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abstract
The presented paper considers a comparison of the traditional methods for the state maximal

probability determination to the proposed hybrid probabilistic and variational concept. It is shown 
the advantages of the described multi-optional hybrid-effectiveness functions uncertainty measure
conditional optimization doctrine in the sense of avoiding the traditional ways analytical complicatedness
concerning the maximal probability of the possible state determination. The results of the numerical
example are presented.
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introduction

Reliability of engineering depends a lot upon the system of maintenance and maintainability [1].
Entropy approaches evolution [2]-[6] allows taking into account the uncertainty factors acting during
operation, maintenance, and repair of any sorts of engineering objects, for example, aircraft [7].
Theoretically, the individual choices and expected utilities [8], [9] impacting such processes have their
own uncertainties too. That is why the entropy research number has a significantly increasing rate lately
[10]. Mathematically analyzing the structure of economics models [11], it can be noticed that reliability,
maintainability, and risk issues [12] are indispensably connected with both economic levers [11] and
engineering objects (such as aircraft engines and powerplants [13], for instance) technical operation. 
The complexity of the decision making process required axiomatic statements for obtaining the valuable
numerical results [14], [15], however, the subjective analysis entropy maximum principle [6] made it
possible to elaborate the same results in a theorem style based upon the a-priory optimization postulate.
Such approach in combination with the entropy paradigm has already helped in, and will instigate,
solving a lot of applicable problems [16]-[36].

The presented paper has an objective to demonstrate the multi-optional hybrid functions entropy
doctrine advantages for a state maximal probability determination. One of the possible applications it is
the aircraft maintenance optimal periodicity [37]. The comparison of the traditional mass service theory
methods [38], [39] and the proposed multi-optional hybrid functions entropy doctrine one is going to
be realized with the use of the nomenclature mathematics means [40].
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probleM stateMent

For example, considering a Markovian random process with discrete states and continuous time, for
a general case with three states we have a graph shown in Fig. 1 [39].

here, in Fig. 1. “0” designates the up state of the system; “1” – damage; “2” – failure. 
The corresponding values of the failure rates λij and restoration rates μji will determine the process going
on in the system. For the substantiated reasons, for the state of “2” to be a state without an “exit”, it has
to be satisfied the conditions of μ20 = μ21 = 0. Then, it, the state of “2”, will be a real failure.

Fig. 1. Graph of three states of an aircraft functional system

The corresponding, to the graph of Fig. 1, system of ordinary linear differential equations of the first
order by Erlang will have the view of [39]:

(1)

here, in the system of equations (1), P0, P1 and P2 – probabilities of the corresponding states (see 
Fig. 1); t – time. The task is to find the maximal value for P1, or optionally for P2.

traditional Ways oF deterMination

One way is through the characteristic equation. In accordance with [40, Chapter XIII, § 30, pp. 
108-113], the characteristic equation for system (1) will be similarly (likewise) [40, Chapter XIII, § 30,
p. 109, (5)]:

(2)

Determinant (2) yields:
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From (3) it can be found the roots of k1,2,3. For each root ki of Eq. (2), (3), namely k1, k2, k3 we will
write down the system of linear uniform (homogenous) algebraic equations with respect to their
coefficients , , , [40, Chapter XIII, § 30, p. 108, (3)]. The system derives from an
assumption of a partial solution existence in the view of [40, Chapter XIII, § 30, p. 108, (2)] for the
system of Eq. (1). Since having three roots in the stated problem setting, we obtain, [40, Chapter XIII,
§ 30, p. 109], the solution of the system of Eq. (1).

The other method of the system of Eq. (1) solution is represented with the Laplace transformations in
the operational calculus [40, Chapter XIX, pp. 400-432].
The system of Eq. (1) is transformed with [40, Chapter XIX, § 1, p. 401, (4)]:

(4)

where p – complex parameter (variable) of the laplace transformation.

