
�

�
�����������	
��	�������

DOI: 10.2478/tmmp-2013-0038
Tatra Mt. Math. Publ. 57 (2013), 101–118

A NEW STREAM CIPHER BASED

ON FIALKA M-125

Eugen Antal—Viliam Hromada

ABSTRACT. In 2010, a new cipher Hummingbird by [Engels, D.—Fan, X.–
–Gong, G.—Hu, H.—Smith, E. M. Hummingbird: Ultra-Lightweight Cryptogra-
phy for Resource-Constrained Devices, in: 1st International Workshop on Light-
weight Cryptography for Resource-Constrained Devices. Tenerife, Canary Islands,
Spain, January 2010] was proposed. It is a combination of both block and stream

cipher and its design was inspired and motivated by the Enigma machine. The
encryption process of the cipher can be considered as a continuous running of a
rotor-cipher. Four block ciphers play the role of the rotors that apply the permu-
tation to the 16-bit words. This cipher motivated us to investigate a new cipher
design based on a Fialka cipher machine.

Fialka M-125 is an Enigma based rotor-cipher machine used during the Cold

War. It is considered one of the most secure cipher machines. Advantages of this
cipher are based on the elimination of the Enigma’s known weaknesses. There
are no known attacks on this cipher. In this paper we introduce a new cipher
based on the Fialka machine. We transform the Fialka encryption algorithm to a
modern stream cipher. The rotors are represented as S-boxes and shift registers
are used to provide the rotor clocking. We propose three different versions of the

cipher and investigate the statistical properties of their outputs. In the article we
also provide basic implementation details and basic performance analysis.

1. Introduction

Couple of years ago, cryptography could be divided into two disjoint parts -
classic cryptography (usually ciphers and ciphering machines used before
the WWII) and modern cryptography (ciphers and machines used after
the WWII). But in recent years a new trend has emerged - designs of modern
ciphers are inspired by those older “classic” ciphers which are even today con-
sidered secure. One of these new modern ciphers is the Hummingbird cipher [3].

c© 2013 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60, 68P25.

Keywords: lightweight cryptography, stream ciphers, Fialka M-125.
This work was partially supported by the grant VEGA 1/0173/13 and by the grant APVV-
-0586-11.

101

EUGEN ANTAL—VILIAM HROMADA

Its design is based on the famous old German ciphering machine Enigma and
is considered a combination of block and stream ciphers. This interesting trend
led us to an idea of designing a stream cipher that would be based on a different
old, but still considered secure, cipher Fialka [7].

Stream ciphers are ciphers where the encryption/decryption transformation
changes with each processed symbol. They are said to have a “memory”, because
usually the next state of the cipher depends either on previous states of the cipher
or on previous output of the cipher. Usually, they are constructed as a binary
additive cipher where the output of a pseudo-random generator is xored onto
a plaintext. Stream ciphers are considered faster and less-hardware-demanding
than block ciphers, which makes them suitable for low-resource environments
and also for lightweight cryptography. In 2008, the eSTREAM [1, 8] project
orientated on new stream ciphers ended, and as a result, several stream ciphers
were proposed for use in cryptography, either as software ciphers or hardware
ciphers.

Stream ciphers (or their principles) have been presented in the world of se-
curing information for many years. Russian encryption machine called Fialka [7]
is an example of a mechanical ciphering machine used in Cold War. Its design
resembles a stream cipher, because for each letter of plaintext a different en-
cryption, dependent on previous ones, is used (in other words, two same letters
at a different position in a plaintext are likely to encrypt to two different letters
in ciphertext). The construction uses a collection of rotors and fixed permu-
tations, on the other hand, modern stream ciphers use linear and non-linear
feedback shift registers, non-linear filtering functions and non-linear clocking of
registers.

This difference between Fialka construction and the construction of modern
stream ciphers inspired us to design a stream cipher, which would follow Fialka
construction’s principles.

We designed several variants of this stream cipher with different sizes of inter-
nal states and different number of rounds. We carried out a number of statistical
and performance tests to test our constructions.

Chapter 2 contains the description of Fialka’s algorithm and the ciphering
machine. In chapter 3 we present our constructions, which were tested and the
results are summarized in chapter 4. Chapter 5 provides a summary of our work.

