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Abstract: The paper deals with the development of the finite element method (FEM) model of piezoelectric 

beam elements, where the piezoelectric layers are located on the outer surfaces of the beam core, which is made 

of functionally graded material. The created FEM model of piezoelectric beam structure is reduced using the 

modal truncation method, which is one of model order reduction (MOR) method. The results obtain from 

reduced state-space model are compared with results obtain from finite element model. MOR state-space model 

is also used in the design of the linear quadratic regulator (LQR). Created reduced state-space model with 

feedback with the LQR controller is analysed and compared with the results from FEM model. 
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1 Introduction 

Smart materials are a very important building blocks in mechatronic applications [1]. 

These materials include shape memory materials, magnetorheological, functionally graded, 

piezoelectric, and other types of modern materials [2]. Their main feature is their possibility 

to extend the functional usage of a given system, to modify the dynamic behaviour of a given 

system or to allow a return to the original state of the system under certain conditions.  

Frequently used smart materials are piezoelectric materials, which couple the mechanical 

and electrostatic fields. This physical coupling predetermines piezoelectric materials for use 

as sensors or actuators [3]. They allow the mechanical deformation of piezoelectric material 

caused by external forces to be converted to an electric potential on outer surfaces of 

piezoelectric material and vice versa electrical potential on outer surfaces of piezoelectric 

material caused by external loading to be converted to a mechanical deformation of 

piezoelectric material. Such use of piezoelectric materials in mechatronic systems is closely 

connected to control systems and controller design according to defined requirements. In 

mechatronic systems the so-called modern control is frequently used [4]. State-space model of 

a given physical system is used in the design of controllers using modern control theory. From 

a control viewpoint, it is very desirable that the state-space model is not too large. The finite 

element method (FEM) [5] is most often used for the physical description of a given system, 

but the FEM model is dimensionally significantly larger than the state-space model suitable 

for control purposes. It is therefore necessary to reduce the size of FEM model and this 

process is called model order reduction (MOR) [6]. Reduced state-space model based on 

detailed FEM model can be used to design of linear quadratic controller (LQR) [7].    

This paper deals with the development of the FEM model of piezoelectric beam element, 

where the piezoelectric layers are located on the outer surfaces of the beam core, which is 

made of functionally graded material (FGM) [8,9]. Connection of FGM beam with 

piezoelectric layers can be considered as suitable smart material composition for mechatronic 

applications.  Subsequently, the FEM model of a system is transformed and reduced to state-
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space model by modal truncation method, which is one of the MOR methods [6].  Created 

state-space model is used to build feedback gain matrix and closed loop reduced state-space 

model is analysed. Developed FEM model, MOR technique, state-space model and LQR 

control are implemented in FEM code MultiFEM, which is programmed in software 

Mathematica [10].  

2 Homogenized material properties of beam 

Let us consider straight sandwich beam with core made from functionally graded 

material (FGM) and top and bottom layers made from piezoelectric material with constant 

material properties – Fig. 1. Cross-section of FGM core has height ℎ𝐹𝐺𝑀 and depth 𝑏, one 

piezoelectric layer has height ℎ𝑝 and depth 𝑏. Cross-section area of FGM core is 𝐴𝐹𝐺𝑀, 

quadratic moment of inertia of FGM core to neutral axis of core is 𝐼𝐹𝐺𝑀, cross-section area of 

one piezoelectric layer is 𝐴𝑝 and quadratic moment of inertia of piezolayer to its neutral axis 

is 𝐼𝑝. 

 

Fig. 1 Beam made of FGM core and piezoelectric layers. 

The composite material of the FGM core arises by mixing two components – matrix and 

fibers, that are approximately of the same geometrical form and dimensions.  

Both the fiber volume fraction 𝑣𝑓(𝑥, 𝑦) and matrix volume fraction 𝑣𝑚(𝑥, 𝑦) are chosen as a 

polynomial function of longitudinal position 𝑥, and with continuous and symmetrical 

variation through its height ℎ𝐹𝐺𝑀 with respect to the neutral plane of the FGM core. The 

volume fractions are assumed to be constant through the cross-section depth 𝑏. At each point 

of the FGM core it holds: 𝑣𝑓(𝑥, 𝑦) + 𝑣𝑚(𝑥, 𝑦) = 1.  

