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ABSTRACT. The Eisenstein criterion is a particular case of the Schonemann’s
irreducibility criterion stated in 1846. In 1906, based on Newton polygon tech-
niques, Dumas gave a generalization of the Eisenstein criterion. In this paper, we
extend this last generalization. Some applications on factorization of polynomials,
and prime ideal factorization will be given, too.

1. Introduction

Factorization of monic polynomials over a henselian field is very useful in al-
gebraic number theory; it plays a crucial role in prime ideal factorization. It is
also very important in the study of extensions of valuations. For a valued field
extension, the determination of irreducible polynomials is the focus of inter-
est of many authors (cf. [T1,BLELT0]). In 1850, Eisenstein gave one of the most
popular criteria to determine irreducible polynomials [5]. A criterion which was
generalized in 1906 by Dumas in [3], who showed that for a polynomial

f=anz" +a, 12"+ +ap € Qx] (ag#0),

if vp(a,) = 0, np(a;) > (n—i)yp(ag) > 0 for every 0 = 4,...,n — 1, and
gcd(up(ao),n) = 1 for some prime integer p, then f is irreducible over Q,
where v, is the p-adic valuation of Q. In 2008, R. Brown gave what is known to be
the most general version of Eisenstein-Schénemann’s irreducibility criterion [IJ.
Namely, let (K,v) be a rank one discrete valued field, with R, its valuation
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ring and k, the residue field. For every polynomial f = a,¢" + a,_1¢" "' +
-4 ag € Ry[z], with ¢ a monic polynomial in R,[z], ¢ irreducible over k,,
a; € Ry[z], deg(a;) < deg(¢), v(a,) = 0, and nv(a;) > (n — i)v(ag) > 0
for every 0 = 4,...,n — 1. If gcd(n,u(ao)) = 1, then f is irreducible over the
field K. In this paper, based on Newton polygon techniques, we extend this
last version of Eisenstein-Schénemann’s irreducibility criterion. Some applica-
tions to the factorization of polynomials, and prime ideal factorization will be
given, too. Our results are illustrated by some applications and examples.

2. Notations

For any number field L = Q(«) generated by a complex root «v of a monic irre-
ducible polynomial f € Z[z], in 1894, K. Hensel developed a powerful approach
by showing that the prime ideals of Zy lying above a prime p are in one-to-one
correspondence with monic irreducible factors of f in Q,[x], where Zp, is the ring
of integers of L. For every prime ideal corresponding to any irreducible factor
in Q,[x], the ramification index and the residue degree together are the same as
those of the local field defined by the irreducible factor associated to the prime
ideal (see for instance []]). Let (K, v) be a rank one discrete valued field, R, its
valuation ring, M, its maximal ideal, &, its residue field, (K, v) its completion,
and K" its henselization; the separable closure of K in K,. By normalization,
we can assume that v(K*) = Z, and so M, is a principal ideal of R, generated
by an element 7 € K satisfying v(w) = 1. Let L = K(«) be a simple extension
generated by a € K a root of a monic irreducible polynomial f € R, [z], where K
is a fixed algebraic closure of K. By [I3, Chapter I, Proposition 8.3], the Hensel’s
correspondence, given in [§], remains valid. By [4], it was suggested that we can
replace K, by K" So, in order to describe all prime ideals of Zj lying above
the maximal ideal (), we need to factorize the polynomial f(z) into monic ir-
reducible polynomials of K"[z]. The first step of the factorization is based on
Hensel’s lemma. Unfortunately, the factors provided by Hensel’s lemma are not
necessarily irreducible over K" The Newton polygon techniques could refine the
factorization. Namely, theorem of the product, theorem of the polygon, and the-
orem of the residual polynomial say that we can factorize any factor provided
by Hensel’s lemma, with as many sides of the polygon and as many irreducible
factors of every residual polynomial. For more details, see [7l[14] for Newton poly-
gons over p-adic numbers and [2,[6] for Newton polygons over rank one discrete
valuations. As our proof is based on Newton polygon techniques, we recall some
fundamental facts on Newton polygons. For a monic polynomial ¢ € R, [z] whose

reduction modulo M, is irreducible in k,[z], let k4 be the residue field %}f]
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Let f € R,[x] be a monic polynomial. Upon the Euclidean division by successive
powers of ¢, we can expand f(x) as follows