2. Fialka M-125 cipher design

Fialka M-125 is an electro-mechanical rotor-cipher machine (Figure 1) [7].
The cipher machine was created by the Soviet Army. It was first introduced
around 1965, and was officially used until the collapse of the Soviet Union
in 1991 [7].

102

A NEW STREAM CIPHER BASED ON FIALKA M-125

Figure 1. The Fialka cipher machine [6].

The design of the Fialka cipher machine is largely based on the well-known
cipher machine Enigma. There are some major differences in the machines con-
struction that can imply the effort to correct the known Enigma’s weaknesses.
The main improvements are [7]:

• The number of rotors is increased up to 10.

• The Enigma’s simple rotor stepping is replaced by advanced - blocking pin
based two directional rotor stepping.

• Any input letter can be self-encrypted.

In this article we do not provide a full encryption mechanism of the Fialka
cipher, and we do not investigate all the cipher’s components in depth. Instead,
we will focus only on some parts of the cipher, necessary to keep the cipher’s
main operation principle.

For complete technical details and electronic description please refer to [7] and
web page http://www.cryptomuseum.com/crypto/fialka/index.htm that also in-
cludes Fialka simulators. For description and for mathematical model of the
Fialka cipher please refer to [2].

103

EUGEN ANTAL—VILIAM HROMADA

2.1. Construction of the cipher

In this section we describe the Fialka machine’s main mechanical components.
We focus on components that represent the main principle of the cipher’s design.

The Fialka M-125 device itself can be divided into several parts, based on
their functionality [7]:

• Keyboard containing 30 keys , that serves as an input of the cipher ma-
chine. Pressing a key sends an electrical signal from the key into the out-
put of the cipher machine through several electro-mechanical components
of the device listed below.

• Card reader that allows to use punched cards as a fixed permutation
of the input alphabet. Fialka also contains a metal triangle that can be
inserted into the card reader replacing the punched cards with identity.

• The core of the encryption mechanism of the Fialka cipher machine is
realized by a set of 10 rotors. After encrypting a letter, rotors rotate
to new positions, so in the next step a different permutation of the input
alphabet is realized.

• The set of 10 rotors is linked to the static parts of the machine by a con-
nection to two static components, the entry disc (from the right) and the
reflector (from the left). These components have similar structure like the
rotors. Each of them contains 30 contacts. The functionality of the reflec-
tor is important, it is used to reflect the signal back to the set of rotors.
The reflector’s wiring is special, it enables the self-encryption of the in-
put letter. Because of the special reflector, a different operation mode has
to be used for encryption and decryption.

The encryption process is based on electro-mechanical principles. The com-
plex electrical circuit serves to perform the encryption of the input letter. The
corresponding mechanical components change the configuration of the cipher
(rotors are moved into new positions, so in the next step a different permutation
of the input alphabet is realized). A configuration of the electrical circuit de-
pends on the initial settings of the machine, and is changed after each encrypted
letter. The output letter can be printed to a tape, or punched using a 5-bit
code [7]. The full encryption procedure is summarized in Algorithm 1.

Based on article [2] we can shortly describe the encryption mathematically.
We can map the plaintext and ciphertext alphabet to the ring

ZN = {0, 1, . . . , N − 1},

where N is the number of symbols (in original Fialka N = 30).

104

A NEW STREAM CIPHER BASED ON FIALKA M-125

Algorithm 1 Fialka encryption procedure.

Require: Secret key K

1: configure the cipher (initial settings) using the secret key K

2: for all pressed keyboard letters do

3: keyboard to card reader substitution;

4: card reader to entry disc substitution;

5: for i:=1 to 10 do

6: rotor substitution;

7: end for

8: reflector substitution;

9: for i:=10 to 1 do

10: inverse rotor substitution;

11: end for

12: card reader to entry disc inverse substitution;

13: keyboard to card reader inverse substitution;

14: print the output;

15: perform rotor clocking;

16: end for

The encryption process performs the following operation in each step [2]:

1. a single letter x ∈ ZN is encrypted

y = Enc(x) =
(
IP−1 ◦ROT−1[t] ◦REF ◦ROT [t] ◦ IP)

(x),

where IP is an initial permutation given by keyboard/card reader/entry
disc substitutions (key-dependent), REF is a reflector, and ROT is a time
(and key) dependent permutation given by the rotors;

2. internal state of the machine is updated, the rotors are rotated into new
positions.

