hu − ve = 1, 0 ≤ u < e, and f(p) = mt is the residue degree of p.

In particular, if gcd(ν(a0), n) = 1, then πRL = pn, where p =
(
π, φ(α)

u

πv

)
is the

unique prime ideal of RL lying above π (because e = n and a = 1).

4. Proofs

P r o o f o f T h e o r e m 3.1. Under the hypothesis of Theorem 3.1, let f = f1×
· · · × ft be the factorization of f in Kh[x], with fi a monic polynomial for every
i = 1, . . . , t. As Rνh is integrally closed and f ∈ Rνh [x] is monic, by Gauss’s

lemma, every fi ∈ Rνh [x]. Let i = 1, . . . , t. Since fi divides f , then fi = φli

for some natural integer li. The hypothesis of Theorem 3.1, implies that Nφ(f) =
S has a single side of slope −λ. By the theorem of the product [6], for every
i = 1, . . . , t, Nφ(fi) = Si has a single side of slope −λ, S = S1 + · · · + St,

and Rλ(f) =
∏t
i=1Rλ(fi) up to multiplication by a nonzero element of kφ.

Since deg(Rλ(f)) = d and deg
(
Rλ(fi)

) ≥ 1 for every i = 1, . . . , t, we get t ≤ d.

Fix i = 1, . . . , t. As Nφ(fi) = Si, fi = φ
li
, with li = die and di = deg

(
Rλ(fi)

)
.

Thus deg
(
fi(x)

)
= m · e · di. As deg

(
Rλ(fi)

)
= di ≥ 1, deg(fi) ≥ m · e as

desired. �

In order to show Theorem 3.2, we need the following lemma:

����� 4.1� Under the hypothesis and notations of (ii) of Theorem 3.2, assume
that Rλ(f) = ψa for some monic irreducible polynomial ψ ∈ kφ[y] and a ∈ N.

Let φ2 ∈ Rν [x] be a lifting of ψ with respect to φ and λ and f =
∑l2
i=0Aiφ

i
2 the

φ2-expansion of f . Then l2 = a, Aa = 1, V (f) = aeth, and V (Aiφ
i
2) > V (f)

for every i = 0, . . . , a− 1.

P r o o f. First, by using the φ-expansion of f , we conclude deg(f) = mn.
Also the φ2-expansion of f shows that nm = l2 deg(φ2). The expression of φ2
implies that nm = l2etm.
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Secondly, as Rλ(f) = ψa, we have deg(f) = me deg
(
Rλ(f)

)
= meat.

Thus l2 = a and deg(Aa) = 0. Since f and φ2 are monic, Aa = 1. On the
other hand, since Nφ(f) has a single side of slope −λ, ν(an−i) ≥ iλ for every
i = 0, . . . , n and λ = a0

n . So, eν(an−i)+ (n− i)h ≥ nh for every i = 0, . . . , n, and

so V (f) = nh = aeth (because n
e = d deg

(
Rν(f)

)
= at).

For the last point, let I = {i = 0, . . . , a, V (Aiφ
i
2) = V (f)}. Then I is a non

empty finite set. Let i0 be its smallest element and Lλ the line of slope −λ,
which contains

(
a, V (f)

)
. For every i = 0, . . . , a, set j = a− i. If

V (Aa−jφ
a−j
2 ) = V (f) = aeth,

then
ν(Aa−jφ

a−j
2 ) = aeth− (a− j)eth = jeth.

Thus, the point
(
i0, ν(Ai0φ

i0
2 )

)
lies on the line Lλ (because i0 = a − j0) and

by definition of i0, the point
(
i, ν(Aiφ

i
2)
)
lies strictly above the line Lλ for every

i < i0. So, Rλ(Aiφ
i
2) = 0 for every i < i0 and Rλ(Ai0φ

i0
2 ) = cψi0 for some

nonzero element c ∈ kφ. It follows that Rλ(f) = ψi0g for some g ∈ kφ[y],
with ψ does not divide g. Hence i0 = νψ

(
Rλ(f)

)
= a. By definition of i0,

V (Aiφ
i
2) > V (f) for every i = 0, . . . , a− 1. �

P r o o f o f T h e o r e m 3.2.

(1) The first point of Theorem 3.2 is an immediate application of Theorem 3.7
in [6].