l
f = Z ai¢i7
=0

called the ¢-expansion of f (for every i, deg(a;) < deg(¢)). The ¢-Newton poly-
gon of f, denoted by Ny4(f) is the lower boundary of the convex envelop of the
set of points {(z, u(ai)), 1=0,..., n} in the Euclidean plane. For every edge S},
of the polygon, let A;_1 = (i;_1, V(aij_l)) its initial point and A; = (i;, V(aij))
its end point. Let I; = i; — ij_1 be its length, —\; = % e Q
its slope, and H; = X;I(S;) = v(as,_,) — v(ai,) its height. Remark that I; is
the length of the projection of S; to the z-axis and H; is the length of its
projection to the y-axis. Geometrically, Ny(f) is the process of joining the ob-
tained edges 51, ..., S, ordered by the increasing slopes, which can be expressed
by N¢(f) = S1 + -+ S,. The segments S,..., and S, are called the sides
of Ny4(f). The principal ¢-Newton polygon of f, denoted by N;( f), is the part
of the polygon Ny(f), which is determined by joining all sides of negative slopes.
For every side S of the polygon Ny ( f) with initial point (s, us), let  be its length,
H its height, d = ged(l, H), and e = é. For every ¢ = 0,...,[, we attach the
following residual coefficient ¢; € ky:

0 if (s+14,usy;) lies strictly above S,

o <aé+71(x)> (mOd(ﬂ-’ ¢)) if (S + i) us—i—i) lies on S.

TUs+i

where (7, ¢) is the maximal ideal of R,[z] generated by = and ¢. That means
if (s +1,us4,) lies on S, then

c; = GSLEB), where 8 € K is a root of ¢.
T Us+i
Let —A = —h/e be the slope of S, where h and e are two non-negative

integers with —h/e an irreducible fraction. Then d = [ /e is called the degree of S.
Notice that, the points with integer coordinates lying in S are exactly (s, us),
(s +eus —h),...,(s + de,us — dh). Thus, if i is not a multiple of e, then
(s+1,us4;) does not lie in S, and so, ¢; = 0. Let Rx(f)(y) = tay®+ta_1y? 1+ -
-+ 11y + to € kyly] be the residual polynomial of f associated to the side S,
where for every i = 0,...,d, t; = ¢je.

REMARK 1.

(1) If ¢ =z, then ky = k,.
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(2) Ifv(as+;)=0and v(as)=0 (A=0), then ¢; =a@51; (mod ). Thus this notion
of residual coefficient generalizes the reduction modulo a maximal ideal.
In this case, for every i = 0,...,d, (s + i, us+;) lies on S if and only if
v(asy;) = 0.

(3) If A =0 and ¢ = x, then ¢; = @51, (mod 7) and Rx(f)(y) € k,[y] coincides
with the reduction of f modulo the maximal ideal M, = ().

If for some factor provided by the applications of Hensel’s lemma and Ore’s
work, namely theorem of the polygon and theorem of the residual polynomial is
reducible, then Guardia, Montes, and Nart introduced the notion of high order
Newton polygon over p-adic number fields. In this paper, we partially extend
this technique to any discrete rank one valued field: Let ¢ € R, [z] be a monic
with ¢ irreducible over k,. Then ¢ is a key polynomial of v. Thus according
to MacLane notations and terminologies [12], for every A € QT, ¢ induces a
valuation V of K(z), called the augmented valuation of v with respect to ¢ and
A € Q. V is defined on Klz| by V(P) = min{ev(p;) +ih,i =0,...,n} for every
P=3%" ,pi¢" with deg(p;) < m and extended by V(A/B) = V(A) — V(B) for
every nonzero polynomials A and B of K[z], where m =deg(¢), A = %, h and e
are two coprime positive integers. The valuation V' is denoted by [v, ¢, A]. This
is exactly what the authors of [7], called the valuation of second order Newton
polygon. Let ¢ € kg[y] be a monic irreducible factor of Ry(f)(y). Then we can
construct a monic polynomial ¢ € R, [z] such that Ny(¢2) has a single side T
of slope —\ and Ry (¢2) = 9. Such a polynomial exists and called a lifting of
with respect to ¢ and A. Indeed, let ¢ (y) = y* +ci—1y' =1+ -+co, where ¢; € ky
foreveryi=0,...,t—1. Foreveryi =0,...,t—1,let A; € R, [x] with deg(4;) <
m =deg(¢), and ¢; = A; (mod 7, ¢). As 1 is irreducible over kg, ¢o # 0, and
so ¢ does not divide Ag. The fact that deg(Ag) < m implies that v(Ag) = 0.
Now, let e be the smallest positive integer satisfying e\ € Z, v € R, such
that v(u) = e\, and ¢ = ¢ + ud; 10" +u?A; 20" 2 + -+ + u'Ay. Then
b2 € R,[x], ¢o = Eei Ny(¢p2) = T has a single side of slope ft'/t(eu) = -\,
and Ry (¢2) = ¢. Now, let f = 222:0 A; ¢4 be the ¢o-expansion of f. For every
i =0,...,0p, let u; = V(A;¢%). According to Nart’s terminology in [7], the
second order Newton polygon of f, with respect to ¢ and V', denoted by Na(f),
is the lower convex envelope of the set of points {(4, ), @« = 0,...,l2} in the
Euclidean plane.