Permutation ROT in a 2l-rotor machine (two independent parts, each has l
rotors - see Section 2.3) is given as [2]

ROT [t] = σ(l)[t] ◦ ρ(1)[t] · · ·σ(2)[t] ◦ ρ(l−1)[t] ◦ σ(1)[t] ◦ ρ(l)[t], (1)

where ρ(i)’s are clockwise rotors, σ(i)’s are counter-clockwise rotors (so σ(l) is
rotor number 1, ρ(1) is rotor number 2, etc.) and t represents the state of the
cipher varying with time (each processed symbol) [2].

105

EUGEN ANTAL—VILIAM HROMADA

2.2. Rotors

The core of the encryption mechanism of the Fialka cipher machine is real-
ized by rotors. A rotor is a cylinder [5] from a non-conductive material with two
bases containing a set of electrical contacts. These contacts represent the in-
puts and the outputs of the rotor. The contacts are wired (connected) inside the
discs that can be imagined as a fixed permutation of 30 input/output positions.
The actual permutation of the input alphabet depends also on the relative po-
sition of the rotor (it can be placed in 30 different positions) [7].

Two different types of rotors are known to exist: a rotor with fixed wiring
called PROTON-1, and adjustable rotor called PROTON-2, respectively, [7].
The core of adjustable rotors containing the contacts and the wiring could
be exchanged between different rotors, or could be rotated or turned over in-
side a single rotor. The PROTON-2 rotors bring only additional rotor settings
(increasing the key space of the cipher), but the rest of the encryption mechanism
still remains the same. We will focus on the standard PROTON-1 rotors.

The rotors are divided into two independent parts, where one part rotates
clockwise and the other part rotates in opposite direction (details explained in
Section 2.3). Let S be a permutation realized by some rotor in a default position.
If the clockwise rotor in time t is moved by c[t] steps from a default position,
then the permutation ρ[t] can be expressed as [2]

ρ[t] = S(x+ c[t])− c[t], (2)

where operations +,− are in ZN (modulo N). Similarly, for counter-clockwise
rotor we get [2]

σ[t] = S(x− c[t]) + c[t]. (3)

2.3. Rotor clocking

The clocking (rotation) of rotors is more complicated than in the case of
standard rotor-cipher machines like Enigma. The rotors of the Fialka machine
are divided into two independent parts. If we mark the rotors with numbers
in increasing order with numbers from 1 to 10, the rotors marked with odd
numbers represent one independent part and the rest another independent part
(see Figure 3) [2].

The rotors in these two independent parts are rotated in opposite direc-
tion (Figure 3. Each rotor has a number of blocking pins on its perimeter
(see Figure 2). Presence of the blocking pin in a specific position (that was dif-
ferent in case of even-numbered rotors from the case of odd-numbered ones) pre-
vents all the following connected rotors from rotation. In case of even-numbered
rotors the blocking pin blocks all the even-numbered rotors to the right of that
rotor. And in case of odd-numbered rotors the blocking pin blocks all the odd-
numbered rotors to the left of that rotor [2, 6]. How the rotors are connected
illustrates the dashed line in Figure 3.

106

A NEW STREAM CIPHER BASED ON FIALKA M-125

Figure 2. Set of 10 rotors [6].

Figure 3. Rotation direction of two independent parts of rotors [2].

Rotor positions influence the individual rotor permutations according to equa-
tions (2), and (3), respectively. However, they also influence the (absolute) po-
sition of blocking pins in a given time, which in turn influence the positions
of rotors in the next step.

Rotors marked with 2 and 9 are rotated by one position in each step because
these are not controlled by any blocking pin [7].

