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abstract
The paper deals with the uncertainty of the operated system’s possible states hybrid combined optional

functions. Traditionally, the probabilities of the system’s possible states are treated as the reliability
measures. However, in the framework of the proposed doctrine, the optimality (for example, the maximal
probability of the system’s state) is determined based upon a plausible assumption of the intrinsic
objectively existing parameters. The two entropy theory wings consider on one hand the subjective
preferences functions in subjective analysis, concerning the multi-alternativeness of the operational
situation at an individual’s choice problems, and on the other hand the objectively existing characteristics
used in theoretical physics. The discussed in the paper entropy paradigm proceeds with the objectively
presented phenomena of the state’s probability and the probability’s maximum. The theoretical
speculations and mathematical derivations are illustrated with the necessary plotted diagrams.

Keywords: entropy, preference, option, optimization, probability, maximum, alternative, functional,
condition.

introDUction

The diversity of operational circumstances in air transport in conjunction with the multiplicity of 
the aircraft structures as well as the variety of the options for the aircraft and its components maintenance
and repair [1], [2] induce the situations of uncertainty in regards with the modern means of air transport
construction, application, and operation. The specifics of the air transport related issues undoubtedly
lay within the reliability parameters ensuring and predictions [3], [4]. Scientific search for the new
theoretical approaches even in such greatly developed to the tiniest details theories, likewise the reliability
theory, probability will never stop; and that will definitely instigate the progress in knowledge.

Concerning the air transport problems uncertainty evaluation, there is a neatly elaborated approach
named as Subjective Analysis [5] that deals with the subjective preferences of the available alternatives,
which is an implementation of the other entropy paradigm wing initiated in the theoretical physics [6]-
[8] for the purely objective phenomena description. Both entropy theory wings [5] and [6]-[8] are now,
in the presented study, are proposed to be combined with the purpose of the important characteristic of
the reliability measure determination.
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A number of practical applications can be considered through the prism of the entropy paradigm
[9]-[13]. The advantages and opportunities of such investigations are shown in references [14]-[30].

a speciaL case traDitionaL reLiaBiLitY approach

If a simplified consideration, similar to the one in [16]-[19], which is demonstrated in the general
view in Fig. 1, is taken into account, a special case shown in Fig. 2 is worth being analyzed.

Fig. 1. General case of three 
states.

Here, in Fig. 1 and Fig. 2, “0” designates the up state of the system; “1” – damage; “2” – failure. 
The corresponding values of the failure rates λij and restoration rates μij, deemed to be constant in time
t, will determine the process going on in the system. For the substantiated reasons, for the state of “2”
(see Fig. 1) to be a state without an “exit”, it has to be satisfied the conditions of µ20 = µ21 = 0 (see and
compare Fig. 1 and Fig. 2 correspondingly). Then, it, the state of “2”, will be a real failure (see Fig. 2).

Probabilities of the corresponding states: “0”, “1”, “2” – P0, P1, and P2 (see Fig. 1 and Fig. 2) can be
found from the expressions of:
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Fig. 2. Graph of three states
with one without an exit.
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Or on the other hand:

(6)

The probabilities of two other states are:

(7)

and

(8)

correspondingly.
Probabilities of (1) or (6) – (8) are the solutions of the system of the ordinary linear differential

equations of the first order by erlang for the general simplified case illustrated in Fig. 1; and that system
will have the view of:

Also, the solutions of (1) or (6) – (8) are found in the supposition of the initial conditions of:

(10)

For the data:

(11)

the diagrams plotted as both a numerical solution of system (9) and the analytical one by the equations
of (1) and (6) – (8) are shown in Fig. 3.

The vertical axis in Fig. 3 is for the probabilities that were determined in a few different ways. Some
of those probabilities were calculated by the different formulas, therefore designated with the different
characters (letters, indexes) in order to be distinguished. Since for the same probabilities (although found
in different ways) the values coincide (and that fact says about the correctness of suppositions, assumptions
made, mathematical derivations), their curves are identical. Hence, these curves of the probabilities
represent the same, they (and their designations) can be explained in the following way.

In Fig. 3, there used the designations of a1, a0, and a2 as for the probabilities of P1(t), P0(t), and
P2(t) obtained with the computer simulation for the differential equations system (9) with initial
conditions of (10) and data of (11). The same probabilities P1(t), P0(t), and P2(t) are calculated by 
the analytical solutions of (1) and (6) – (8) and designated as P1(t), P0(t), P00(t), and P2(t)
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correspondingly for P1(t), P0(t), and P2(t). The curves for the expressions of (1) and (6): P0(t), P00(t),
which is P0(t), coincide; as well as they both coincide with the numerical solution of a0. The same
corresponding coincidences in pairs are noticeable for two other probabilities of P1(t) and P2(t): a1 coincides
with P1(t) and a2 with P2(t), which says about the correctness of the mathematical derivations and solutions,
embodied in the procedures shown with the expressions of (1) – (11), and accuracy of calculations.

Fig. 3. Numerical and analytical solutions for the probabilities of states.

Now, the important parameter of the system’s reliability, the maximal value of the probability P1(t)
of the damaged “1”, but not the ruined state “2”, must be considered. This may be reckoned as 
an optimum for the timing of the system maintenance or repair if the probability of P2(t) does not exceed
the boundary limits. Such timing is presumably deemed herewith as the optimal maintenance periodicity
topt (also see Fig. 3). And the P1(t) probability maximum P1(topt) is demonstrated in Fig. 3 too.