3. Main results

Let f(x) € R,[z] be a monic polynomial. If f is not a power of an irre-
ducible polynomial of &, [z], then Hensel’s lemma assures that f is not irreducible
over K" Thus, in the remainder of this paper, we assume that f is a power of ¢
for some monic polynomial ¢ € R, [z], with ¢ irreducible over k.
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We start by the following theorem, which relaxes the condition ¢ = x required
in [9 Theorem 1.1 and Theorem 1.2].

THEOREM 3.1. Assume that f is a power of ¢ for some monic polynomial
¢ € R,[x], with ¢ irreducible over k,. Let f = ¢™ + ap_16" () + -+ + ag be
the ¢-expansion of f(x). If v(a;) > v(ag) — i\ for every i = 0,...,n — 1, with
A= @, then f(x) has at most d = ged(v(ag),n) irreducible factors over the
field K" and each irreducible factor has degree at least e - m, where e = n/d and

deg(¢) = m.
According to the notations and terminologies of Section 2], Eisenstein-Schone-
mann’s irreducibility criterion could be reformulated as follows:

Let f € R,[z] be a polynomial. If 7:51 for some monic polynomial ¢ € R, [z],
whose reduction is irreducible over k,, and Ny (f)=.5 has a single side of degree
d=1, with respect to v, then f is irreducible over K.

Note that in [I1], Khanduja gave a generalization of Eisenstein-Schonemann’s
irreducibility criterion over a valued field of arbitrary rank. The meaning of this
generalization is if Ny(f) = S has a single side of degree 1, then f is irreducible
over K. The problem is what happens when N (f) has a single side of degree
d> 27

The following theorem gives a partial answer, it drops the condition d = 1
required in the Eisenstein-Schénemann’s irreducibility criterion.

THEOREM 3.2. Let f(z) € R,[x] be a monic polynomial, f=¢"+an_1¢" 1+

-+« +aqg the ¢-expansion of f, and nv(a,—;) > iv(ag) for everyi=0,...,n— 1.

(1) If Ra(f) = ¢1v2 with ¢y and o are two coprime polynomials of kyly], then
f is not irreducible over K"

(2) Assume that Rx(f) = cyp® for some ¢ € kj and some monic irreducible
polynomial ) € kgly] of degree t. Let ¢ be a lifting of 1 with respect to ¢
and X and let f = ¢3 + Ag_165 ' + -+ + Ay be the ¢o-expansion of f.
Then if a(V(Aq—i) — aeth) > i(V(Ag) — aeth) for every i =0,...,a—1
and ged(V (Ao),a) =1, then f is irreducible over K", where A= "(ZO) =
h and e are two coprime integers, and V = [v, ¢, A].

o |3

)

REMARK 2. Under the hypothesis and notations of Theorem [3.2],

(1) If RA(f) is irreducible over kg, then Ry(f) = cy* with @ = 1. Thus
gcd(a, V(AO)) =1, and so f is irreducible over K"

(2) In particular, if ged(n,v(ag)) = 1, then deg(Rx(f)) =1, and so Ry(f) is
irreducible over kgs. Thus, by the first point, f is irreducible over K.