Let us simplify the situation to a single set of l rotors (one independent part),
whose stepping is connected using blocking pins. The first rotor rotates freely,
i.e., in each clock c[t + 1] = c[t] + 1 mod N . We can describe the positions of
blocking pins on a rotor by a polynomial a(x) ∈ Z2[x]. The coefficient ai = 0,
if the blocking pin is present at i-th position, and ai = 1 if the blocking pin is
not present. The default position has i = 0, the next position in the direction
of rotation has i = 1. Then a single step of the rotor can be simply written as

107

EUGEN ANTAL—VILIAM HROMADA

Figure 4. Design of a single rotor.

a polynomial multiplication, e.g., if the rotor is moved in clock t, we get, see [2]

a(x)[t+ 1] = x · a(x)[t] mod (xN + 1). (4)

Further information about rotor clocking with an example can be found in [2].

3. New stream cipher design

In Section 2 we introduced the Fialka like rotor-machine’s main operation
principle. The core encryption mechanism of the cipher are the rotor permutation
and advanced blocking pin based rotor clocking. In this section we will introduce
a modern stream cipher based on these principles. We will show, how to convert
this historical cipher machine to the family of modern ciphers.

To keep the Fialka’s operation principle we need to represent the rotor per-
mutation and the corresponding blocking pin based rotor clocking.

In a modern stream cipher construction the rotor permutations can be con-
sidered as a simple S-box. Based on equation 2, we can describe the rotor per-
mutation S using the Figure 4, where λ is a rotor offset and operations +,−
are in ZN (modulo N). In this construction (see Figure 5) a counter λ is used
(c[t] in equation (2)) to perform the rotation of the rotors and use modular
addition and modular subtraction to apply the rotor’s offset (change the rotor
permutation).

The rotor clocking based on Section 2.3 is performed and controlled by block-
ing pins available on the rotors. In our case the pins are designed as circular
binary shift registers Vi in Figure 5. The binary value in a specific position (e.g.,
the rightmost bit) controls the movement of the next rotor. If the blocking pin
is available (the register’s value at a specific position is 0) or the value of the
incoming signal from the previous rotors is 0, all the following rotors (of the cor-
responding independent set of rotors) are not rotated, thus none of the following
shift registers V are shifted and values of λ remain unchanged.

108

A NEW STREAM CIPHER BASED ON FIALKA M-125

Figure 5. New cipher design (short).

The Fialka cipher (based on Figure 5) can be constructed using the following
operations (brackets contain the notation in Figure 5):

• S-box substitution (Si, Ref),

• Modular addition and subtraction (+.−),

• Counter (λ, ++,−−),

• Circular shift registers (V),

• Binary AND (&).

As visible on Figure 5 - we need only 8 shift registers, V 2 and V 9 are unused,
because the last rotors in each independent part do not control any further rotor
and the rotor rotation is unnecessary operation in this case.

The complete identical Fialka’s operation can be constructed using 8 shift reg-
isters, 8 AND gates, 10 counters, 10 S-boxes for the rotor with 10 corresponding
inverse S-boxes, 1 S-box for the reflector with the corresponding inverse S-box.

For an n − bit version of the cipher the size of the λ counter is n− bits, the
size of a single V shift register is 2n− bits and size of a single S-box is 2n− bits.
We adapted the encryption process from Section 2.1, where an n − bit vector
x ∈ Z

n
2 is encrypted

y = Enc(x) =
(
ROT−1[t] ◦REF ◦ROT [t]

)
(x),

where y ∈ Z
n
2 represents ciphertext, REF is a reflector realized by a bijective

n−bit to n−bit S-box, andROT is a permutation given by the rotors. We omitted
the IP and its inverse, because it does not contribute to cipher’s security.

Permutation ROT is given as

ROT [t] = σ(l)[t] ◦ ρ(1)[t] · · ·σ(2)[t] ◦ ρ(l−1)[t] ◦ σ(1)[t] ◦ ρ(l)[t], (5)

where l is a number of rotors in one independent part, ρ(i) and σ(i) represent
rotor permutation realized by bijective n−bit to n−bit S-boxes and t represents

109

EUGEN ANTAL—VILIAM HROMADA

the state of the cipher - the state of the shift registers V i. The decryption process

x = Dec(y) =
(
ROT−1[t] ◦REF−1 ◦ROT [t]

)
(y),

where x ∈ Z
n
2 represents plaintext, y ∈ Z

n
2 represents ciphertext, REF−1 is

realized by the inverse S-box of REF , and ROT is a permutation given by the
rotors.