The function F(p) is called the Laplace transformant (image) of the function f(t), which is called 
the initial function, or original. The indication is [40, Chapter XIX, § 1, pp. 401, 402, (7)]:

(5)

In accordance with the theorem for transformants of derivatives [40, Chapter XIX, § 8, p. 409, (27)],
the system of Eq. (1), taking into account the initial conditions of the problem, that is for the probabilities
of the system’s possible states: , , t0 = 0, will have the corresponding algebraic
system.

(6)

(7)

The obtained algebraic equations system, Eq. (7), solving is possible in different ways. One of them
is a matrix-vector.

let us rewrite the system of Eq. (7) in the following style:
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(8)

The matrix for the transformation of the system of Eq. (8) will be [40, Chapter XXI, § 1, p. 510, (5)]:

(9)

The needed (unknown/wanted/sought) vector-column of transformants is:

(10)

Then the transformation of the system of Eq. (8) is [40, Chapter XXI, § 8, p. 522, (5)]:

(11)

Or, to make it shorter it is [40, Chapter XXI, § 8, p. 523, (6)]:

(12)

where B – vector-column of free members of the system of Eq. (8):
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The required solution of Eq. (10) will be [40, Chapter XXI, § 9, p. 523, (2)] found with the use of
the inverse matrix M–1:
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The last equation (14) with taking into account [40, Chapter XXI, § 7, p. 521, (5)]:
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M, [40, Chapter XXI, § 7, p. 521, (4)]; can be written as [40, Chapter XXI, § 9, p. 523, (3)]:
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(16)

or, in the developed view [40, Chapter XXI, § 9, p. 523, (4)]:

(17)

where Mij – algebraic addition of the element of mij, [40, Chapter XXI, § 2, p. 512], of the initial matrix
Eq. (9).

Fulfilling multiplying the matrixes in the right hand part of Eq. (17) we will obtain [40, Chapter XXI,
§ 9, p. 523, (5)]:
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Compare the last determinants of the Eq. (22) and (23) with the determinants of the Eq. (3).
Now, applying the matrix-vector approach of Eq. (8)-(23), in accordance with Eq. (14)-(18), it yields

for the transformant of F0 the following expression:

(24)

let us designate for members in Eq. (19)-(21) and Eq. (22)-(24).
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(34)

(35)

where f1 = 1 and g1 = b1 + c1 + d1 correspondingly with the denominators of Eq. (24)-(33), i.e. of 
the determinant Eq. (22) or Eq. (23); – corresponding roots, here; and with corresponding coefficients
of the decomposition.

At last for the image (transformant):
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And for the probability (original) of Eq. (1):
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In accordance with the graph (see Fig. 1) one may state that the developed aircraft given functional
system maintenance improvement influences the corresponding values of the failure rates λij and
restoration rates μji determining the process going on in the system.
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The problem might be, for instance, to choose an optimal maintenance periodicity for the aircraft
given functional system. In its turn, it might be done likewise in example described in reference [37].

On condition that probability of the failure state “2”: P2 does not exceed (go beyond) the accepted limit
(level), whereas (while) the up (normal operation conditions) state of the system designated as “0”
probability: P0 is not lower than the accepted level (limit), the corresponding maximum of the damage
state P1 can be considered as an optimum for the aircraft given functional system maintenance periodicity;
that has been considered, discussed, and disputed in references [17, 20, 22, 25].

let us consider the firs derivative of the probability of the damaged but not failure (ruined, crash,
break, fracture, split, crack, rupture) state P1, Eq. (39), with respect to time t:
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experiMentations (trials etc.)

Now, it is suggested to conduct experimentations (tests, trials, mathematical modeling, computer
simulation, numerical or calculation experiments [37] etc.) with the obtained above theoretical studies,
mathematical derivations, and statistical search results.

In order to illustrate this point for the example considered (see Fig. 1), the mathematical modeling has
been realized for such initial data for the probabilities: , , t0 = 0, and other

values: h–1; h–1; h–1; h–1; h–1;

h–1; h. h is found with the expression of Eq. (49).

optional Method
proposed hypotheses (statements, problems)

herein it is suggested to formulate the own concept (idea, problem, hypotheses).
In such respect [1-40], the considered example may be given an attention to in regards with the Multi-

Optional Hybrid-Effectiveness Functions Uncertainty Measure Conditional Optimization Doctrine (method,
approach, concept) applicable (used, implemented) to the aeronautical engineering optimal maintenance
periodicities determination [17, 20, 22, 25].