As a result, Theorem generalizes the Eisenstein-Schonemann irredu-
cibility criterion given in [1].
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Let L = K(a) be a simple extension of K generated by o € K a root of a
monic irreducible polynomial f € R, [z]. Thanks to the one-one correspondence
between monic irreducible factors of f in K"[z] and distinct prime ideals of Ry,
lying above 7, where Ry, is the integral closure of R, in L, we have the following
corollary

COROLLARY 3.3. Under the hypothesis and mnotations of Theorem [33, if
gcd(a,V(Ao)) = 1, then there is a unique prime ideal p of Ry lying above .
o(a)”

v

Furthermore, mRy, = p°%, where p = ( m, ), (u,v) € Z?* is the unique
solution of hu —ve = 1,0 < u < e, and f(p) = mt is the residue degree of p.

In particular, if ged(v(ag),n) =1, then wRy, = p™, where p = ( , $le)” ) is the

TV

unique prime ideal of Ry, lying above w (because e =n and a =1).

4. Proofs

Proof of Theorem B Under the hypothesis of Theorem Bl let f = f; x
-+ X f; be the factorization of f in K"[z], with f; a monic polynomial for every
i =1,...,t. As R, is integrally closed and f € R,»[z] is monic, by Gauss’s
lemma, every f; € Ryn[z]. Let i = 1,...,t. Since f; divides f, then f; = ¢li
for some natural integer I;. The hypothesns of Theorem B}, implies that Ny (f) =
S has a single side of slope —\. By the theorem of the product [6], for every
i =1,...,t, Ng(fi) = S; has a single side of slope =\, S = S + --- 4+ S,
and Ryx(f) = [I'_, Ra(f:) up to multiplication by a nonzero element of k.
Since deg(Rx(f)) = d and deg( A(fi)) > 1forevery i =1,...,t, we get t <d.

Fixi=1,...,t. As Ng(f;) = Si, fi = 5 ) Wlth l; = d;e and d; = deg(RA(f;))-
Thus deg(fi(z)) = m - e d;. As deg(Rx(f;)) = d; > 1, deg(fi) = m - e as
desired. 0

In order to show Theorem [B.2] we need the following lemma:

LEMMA 4.1. Under the hypothesis and notations of (ii) of Theorem[33, assume
that Rx(f) = ¢* for some monic irreducible polynomial ¢ € ke[y] and a € N.

Let ¢o € R, [x] be a lifting of 1 with respect to ¢ and X\ and f = 222:0 A; b the
bo-expansion of f. Then ly = a, A, = 1, V(f) = aeth, and V(A;¢%) > V(f)

for everyi=0,...,a—1.

Proof. First, by using the ¢-expansion of f, we conclude deg(f) = mn.
Also the ¢y-expansion of f shows that nm = Iy deg(¢2). The expression of ¢
implies that nm = laetm.
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Secondly, as Rx(f) = %, we have deg(f) = me deg(RA(f)) = meat.
Thus I = a and deg(A,) = 0. Since f and ¢, are monic, A, = 1. On the
other hand, since Ny4(f) has a single side of slope —A, v(a,—;) > i\ for every
i=0,...,nand A = 2. So, ev(a, ;) + (n—i)h > nh for every i = 0,...,n, and
so V(f) = nh = aeth (because 2 = ddeg(R,(f)) = at).

For the last point, let I = {i = 0,...,a, V(A;¢5) = V(f)}. Then I is a non
empty finite set. Let iy be its smallest element and L) the line of slope —A\,
which contains (a, V(f)) For every i =0,...,a,set j =a — 1. If

V(Aa—jd577) = V(f) = acth,
then ‘
v(Aa—jd5 ) = aeth — (a — j)eth = jeth.

Thus, the point (io,v(A;,¢5)) lies on the line Ly (because ip = a — jo) and
by definition of ip, the point (i, V(A,—(bé)) lies strictly above the line Ly for every
i < ig. So, Rx(A;py) = 0 for every i < ig and Ry(A;,¢%) = ey for some
nonzero element ¢ € kg. It follows that Ry(f) = t"g for some g € kyly,
with ¢ does not divide g. Hence ig = vy (RA(f)) = a. By definition of i,
V(A;i¢hy) > V(f) forevery i =0,...,a — 1. O

Proof of Theorem
(1) The first point of Theorem is an immediate application of Theorem 3.7

in [6].