The potentially highest period of the Fialka cipher is N l [2], where l is
the number of rotors. The clocking period of the system of l rotors, with
(w1, w2, . . . , wl−1, wl) blocking pins on individual rotors is (regardless of the
position of blocking pins)

Tl =
N l

∏l−1
i=1 gcd(N − wi, N)

. (6)

In the following sections we will introduce three different versions of the ci-
pher, 4-bit, 5-bit and 8-bit construction.

All these versions are based on a construction presented in Figure 6 which
could be found in Appendix B of this paper.

3.1. 4-bit construction

Based on the new design described in section 3, we implemented a 4-bit version
of this stream cipher, n = 4, i.e., the input/output of the cipher are 4 bits
long. We used S-boxes that have good properties against linear and differential
cryptanalysis from [9].

We consider two types of key, one for a longer period of time and one that is
changed for each encryption.

The output period of this 4 bit version is 220 [2].

As the secret key of this cipher we used initial values of the shift registers Vi’s
and initial λi’s.

The 4-bit construction can be summarized:

• 11 S-boxes Z4
2 → Z

4
2 with their respective inverses,

• Key length: 200 bits,

• Period: 220.

The key length can be reduced to 192 bits if we ignore the V2 and V9 shift
registers.

3.2. 5-bit construction

The 5-bit cipher design, n = 5, is similar to the version in section 3.1.

• 11 S-boxes Z5
2 → Z

5
2 with their respective inverses,

• Key length: 370 bits,

• Period: 225.

110

A NEW STREAM CIPHER BASED ON FIALKA M-125

In this case the key length can be also reduced by 10 bits. The only problem
of the software implementation is, that the input has to be split by 5 bits, so
the optimal required length of the input on 8-bit processors is 40 bits.

3.3. 8-bit construction

Increasing the bit-length of the cipher causes larger internal state of the cipher.
In case of 8-bit construction based on Figure 6 we need ten 8-bit to 8-bit S-boxes.
S-boxes on rotors take 20480 bits, with the same amount required for inverse S-
boxes and 4096 bits for the reflector, together with its inverse. The shift registers
take 2560 bits for all rotors. The counters take 80 bits.

To reduce the size of internal state, in this construction we will consider
only one S-box with its inverse for all the rotors. The other components remain
without a change. This causes that the size of the internal state is reduced by
36864 bits. The key space of this cipher is also too high. We need 2560 bits for
shift registers and 80 bits for the counters. So in this construction we left out the
shift registers from the cipher’s key. The registers will be fixed. We can consider
the key as 80 bits required to initialize the counters. If we want to increase the
size of key space we can additionally use 80 bits to shift the 10 shift registers
from initial position.

The 8-bit cipher design for n = 8 can be summarized:

• 2 S-boxes Z8
2 → Z

8
2 with its respective inverse.

• Key length: 80 bits (or 160 bits).

• Period: 240.

• Required internal state: 10832 bits.

Reference implementation of the 8-bit version can be found in the Appendix of
this article.

4. New stream cipher analysis

We analysed the performance of the software implementation on 2.8 GHz
Intel Core i7, 4GB 1333 MHz DDR3, Mac OS X 10.7.5.

• 4-bit version - 61 Mbit/sec−367 cycles/B,

• 5-bit version - 82 Mbit/sec−273 cycles/B,

• 8-bit version - 124 Mbit/sec−180 cycles/B.

We also performed statistical testing of our construction. We generated one
hundred 1MB sequences with each version of the cipher and applied the NIST
Statistical Test Suite [4] to each set of sequences at a significance level α = 0.01.
The version of the cipher passed the tests if at least 96 sequences from the
appropriate set passed the tests (their p-values were larger than 0.01). The results
(PASS / FAIL) are presented in tables below.

111

EUGEN ANTAL—VILIAM HROMADA

Our next goal was to made a trade-off between performance and security, we
tried to increase the encryption speed by reducing the number of rotors and by
replacing the modular addition and subtraction by XOR. Lowering the number
of rotors causes smaller key length, 4− bit and 5− bit versions of the cipher with
2l rotors have a key length of 2l∗n+2l∗2n. In case of 8−bit version, rotors have
a key length of 2l ∗n (or 2l ∗n ∗ 2). We also replaced the non-linear operation of
modular addition/subtraction with a faster linear operation XOR.