Young modulus of the constituents, i.e., fibers – 𝐸𝑓(𝑥, 𝑦)  and matrix – 𝐸𝑚(𝑥, 𝑦), can 

analogically vary as it is stated by the variation of volume fractions. For effective Young’s 

modulus 𝐸𝐹𝐺𝑀(𝑥, 𝑦) and effective density of FGM core we can write [11] 

𝐸𝐹𝐺𝑀(𝑥, 𝑦) = 𝑣𝑓(𝑥, 𝑦)𝐸𝑓(𝑥, 𝑦) + 𝑣𝑚(𝑥, 𝑦)𝐸𝑚(𝑥, 𝑦) (1) 

  

𝜌𝐹𝐺𝑀(𝑥, 𝑦) = 𝑣𝑓(𝑥, 𝑦)𝜌𝑓(𝑥, 𝑦) + 𝑣𝑚(𝑥, 𝑦)𝜌𝑚(𝑥, 𝑦) (2) 

2.1 Homogenized properties of FGM core 

Homogenized Young’s modulus for axial loading 𝐸𝐹𝐺𝑀
𝐻𝑁 (𝑥), bending 𝐸𝐹𝐺𝑀

𝐻𝑀 (𝑥) and 

homogenized density 𝜌𝐹𝐺𝑀(𝑥) of FGM core with cross-section 𝐴𝐹𝐺𝑀 (height ℎ𝐹𝐺𝑀 and depth 

𝑏) and quadratic moment of inertia 𝐼𝐹𝐺𝑀 can be expressed in form 
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𝐸𝐹𝐺𝑀
𝐻𝑁 (𝑥) =

∫ 𝑏𝐸𝐹𝐺𝑀(𝑥, 𝑦)𝑑𝑦
ℎ𝐹𝐺𝑀/2

−ℎ𝐹𝐺𝑀 2⁄

𝐴𝐹𝐺𝑀
 (3) 

  

𝐸𝐹𝐺𝑀
𝐻𝑀 (𝑥) =

∫ 𝑏𝑦2𝐸𝐹𝐺𝑀(𝑥, 𝑦)𝑑𝑦
ℎ𝐹𝐺𝑀/2

−ℎ𝐹𝐺𝑀 2⁄

𝐼𝐹𝐺𝑀
 (4) 

  

𝜌𝐹𝐺𝑀(𝑥) =
∫ 𝑏𝜌𝐹𝐺𝑀(𝑥, 𝑦)𝑑𝑦

ℎ𝐹𝐺𝑀/2

−ℎ𝐹𝐺𝑀 2⁄

𝐴𝐹𝐺𝑀
 (5) 

Homogenized Youngs’ moduli and density of FGM core are dependent only on axial location 

𝑥 and not on transversal location 𝑦. 

2.2 Homogenized properties of beam with FGM core and piezoelectric layers 

Homogenized Young’s modulus for axial loading 𝐸𝐻𝑁(𝑥), bending 𝐸𝐻𝑁(𝑥) and 

homogenized density 𝜌(𝑥) of beam with FGM core and piezoelectric layers can be expressed 

in form 

𝐸𝐻𝑁(𝑥) =
𝐴𝐹𝐺𝑀

𝐴
𝐸𝐹𝐺𝑀

𝐻𝑁 (𝑥) +
2𝐴𝑝

𝐴
𝐸𝑝 (6) 

  

𝐸𝐻𝑀(𝑥) =
𝐼𝐹𝐺𝑀

𝐼
𝐸𝐹𝐺𝑀

𝐻𝑁 (𝑥) +
2𝐼𝑝𝑧

𝐼
𝐸𝑝 (7) 

  

𝜌(𝑥) =
𝐴𝐹𝐺𝑀

𝐴
𝜌𝐹𝐺𝑀(𝑥) +

2𝐴𝑝

𝐴
𝜌𝑝 (8) 

where 𝐴 is total cross section (𝐴 = 𝐴𝐹𝐺𝑀 + 2𝐴𝑝), 𝐼 is total quadratic moment of inertia and 

𝐼𝑝𝑧 is quadratic moment of inertia of piezolayer to global axis 𝑧. Homogenized Youngs’ 

moduli and homogenized density of beam with FGM core and piezoelectric layers are 

dependent only on axial location 𝑥. 

3 Piezoelectric beam finite element equations 

3.1 Piezoelectric constitutive equations 

Piezoelectric constitutive equations describe the relation between mechanical and electrical 

quantities. The form of the constitutive equations depends on chosen mechanical and 

electrical quantities and can be expressed in two basic configurations. The first configuration 

is expressed by stress tensor components 𝜎𝑘𝑙 and vector components of electric intensity 𝐸𝑘 

and has form 

𝜀𝑖𝑗 = 𝑑𝑖𝑗𝑘𝐸𝑘 + 𝑠𝑖𝑗𝑘𝑙
𝐸 𝜎𝑘𝑙 

𝐷𝑖 = 𝜖𝑖𝑘
𝜎 𝐸𝑘 + 𝑑𝑖𝑘𝑙𝜎𝑘𝑙 

(9) 

where 𝜀𝑖𝑗 are strain tensor components, 𝐷𝑖 are components of electric displacement vector, 

𝑑𝑖𝑗𝑘 are tensor components of piezoelectric constants, 𝜖𝑖𝑘
𝜎  are components of permittivity 

tensor on conditions constant mechanical stress and 𝑠𝑖𝑗𝑘𝑙
𝐸  are components of compliance 

tensor on conditions constant electric intensity [12].  