(2) For the second point, assume that gcd(V(Ap),a) = 1, and show that f is
irreducible over K™ If not, suppose that f=f; f> in K"[x], with deg(f;)>1
for every ¢ = 1,2. Again, as R, is integrally closed and f is monic, we
can assume that every f; € R,»[z] is a monic polynomial, Ng(f;) = S; has
a single side of slope —\, and R)(f;) = ¢;9% for some nonzero constant
ci € kg, a; € N with a1 + a2 = a, and S; + S2 = S. Thus, the ¢2-expansion
of f; has the form f;=g¢3 +.. .+A}, with V(Ai¢l) > V(¢5') = azh for every
j=0,...,a; —1 and ¢ = 1,2. Let us show that No(f;) has a single side
of slope — g with Ay = M. For this reason, let ,ué- = w,
wo= min{ué,j =1,...,a;} for every j = 1,...,a;, and p = min(p!, u?).
We claim that p> g = M. Suppose the opposite; p < Ag. Let j; be
the greatest index such that . = p*. For every j > 0 and ¢; = o ALAZ
with A, = 0if &k < 0 or k > a;. For every ¢ = 0,...,a, let r; and ¢;
be, respectively, the remainder and the quotient of the Euclidean division
of ¢; + gi—1 by ¢2, where ¢_1 = 0. Then for every i = 0,...,a, r; = A; and
[ =0 oridh is the ¢o-expansion of f.

Assume that p' <p? and consider

jitaz A1 42 1 2 j1t+az
Cj1+¢12¢2 - (Aleaz + Ajl—i-lAaz—l + - )¢2 .
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By the definition of j1, V(¢j,+a,¢3 T%) = V(A;lq%l) + az feh. Thus
V(cirar 3 ™") = aefh = V(A 6)') + (a2 — a) feh = V(A], 63') — arfeh
= (a1 — j)p' < (a1 = ji)he (1)
Also, by definition of ji, V(¢j,4as—k > V(¢j,4a,) for every k > 1. As
Cji+as + Gj14+ar—1 = Qj1+¢12¢2 + Tj1+as and ¢2 is monic,
V(qjl"l‘aQ) = V(Cj1+112 + qj1+112—1) = V(le-i-azr)
V(qj1+112—1> = V<Cj1+112—1> > V<Cj1+112>'
Thus V(7j,4as) = V(Cji4as)- I V(rj4a,) > V(¢j,+a,), then the point

(j1 + az,V(Tj1+a2)) lies strictly above the line Ly of slope —\ and con-
tains the point (j1 + a2, (¢j,+a,)), and thus R(¢j, +a,) = Rx(qjy+as)? +0.
This implies that v divides Rx(¢j,+q,), which is a contradiction because
deg(¢j,+a,) < deg(¢2). Therefore, V (7}, 44,) = V(¢j,4a,) - Since No(F) =T
has a single side of slope — Ao,

V(¢jyrar @5 %) —aefhA > (a = (az + 1)) A2 (2)
(@ and (@) imply that

(a1 — 1) A2 > V(eji 10,85 T%) — aefh > (a1 — j1) Ao,

which is a contradiction. Consequently,
V(Ay) — aiefh

because

> Ao, and so

a;
As V(Ag) = V(co) = V(A}) + V(A3), we have
V(AY) —aefh

A

> Xy forevery ©=1,2.

Mii = Ay for every i =1,2.

Thus N3(f1) has a single side of slope —Ag, and so a1 A2 € Z, which is
impossible because a > a1 and as by assumption ged(V (Ap),a) = 1, we have
ged(V (Ag) — aeth,a) = 1, and so a is the smallest positive integer satisfying
kMo € Z. Therefore, f is irreducible over K". O