In the following tables, each column represents one type of the cipher - first
row represents the number of rotors and used operation (mod means modular
addition/subtraction, xor means XOR), second row represents the average speed
of encryption measured in megabits per second and the third row indicates
whether the cipher version passed or failed the statistical testing.

Results for the 4-bit version:

Table 1. 4-bit reduced rotors and XOR version results.

Rotors / operation 10/mod 10/xor 8/mod 8/xor

Speed in Mbit/sec 61 80 72 92

NIST rand. tests PASS FAIL FAIL FAIL

We applied the same experiments to 5-bit version of our implementation. Only
the version with 8 rotors and XOR failed the NIST tests. It is vital to note, that
in case of the 5 bit version, if we reduce it to 8 rotors we have the same period
like in case of 4-bit version with 10 rotors.

Results for the 5-bit version:

Table 2. 5-bit reduced rotors and XOR version results.

Rotors / operation 10/mod 10/xor 8/mod 8/xor

Speed in Mbit/sec 78 83 113 136

NIST rand. tests PASS PASS PASS FAIL

Results for the 8-bit version:

The fastest construction that has passed the statistical evaluation is the 8-bit
version with 6 rotors and operation XOR. Its output speed is 208 Mbps which
corresponds to 107 cycles per byte. We compared these performance results with
eSTREAM candidates’ results presented at:

• http://www.ecrypt.eu.org/stream/perf/pentium-4-a.

112

A NEW STREAM CIPHER BASED ON FIALKA M-125

Table 3. 8-bit reduced rotors and XOR version results.

Rotors / operation 10/mod 10/xor 8/mod 8/xor 6/mod 6/xor

Speed in Mbit/sec 124 134 155 159 200 208

NIST rand. tests PASS PASS PASS PASS PASS PASS

Unfortunately, our design was slower than most of eSTREAM ciphers intended
for software use. For comparision, their performance results are:

• HC-128 - 4 cycles per byte,

• Rabbit - 10 cycles per byte,

• Salsa20/12 - 11 cycles per byte,

• SOSEMANUK - 6 cycles per byte.

We also compared the performance of our design with the performance of
lightweight cipher Hummingbird [3] mentioned in the introduction. The resulting
output speed of Hummingbird was 165 Mbps. This suggests that our design
is in general faster, since our fastest construction has an output speed of 208
Mbps. However, this comparision is only theoretical, because Hummingbird is a
hardware orientated cipher, with implementations done mostly in FPGA, while
we tested its performance as a software cipher written in C language.

We have not yet made any assumptions on the security of this cipher. The
security relies heavily on the original Fialka’s security and as far as Fialka is con-
sidered secure, i.e., there is not a successful attack - and as far as we know there
is not - then we consider our construction secure. Moreover, we have chosen the
S-boxes which are known to be resistant against linear and differential crypt-
analysis [9]. Practically any S-box could be used, e.g., AES S-box in the 8-bit
version, since it is an S-box with well-studied properties. Of course, further se-
curity investigation is needed to ensure that this construction can be considered
secure for everyday use.

5. Summary

In the article, we presented a new construction of a stream cipher based on a
Russian encryption machine Fialka. We carried out performance and statistical
tests of three versions of our construction - 4-bit version, 5-bit version and 8-bit
version. We investigated the number of rotors needed to successfully pass the
statistical NIST-testing suite. Our results show that the 4-bit version with 10
rotors and modular addition/subtraction passes the tests. However, any modifi-
cation of the 4-bit version (XOR operation, less number of rounds) does not pass
the statistical testing. Both 5-bit versions with 10 rotors pass the tests and also

113

EUGEN ANTAL—VILIAM HROMADA

the 8-rotor version with modular addition and subtraction passes the tests. 8-bit
version could be reduced even further - to 6 rotors and it still passed statistical
tests with both modular addition/subtraction and XOR operation. Future re-
search includes hardware implementation, further security research of this type
of construction. Also, we would like to investigate whether this construction
could be modified to a lightweight construction suitable for RFID tags.