The optimal values of aeronautical engineering maintenance periodicities can be obtained not only 
in the entire probabilistic way, but also in a hybrid partially probabilistic partially optional way [17, 20,
22, 25].

The essence of the doctrine (method, idea, approach, concept) is to consider the process developing
in the system from the position of some hybrid optional functions distribution optimality.

Consider the options essential to the system.
Objective functional, like proposed in references [17, 20, 22, 25], is as follows:

(50)

where x is an unknown parameter; is the multi-optional hybrid functions depending upon 

the options effectiveness functions of ; is the intrinsic parameter of the system and 
the process, which is the ratio of the optimal (delivering the sought maximal value to the probability) time

of the maintenance periodicity, it is unknown yet for such problem formulation and the time of
is going to be determined as a solution, i.e. it is not the Eq. (49) so far, however it will be, that is why

the indication is the same, to the flow intensity ; , Eq. (20), is the algebraic addition of the initial
elementary intensities matrix M, Eq. (9), formed in the style likewise from the Erlang’s system, Eq. (1),
element of m12; γ is the parameter, coefficient, function (uncertain lagrange multiplier, weight
coefficient) for the normalizing condition.
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Consider an extremum existence necessary conditions for the objective functional of (50), [17, 20, 22,
25]:

(51)

(52)

From where:

(53)

After that, we have got the law of subjective conservatism on one hand and on the other hand the similar
to Eq. (48) expression:

(54)

At last, we obtain:

(55)

After that likewise Eq. (48), (49):

(56)

And finally equivalent with Eq. (49) with taking into account Eq. (30), (32) for the roots, i.e. 
the second, third, and fourth expressions of the Eq. (50):

(57)

(58)

discussion

Thus, the result of Eq. (49) is obtained in absolutely not probabilistic rather in the Multi-optional
hybrid-effectiveness functions uncertainty measure conditional optimization doctrine way [17, 20, 22, 25].

The same approach is applicable to with yielding the parallel to the Eq. (49) and (59) results.
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Now we ought to say that for the situation when the probability of P2(t) undergoes the extremum
instead of the probability of P1(t), the problem, due to the symmetry, has a symmetrical solution:

(59)

conclusion

That is the system according to the developing stationary poison flow process has the possible states
optimal options related with either the system of parameters {ki, λ02, d1} or {ki, λ01, c1} values for 
the initial moment probability of the state “0” being equaled to “1”. The proposed optional method
discovers an important property of the process (its optimality); moreover, the optional method is more
compact and applicable, for example, for the aeronautical engineering optimal maintenance periodicities
determination.
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Multiopcjonalna hybrydoWa 
FunKcja entropii jaKo zasada dla oKreślenia
MaKsyMalnego praWdopodobieństWa stanu

systeMu dynaMicznego

abstrakt
W prezentowanym artykule rozważono porównanie tradycyjnych metod określania maksymalnego

prawdopodobieństwa stanu systemu dynamicznego z zaproponowaną  hybrydową koncepcją probabilistyczną
i wariacyjną. pokazano zalety opisanej wielo opcjonalnej funkcji hybrydowo-efektywnościowej niepewności
pomiaru i zasadę optymalizacji warunkowej w tym sensie, że prezentowana koncepcja unika tradycyjnych
metod analitycznych dotyczących maksymalnego prawdopodobieństwa możliwego określenia stanu układu
dynamicznego. Niezawodność urządzeń technicznych w dużym stopniu zależy od stanu systemu utrzy-
mania ruchu i konserwacji. Entropia określenia stanu pozwala na uwzględnienie czynników niepewności
działających podczas eksploatacji, obsługi technicznej i naprawy wszelkiego rodzaju obiektów inżynieryjnych,
na przykład statków powietrznych. W końcowej części przedstawiono wyniki przykładu numerycznego.

słowa kluczowe: entropia, system dynamiczny, ryzyko, procesy Markowa.
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