5. Examples

Let K =TFy((x)) be the fraction field of the formal power series ring over Fa.
It is well known that (K, v) is a valued field with valuation ring Fa[[z]],
maximal ideal M, = (z), K" = K and F, = Fy. Let ¢ =y? +y + 1 and
[ = ¢% + 2kp* + 2%¢% + 2% + 2* € Kly] with k and s are two non-
-negative integers. We need to test the irreducibility of f over K" = K.
First, if s = 0, then by Hensel’s lemma, f is reducible over K" If s € {0, 1}
or k = 0, then Ny (f) has at least two distinct sides, and so by theorem of the
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polygon f is reducible K" Now assume that £ > 1 and s > 2. In this case,
Ng(f) = S has a single side of height 3 and length 6. As ged(3,6) =3 # 1,
the Eisenstein-Schénemann irreducibility criterion failed. So, we have to use
the generalized version proposed in Theorem As ¢ is irreducible over
F,, ¢ is a key polynomial of v, and so ¢ induces an extension of v to K|y]
defined by V(P) = min{ev(p;) +ih, i = 0,...,n} for every positive coprime
integers e, and h and for every P € K[y, where P = Y"1 p;¢’ is the ¢-
expansion of P. Extended by V(A/B) = V(A) —V(B) for every A and B in
Ky]*, V is a valuation of K (y). We have to investigate the following cases:

(a) Ifk > 1and s > 2, then RA(f) = 23+1 = (2+1)(22+2+1). Thus by (1)
of Theorem 3.2, we conclude that f is reducible over K™

(b) If k =1 and s > 2, then RA(f) = 2z° + 22 4+ 1 is irreducible over k.
Thus by (1) of Remark [ f is irreducible over K. Let L = K(«), where
a € K is a root of f. Then xRy, = p?, where f(p) = 2-3 = 6 is the
residue degree of p.

(c) Similarly, if k> 1 and s =2, then RA(f)=23+2+1 is irreducible over
ky. Thus by (1) of Remark ] f is irreducible over K. Let L = K(«),
where a € K is a root of f. Then xRy =p2, where f(p)=2-3=6 is the
residue degree of p.

(d) f k =1 and s = 2, then RA(f) = 2> + 22+ 2+ 1 = (2 + 1)%. Then
Yv=2z4+1,t=1,h=1, and e = 2. Let V be the augmented valuation
of v with respect to ¢ and A = 1/2 and let ¢ = ¢* +z be a lifting of ¢
with respect to ¢ and A. Then f = ¢ + x*. Since V(¢) =h =1 and
V(z)=e0 =2, V(p2) =2, V(¢3) =6, and V(z*)=8. Thus Na(f)=T
has a single side. As also ged(V (z*), 3) = ged(8,3) = 1, by (2) of Theo-

rem [32] f is irreducible over K. Let L = K(«), where o € K is a root
of f. Then xRy, = p®, where f(p) =21 = 2 is the residue degree of p.

(2) Let f(z) = ¢° + 24x¢* + 12¢3 + 15(16z + 32)¢ + 48 and ¢ € Z[x]
be a monic polynomial of degree at least 2, whose reduction is irreducible
in Fax].

For p = 2, N4(f) = S has a single side of length { = 6, height H = 4, and
so d = 2. By Theorem Bl f(x) has at most 2 irreducible factors in Qs[z].
As fs(y) = y* +y+1is irreducible over Fy[x], then for ¢ = 2® +z+1, fs(y)
is irreducible over ky ~ Fy. Thus by Theorem B2 f(x) is irreducible over
Q3. Let L = Q(«) and Ry, its ring of integers, where « is a complex root of
f(z). Since f(x) is irreducible over Qq, there is a single prime ideal p of Ry,
lying above 2. Furthermore, 2R, =p3 and f(p)=6 is the residue degree of p.
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Let f(x) = ¢%+122¢>+9(162+32)¢+3(162+16) and ¢ = 22 +z—1 € Z[z].
For p = 2, ¢ is irreducible over Fy, Ng(f) = S has a single side of length
I = 6, height H = 4, and d = 2. By Theorem B f(x) has at most 2
irreducible factors in Qz[x]. As fs(y) =v* +jy+i+1=(w—-Dy—j5—1)
in kgly], then f(x) has exactly two irreducible factors over Qs.

For p = 3, ¢ is irreducible over F3. Since f(z) satisfies the Eisenstein-
-Schonemann irreducibility criterion conditions, f(z) is irreducible over Q3.
Let K = Q(«), where « is a complex root of f(x). By Corollary 3.3
2Rk = p3p3, with respective residue degree 2 each prime ideal factor and
3Ry = p% with residue degree 2.
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