Appendix A. Software implementation

In this appendix we present a reference implementation in C of the 8 − bit
version of our cipher design. The corresponding S-boxes have to be inserted into
the source code.

1 #ifndef FIALKACIPHER H
2 #define FIALKACIPHER H
3
4 #include <s t d i n t . h> // u i n t 6 4 t
5 #include <math . h>
6
7 typedef unsigned char byte ;
8 typedef u in t64 t p i n t ;
9

10 #define ROT 10 // number o f ro t o ro s
11 #define N 8 // N−b i t c i phe r
12 #define MOD 256 // pow (2 ,n)
13
14 #define XOR 1 // comment to use modular opera t ion
15
16 const byte REF E[MOD] = {/∗Re f l e c t o r S−box ∗/ } ;
17 const byte REF D[MOD] = {/∗ i nv e r s e r e f . S−box ∗/ } ;
18 const byte SBOX[MOD] = {/∗ ro t o r S−box ∗/ } ;
19 const byte SBOX INV[MOD] = {/∗ i nv e r s e ro t o r S−box ∗/ } ;
20
21 p i n t p ins [ROT] [4] ; // 1 b inary vec t o r − 4 ∗ 64 b i t s
22 byte lambda [ROT] ; // 1 lambda − 8 b i t s
23
24 void setKey (p i n t k1 [] [4] , byte k2 []) {
25 for (int i =0; i < ROT; i++){
26 for (int j =0; j < 4 ; j++) {
27 p ins [i] [j] = k1 [i] [j] ;
28 }
29 lambda [i] = k2 [i] ;
30 }
31 }
32

114

A NEW STREAM CIPHER BASED ON FIALKA M-125

33 /∗ f unc t i on & method pro to t ype s ∗/
34 void wheelStepping (void) ;
35 byte r o t o r s (byte input) ;
36 byte r o to r s Inv (byte input) ;
37
38 void encrypt (byte PT[] , byte CT[] , const long s i z e) ;
39 void decrypt (byte PT[] , byte CT[] , const long s i z e) ;
40
41 /∗ impl . ∗/
42 i n l i n e void wheelStepping (void) {
43 for (register short i =1; i < 10 ; i=i +2){
44 p ins [i] [0] = ((p ins [i][0]>>1) | (p ins [i] [1]<<63)) ;
45 p ins [i] [1] = ((p ins [i][1]>>1) | (p ins [i] [2]<<63)) ;
46 p ins [i] [2] = ((p ins [i][2]>>1) | (p ins [i] [3]<<63)) ;
47 p ins [i] [3] = ((p ins [i][3]>>1) | (p ins [i] [0]<<63)) ;
48 lambda [i]++;
49 lambda [i]%=MOD;
50 i f ((p ins [i] [0]&0 x0000000000000001) == 0) break ;
51 }
52 for (register short i =8; i >= 0; i=i −2){
53 p ins [i] [0] = ((p ins [i][0]<<1) | (p ins [i] [3]>>63)) ;
54 p ins [i] [1] = ((p ins [i][1]<<1) | (p ins [i] [0]>>63)) ;
55 p ins [i] [2] = ((p ins [i][2]<<1) | (p ins [i] [1]>>63)) ;
56 p ins [i] [3] = ((p ins [i][3]<<1) | (p ins [i] [2]>>63)) ;
57 lambda [i] += MOD −1;
58 lambda [i]%=MOD;
59 i f ((p ins [i] [0]&0 x0000000000000001) == 0) break ;
60 }
61
62 }
63
64 i n l i n e byte r o t o r s (const byte input) {
65 register byte x = input ;
66 #ifde f XOR /∗ XOR ∗/
67 for (register short i =0; i < 10 ; i++){
68 x = xˆlambda [i] ;
69 x = SBOX[x] ;
70 x = xˆlambda [i] ;
71 }
72 #else /∗ +,− MOD 2ˆn ∗/
73 for (register short i =0; i < 10 ; i++){
74 x+= lambda [i] , x %= MOD;
75 x = SBOX[x] ;
76 x += MOD − lambda [i] , x %= MOD;
77 }