(2) For the second point, assume that gcd(V (A0), a) = 1, and show that f is
irreducible over Kh. If not, suppose that f=f1f2 in Kh[x], with deg(fi)≥1
for every i = 1, 2. Again, as Rνh is integrally closed and f is monic, we
can assume that every fi ∈ Rνh [x] is a monic polynomial, Nφ(fi) = Si has
a single side of slope −λ, and Rλ(fi) = ciψ

ai for some nonzero constant
ci ∈ kφ, ai ∈ N with a1 + a2 = a, and S1 + S2 = S. Thus, the φ2-expansion

of fi has the form fi=φ
ai
2 +. . .+Ai0, with V (Aijφ

j
2) > V (φai2 ) = aih for every

j = 0, . . . , ai − 1 and i = 1, 2. Let us show that N2(fi) has a single side

of slope −λ2 with λ2 = V (A0)−aeth
a . For this reason, let μij =

V (Aai
−j)−jeth
j ,

μi = min{μij, j = 1, . . . , ai} for every j = 1, . . . , ai, and μ = min(μ1, μ2).

We claim that μ≥λ2 = V (A0)−aeth
a . Suppose the opposite; μ < λ2. Let ji be

the greatest index such that μiji =μ
i. For every j ≥ 0 and cj =

∑j
k=0A

1
kA

2
j−k

with Aik = 0 if k < 0 or k > ai. For every i = 0, . . . , a, let ri and qi
be, respectively, the remainder and the quotient of the Euclidean division
of ci + qi−1 by φ2, where q−1 = 0. Then for every i = 0, . . . , a, ri = Ai and
f =

∑a
i=0 riφ

i
2 is the φ2-expansion of f .

Assume that μ1≤μ2 and consider

cj1+a2φ
j1+a2
2 =(A1

j1A
2
a2+A1

j1+1A
2
a2−1 + · · · )φj1+a22 .
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By the definition of j1, V (cj1+a2φ
j1+a2
2 ) = V (A1

j1
φj12 ) + a2feh. Thus

V (cj1+a2φ
j1+a2
2 )− aefh = V (A1

j1φ
j1
2 ) + (a2 − a)feh = V (A1

j1φ
j1
2 )− a2feh

= (a1 − j1)μ
1 < (a1 − j1)λ2. (1)

Also, by definition of j1, V (cj1+a2−k > V (cj1+a2) for every k ≥ 1. As
cj1+a2 + qj1+a2−1 = qj1+a2φ2 + rj1+a2 and φ2 is monic,

V (qj1+a2) = V (cj1+a2 + qj1+a2−1) = V (cj1+a2)
because

V (qj1+a2−1) = V (cj1+a2−1) > V (cj1+a2).

Thus V (rj1+a2) ≥ V (cj1+a2). If V (rj1+a2) > V (cj1+a2), then the point(
j1 + a2, ν(rj1+a2)

)
lies strictly above the line Lλ of slope −λ and con-

tains the point
(
j1+a2, ν(cj1+a2)

)
, and thus Rλ(cj1+a2) = Rλ(qj1+a2)ψ+0.

This implies that ψ divides Rλ(cj1+a2), which is a contradiction because
deg(cj1+a2) < deg(φ2). Therefore, V (rj1+a2) = V (cj1+a2) . Since N2(F ) = T
has a single side of slope−λ2,

V (cj1+a2φ
j1+a2
2 )− aefhλ ≥ (

a− (a2 + j1)
)
λ2 (2)

(1) and (2) imply that

(a1 − j1)λ2 > V (cj1+a2φ
j1+a2
2 )− aefh ≥ (a1 − j1)λ2,

which is a contradiction. Consequently,

μ ≥ λ2, and so
V (Ai0)− aiefh

ai
≥ λ2 for every i = 1, 2.

As V (A0) = V (c0) = V (A1
0) + V (A2

0), we have

μiai =
V (Ai0)− aiefh

ai
= λ2 for every i = 1, 2.

Thus N2(f1) has a single side of slope −λ2, and so a1λ2 ∈ Z, which is
impossible because a > a1 and as by assumption gcd(V (A0), a) = 1, we have
gcd(V (A0)−aeth, a) = 1, and so a is the smallest positive integer satisfying
kλ2 ∈ Z. Therefore, f is irreducible over Kh. �

5. Examples

(1) Let K = F2((x)) be the fraction field of the formal power series ring over F2.
It is well known that (K, ν) is a valued field with valuation ring F2[[x]],
maximal ideal Mν = (x), Kh = K and Fν = F2. Let φ = y2 + y + 1 and
f = φ6 + xkφ4 + xsφ2 + x3 + x4 ∈ K[y] with k and s are two non-
-negative integers. We need to test the irreducibility of f over Kh = K.
First, if s = 0, then by Hensel’s lemma, f is reducible over Kh. If s ∈ {0, 1}
or k = 0, then Nφ(f) has at least two distinct sides, and so by theorem of the
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polygon f is reducible Kh. Now assume that k ≥ 1 and s ≥ 2. In this case,
Nφ(f) = S has a single side of height 3 and length 6. As gcd(3, 6) = 3 �= 1,
the Eisenstein-Schönemann irreducibility criterion failed. So, we have to use
the generalized version proposed in Theorem 3.2. As φ is irreducible over
Fν , φ is a key polynomial of ν, and so φ induces an extension of ν to K[y]
defined by V (P ) = min{eν(pi)+ ih, i = 0, . . . , n} for every positive coprime
integers e, and h and for every P ∈ K[y], where P =

∑n
i=0 piφ

i is the φ-
expansion of P . Extended by V (A/B) = V (A)−V (B) for every A and B in
K[y]∗, V is a valuation of K(y). We have to investigate the following cases:

(a) If k > 1 and s > 2, then Rλ(f) = z3+1 = (z+1)(z2+z+1). Thus by (1)
of Theorem 3.2, we conclude that f is reducible over Kh.

(b) If k = 1 and s > 2, then Rλ(f) = z3 + z2 + 1 is irreducible over kφ.
Thus by (1) of Remark 2, f is irreducible over K. Let L = K(α), where
α ∈ K is a root of f . Then xRL = p2, where f(p) = 2 · 3 = 6 is the
residue degree of p.

(c) Similarly, if k> 1 and s=2, then Rλ(f)= z3+z+1 is irreducible over
kφ. Thus by (1) of Remark 2, f is irreducible over K. Let L=K(α),

where α∈K is a root of f . Then xRL=p2, where f(p)=2 · 3=6 is the
residue degree of p.

(d) If k = 1 and s = 2, then Rλ(f) = z3 + z2 + z + 1 = (z + 1)3. Then
ψ = z + 1, t = 1, h = 1, and e = 2. Let V be the augmented valuation
of ν with respect to φ and λ = 1/2 and let φ2 = φ2+x be a lifting of ψ
with respect to φ and λ. Then f = φ3 + x4. Since V (φ) = h = 1 and
V (x) = e0 = 2, V (φ2) = 2, V (φ32) = 6, and V (x4) = 8. Thus N2(f) = T
has a single side. As also gcd(V (x4), 3) = gcd(8, 3) = 1, by (2) of Theo-
rem 3.2, f is irreducible over K. Let L = K(α), where α ∈ K is a root
of f . Then xRL = p6, where f(p) = 2 · 1 = 2 is the residue degree of p.

(2) Let f(x) = φ6 + 24xφ4 + 12φ3 + 15(16x + 32)φ + 48 and φ ∈ Z[x]
be a monic polynomial of degree at least 2, whose reduction is irreducible
in F2[x].
For p = 2, Nφ(f) = S has a single side of length l = 6, height H = 4, and
so d = 2. By Theorem 3.1, f(x) has at most 2 irreducible factors in Q2[x].
As fS(y) = y2+y+1 is irreducible over F2[x], then for φ = x3+x+1, fS(y)
is irreducible over kφ � F2. Thus by Theorem 3.2, f(x) is irreducible over
Q2. Let L = Q(α) and RL its ring of integers, where α is a complex root of
f(x). Since f(x) is irreducible over Q2, there is a single prime ideal p of RL
lying above 2. Furthermore, 2RL=p3 and f(p)=6 is the residue degree of p.
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(3) Let f(x) = φ6+12xφ3+9(16x+32)φ+3(16x+16) and φ = x2+x−1 ∈ Z[x].

For p = 2, φ is irreducible over F2, Nφ(f) = S has a single side of length
l = 6, height H = 4, and d = 2. By Theorem 3.1, f(x) has at most 2
irreducible factors in Q2[x]. As fS(y) = y2 + jy+ j + 1 = (y− 1)(y− j − 1)
in kφ[y], then f(x) has exactly two irreducible factors over Q2.

For p = 3, φ is irreducible over F3. Since f(x) satisfies the Eisenstein-
-Schönemann irreducibility criterion conditions, f(x) is irreducible over Q3.
Let K = Q(α), where α is a complex root of f(x). By Corollary 3.3,
2RK = p31p

3
2, with respective residue degree 2 each prime ideal factor and

3RK = p6 with residue degree 2.
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