The constitutive equations can be also expressed by strain tensor components 𝜀𝑘𝑙 and vector 

components of electric intensity 𝐸𝑘 and has form 
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𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝐸 𝜀𝑘𝑙 − 𝑒𝑖𝑗𝑘𝐸𝑘 

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝜀𝑘𝑙 + 𝜖𝑖𝑘
𝜀 𝐸𝑘 

(10) 

where new quantities are components of stiffness tensor 𝑐𝑖𝑗𝑘𝑙
𝐸  and components of piezoelectric 

modulus tensor 𝑒𝑖𝑘𝑙. 

The other equations, which play important role, are relation between the components of strain 

tensor 𝜀𝑖𝑗 and components of deformation 𝑣𝑖 and relation between vector components of 

electric intensity 𝐸𝑖 and electric scalar potential 𝜙. These relations can be expressed as 

𝜀𝑖𝑗 = 1/2 (𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) 

𝐸𝑖 = −𝜙,𝑖 
(11) 

Tensor equations (9) and (10) can be expressed in matrix forms [12], which is more suitable 

for finite element formulations, using symmetry of mechanical and electrical quantities as 

well as material properties. Matrix formulations of constitutive equations (10) can be 

expressed as 

𝝈 = 𝒄𝐸𝜺 − 𝒆𝑇𝑬 

𝑫 = 𝒆𝜺 + 𝝐𝜀𝑬 
(12) 

where 𝝈 is vector (in mathematical meaning) of 6 stress tensor components, 𝑫 is vector of 3 

electric displacement vector components, 𝜺 is vector of 6 strain tensor components, 𝑬 is 

vector of 3 electric intensity vector components, 𝒄𝐸  is 6x6 matrix of mechanical properties, 𝝐𝜀 

is 3x3 matrix of electrical properties and 𝒆 is 3x6 matrix of piezoelectric properties.  

3.2 Piezoelectric FEM equations 

Piezoelectric governing equations for dynamic problems can by obtain by Hamilton’s 

principle, which can be written in form 

∫(𝛿𝐿 + 𝛿𝑊)𝑑𝑡 = 0

𝑡2

𝑡1

 (13) 

where 𝐿 is Lagrangian, 𝑊 is work of external mechanical and electrical forces and 𝑡1 and 𝑡2 

defined considered time interval. Lagrangian of piezoelectric structure is given by equation 

𝐿 = 𝑇 − 𝑈 + 𝑊𝑒 (14) 

where 𝑇, 𝑈 and 𝑊𝑒 is kinetic energy, potential energy, and electric energy of investigated 

structure, respectively. They can be expressed as 

𝑇 = ∫
1

2(𝑉)

𝜌 𝒗̇𝑇 𝒗̇ 𝑑𝑉  

𝑈 = ∫
1

2(𝑉)

𝜺𝑇𝝈 𝑑𝑉 (15) 

𝑊𝑒 = ∫
1

2(𝑉)

𝑬𝑇𝑫 𝑑𝑉  

where 𝒗̇ is velocity vector with 3 components. Virtual work of external mechanical and 

electrical forces can be expressed as 

𝛿𝑊 = ∑𝛿𝒗𝑇 𝑭 − ∑𝛿𝜙 𝑄 (16) 
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where 𝒗 is displacement vector with 3 components, 𝑭 is force vector with 3 components, 𝜙 is 

electric scalar potential and 𝑄 is electric charge. 