115

EUGEN ANTAL—VILIAM HROMADA

78 #endif
79 return x ;
80 }
81
82 i n l i n e byte r o to r s Inv (byte input) {
83 register byte x = input ;
84 #ifde f XOR /∗ XOR ∗/
85 for (register short i =9; i >= 0; i−−){
86 x = xˆlambda [i] ;
87 x = SBOX INV [x] ;
88 x = xˆlambda [i] ;
89 }
90 #else /∗ +,− MOD 2ˆn ∗/
91 for (register short i =9; i >= 0; i−−){
92 x+= lambda [i] , x %= MOD;
93 x = SBOX INV [x] ;
94 x += MOD − lambda [i] , x %= MOD;
95 }
96 #endif
97 return x ;
98 }
99

100 i n l i n e void encrypt (byte ∗PT, byte ∗CT, const long s i z e) {
101 for (long i =0; i < s i z e ; i++){
102 byte x = PT[i] ;
103 x = r o t o r s (x) ;
104 x = REF E[x] ;
105 x = roto r s Inv (x) ;
106 whee lStepping () ;
107 CT[i] = x ;
108 }
109 }
110
111 i n l i n e void decrypt (byte ∗PT, byte ∗CT, const long s i z e) {
112 for (long i =0; i < s i z e ; i++){
113 byte x = CT[i] ;
114 x = r o t o r s (x) ;
115 x = REF D[x] ;
116 x = roto r s Inv (x) ;
117 whee lStepping () ;
118 PT[i] = x ;
119 }
120 }
121 #endif

116

A NEW STREAM CIPHER BASED ON FIALKA M-125

Appendix B. Block diagram of the proposed cipher

Figure 6. New cipher design.

117

EUGEN ANTAL—VILIAM HROMADA

Acknowledgements. The authors are grateful to an anonymous reviewer for helpful
comments and remarks.

REFERENCES

[1] ADAMKO L.—VOJVODA, M.—JÓKAY, M.: Statistical Analysis of ECRYPT eS-
TREAM Phase3 Ciphers, EE časopis pre elektrotechniku a energetiku (2008), 193–196,

[2] ANTAL, E.—ZAJAC, P.: Analysis of the Fialka M-125 cipher-machine, in: Cryptologia,
2013, (to appear)

[3] ENGELS, D.—FAN, X.—GONG, G.—HU, H.—SMITH, E. M.: Hummingbird: Ultra-
Lightweight Cryptography for Resource-Constrained Devices, in: 1st International Work-
shop on Lightweight Cryptography for Resource-Constrained Devices. Tenerife, Canary
Islands, Spain, January 2010.

[4] RUKHIN, A. ET. AL.: Sp 800-22 Rev. 1a. a Statistical Test Suite for Random and Pseudo-
random Number Generators for Cryptographic Applications. Technical Report, Gaithers-
burg, MD, United States, 2010.

[5] GROŠEK, O.—VOJVODA, M.—ZAJAC, P.: Classical Ciphers. STU, 2007. (In Slovak)
[6] PERERA, T.—HAMER, D.: General introduction: Russian cold war era M-125 and M-

125-3MN Fialka cipher machines. http://enigmamuseum.com/mfialka.htm, 2005.

[7] REUVERS, P.—SIMONS, M.: Fialka M-125: Detailed description of the Russian Fialka
cipher machines, PAHJ Reuvers & MJH Simons, 2009.

[8] New Stream Cipher Designs - The eSTREAM Finalists, (M. Robshaw, and O. Billet, eds.)
LNCS Vol. 4986, Springer, Heidelberg 2008.

[9] ZAJAC, P.—JÓKAY, M.: On S-boxes with low multiplicative complexity. in: Tatracrypt

2012 : 12th Central European Conference on Cryptology. Smolenice, Slovak Republic,
July 2012, Slovak Academy of Sciences pp. 47–48.

Received September 15, 2013 Institute of Computer Sci. and Math.

Slovak University of Technology
Ilkovičova 3
SK-812–19 Bratislava
SLOVAKIA

E-mail : eugen.antal@stuba.sk
viliam.hromada@stuba.sk

118

http://enigmamuseum.com/mfialka.htm