In order to get the analytical expression for the optimal maintenance periodicity, it has to be used 
the necessary conditions for an extremum existence:

(12)

Condition (12) being applied to equation (7) yield:
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After equalizing (13) to zero, the optimal maintenance periodicity:
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entropY Doctrine trenD

Here is an attempt to demonstrate the entropy paradigm approach. Generally speaking, this branch
of the entropy application theory is named the Hybrid-Optional Combined Effectiveness Functions Entropy
Conditional Optimization (Extremization) Doctrine so far.

Imagine that the processes illustrated with the graphs pictured in Fig. 1 and Fig. 2 have three optional states
of the system (object) considered; and the multi-optional uncertainty of the processes has the cumulative
effect transferring the system from state to state. The probabilities of the system to be in one or another
states are stipulated with the characteristics of the failure and restoration intensities or rates (if a simplest
Poisson flow of events driving the system from one state into another is considered). The objective
measures of reliability such as probabilities of the system’s states in some circumstances may have 
the extremums existed.

In such problem statement, it is not already a problem of Subjective Analysis [5] in the sense of 
the subjective preferences of the available alternatives conditional optimal distribution due to the entropy
measure of the subjective preferences functions uncertainty. It is rather objectively existing, versus
subjectively preferred by someone, situation; therefore, there must be a theoretical explanation based on
the conditions of the multi-optionality (objective characteristics) rather than (versus) the multi-
alternativeness (subjective characteristics). However, this objective consideration should also take into
account its own uncertainty (entropy) measure concerning the objectively existing multi-optionality.

The stated above contemplations result in the objective (purpose) functional:

(15)

where x is an unknown parameter so far;

where p is complex parameter (variable) of the Laplace transformation for the system of equations (9);
then, in (15), is unknown parameter which has to be determined, its ratio of is an analogue
to β parameter in Subjective Analysis [5], γ is the parameter, coefficient, function (uncertain Lagrange
multiplier, weight coefficient) for the normalizing condition.

In the developed hereinafter concept of (15) with (16):
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related to the process’ options (see Fig. 1), is taken into consideration for the entropy (uncertainty degree
of the situation) conditional extremization (optimization).
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expressed with the formulas of (15) – (18) (with the objectively existing measures of reliability rather than
subjectively preferred functions of alternatives [5]), the correct objective result (14) is obtained much easier.

Indeed, using the condition of the objective functional (15) possible extremum existence:

(19)

it can be found that:

(20)

And finally, the concept of (19) and (20) yields the optimal solution of (14), with taking into account
(16).

DiscUssion

Comparing both methods (1) – (14) and (15) – (20), leading to the same result of (14), one can notice
that for the (1) – (14) approach it is necessary to solve the system of the differential equations of (9).

There are analytical means of the characteristic equation:
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The system (24) derives from an assumption of a partial solution existence in the view of:

(25)

for the system of eq. (9).
Since having three roots in the stated problem setting, one obtains partial solutions for the general

solution of the system of eq. (9):
– for the root of k1:

(26)

– for the root of k2:
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– for the root of k3:
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Since getting the linearly independent partial solutions as the equations of (26) – (28), the general
integral will have the view of:
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The system of equations (31) compact working view is:

(32)

The obtained algebraic equations system, eq. (32), solving is possible in different ways. One of them
is a matrix-vector.

It yields for the transformants:
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(34) and (35) one obtains:
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Using the roots for the parameter of p, which will be the same as (2) – (5), and after the images
(transformants) of (33), (36) and (37) decompositions and transformations to the tabulated fractions, 
it is possible to find the sought probabilities of (1) or (6) – (8).

Then, both traditional methods, described with the procedures of (21) – (29) for characteristic
equation and (30) – (37) for the Laplace transformants, are being proceeded with the concept of (12) and
(13) search, which results in optimal solution (14).

Instead, the proposed doctrine approach (15) – (20), gives (14) bypassing the probabilities
determination and extremization.

concLUsions

The developed approach, conventionally named the hybrid-optional combined effectiveness functions
entropy conditional optimization (extremization) doctrine, allowed avoiding the probabilities of states
finding for their further optimization. On its part the doctrine proposes the conditional optimization 
of the uncertainty of the specified functions related with the considered options of the going on process.
Thus, the discussed concept delivers the optimal solution, likewise the maximum of the probability 
of the system’s state, based upon a different theoretical background.

The Jaynes’ formalism [6]-[8] adopted by Subjective Analysis [5] has got an evolution into 
the application presented herewith the paper.
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DWa KierUnKi W teorii entropii JaKo noWY trenD
BaDaŃ nieZaWoDnoŚci operacYJneJ

WspÓŁcZesnYch ŚroDKÓW transportU LotnicZeGo

abstrakt
Artykuł dotyczy niepewności możliwych stanów eksploatowanego systemu hybrydowych połączonych

funkcji opcjonalnych. Tradycyjnie jako miary niezawodności traktuje się prawdopodobieństwa możliwych
stanów systemu. Jednak w ramach proponowanej doktryny optymalność (na przykład maksymalne
prawdopodobieństwo stanu systemu) jest określana na podstawie wiarygodnego założenia o obiektywnie
istniejących parametrach wewnętrznych. Dwa kierunki w teorii entropii uwzględniają z jednej strony
subiektywne funkcje preferencji w analizie subiektywnej, dotyczące wielowariantowości sytuacji
operacyjnej przy indywidualnych problemach wyboru, a z drugiej strony obiektywnie istniejące cechy
stosowane w fizyce teoretycznej. Omawiany w artykule paradygmat entropii kontynuuje obiektywnie
przedstawione zjawiska prawdopodobieństwa stanu i maksimum prawdopodobieństwa. Spekulacje
teoretyczne i wyprowadzenia matematyczne zilustrowano za pomocą niezbędnych wykresów.

słowa kluczowe: entropia, preferencja, optymalizacja, prawdopodobieństwo, alternatywa, funkcjonalność,
warunek.
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