Hamilton’s principle (13) can be using equations (15), (16) and constitutive equation (12) 

expressed in following form 

∫ [−∫ 𝜌
(𝑉)

 𝛿𝒗𝑇 𝒗̈ 𝑑𝑉 − ∫ 𝛿𝜺𝑇

(𝑉)

𝒄𝐸𝜺 𝑑𝑉 + ∫ 𝛿𝜺𝑇

(𝑉)

𝒆𝑇𝑬 𝑑𝑉 + ∫ 𝛿𝑬𝑇

(𝑉)

𝒆 𝜺 𝑑𝑉
𝑡2

𝑡1

+ ∫ 𝛿𝑬𝑇

(𝑉)

𝝐𝜀𝑬 𝑑𝑉 + ∑𝛿𝒗𝑇 𝑭 − ∑𝛿𝜙 𝑄] 𝑑𝑡 = 0 

(17) 

Relationship between displacement of point 𝒗 and nodal displacement of finite element 𝒗𝑒 

and between electric scalar potential 𝜙 of point and nodal electric scalar potential of finite 

element 𝝓𝑒 can be expressed by shape functions of element 

𝒗 = 𝑵𝑣𝒗
𝑒 

(18) 
𝜙 = 𝑵𝜙𝝓𝑒  

𝑵𝑣 and 𝑵𝜙 are matrices with shape functions. Relationship between components of strain 𝜺 

and components of nodal displacements 𝒗𝑒 and relationship between components of electric 

intensity 𝑬 and nodal electric scalar potential 𝝓𝑒 have forms 

𝜺 = 𝑩𝑣𝒗
𝑒 

(19) 
𝑬 = −𝑩𝜙𝝓𝑒  

𝑩𝑣 and 𝑩𝜙 are matrices with derivative of shape functions. Hamilton’s principle (13) can be 

rewritten by equations (18) and (19) into form 

∫ 𝛿(𝒗𝑒)𝑇 [−(∫ 𝑵𝑣
𝑇

(𝑉)

𝜌 𝑵𝑣 𝑑𝑉) 𝒗̈𝑒 − (∫ 𝑩𝑣
𝑇

(𝑉)

𝒄𝐸𝑩𝑣 𝑑𝑉)𝒗𝑒
𝑡2

𝑡1

− (∫ 𝑩𝑣
𝑇

(𝑉)

𝒆𝑇𝑩𝜙 𝑑𝑉)𝝓𝑒 + +∑𝑵𝑣
𝑇 𝑭] 𝑑𝑡

+ ∫ 𝛿(𝝓𝑒)𝑇
𝑡2

𝑡1

[− (∫ 𝑩𝜙
𝑇

(𝑉)

𝒆 𝑩𝑣 𝑑𝑉)𝒗𝑒 + (∫ 𝑩𝜙
𝑇

(𝑉)

𝝐𝜀𝑩𝜙 𝑑𝑉)𝝓𝑒

− ∑𝑵𝜙
𝑇  𝑄] 𝑑𝑡 = 0 

(20) 

FEM equations of individual element can be derived from (20) in form 

[
𝑴𝑣𝑣

𝑒 𝟎𝑒

𝟎𝑒 𝟎𝑒] [
𝒗̈𝑒

𝝓̈𝑒] + [
𝑲𝑣𝑣

𝑒 𝑲𝑣𝜙
𝑒

𝑲𝜙𝑣
𝑒 𝑲𝜙𝜙

𝑒 ] [
𝒗𝑒

𝝓𝑒] = [
𝑭𝑒

𝑸𝑒] (21) 

The equation (21) represents dynamic behavior of piezoelectric material without mechanical 

damping. If the damping is considered, then the equation (21) has form 

[
𝑴𝑣𝑣

𝑒 𝟎𝑒

𝟎𝑒 𝟎𝑒] [
𝒗̈𝑒

𝝓̈𝑒] + [
𝑪𝑣𝑣

𝑒 𝟎𝑒

𝟎𝑒 𝟎𝑒] [
𝒗̇𝑒

𝝓̇𝑒] + [
𝑲𝑣𝑣

𝑒 𝑲𝑣𝜙
𝑒

𝑲𝜙𝑣
𝑒 𝑲𝜙𝜙

𝑒 ] [
𝒗𝑒

𝝓𝑒] = [
𝑭𝑒

𝑸𝑒] (22) 

where individual submatrices are defined as follows:  

𝑴𝑣𝑣
𝑒 = ∫ 𝑵𝑣

𝑇
(𝑉)

𝜌 𝑵𝑣 𝑑𝑉; 𝑲𝑣𝑣
𝑒 = ∫ 𝑩𝑣

𝑇
(𝑉)

𝒄𝐸𝑩𝑣  𝑑𝑉; 𝑲𝑣𝜙
𝑒 = ∫ 𝑩𝑣

𝑇
(𝑉)

𝒆𝑇𝑩𝜙 𝑑𝑉;  

𝑲𝜙𝑣
𝑒 = ∫ 𝑩𝜙

𝑇
(𝑉)

𝒆 𝑩𝑣  𝑑𝑉; 𝑲𝜙𝜙
𝑒 = ∫ 𝑩𝜙

𝑇
(𝑉)

𝝐𝜀𝑩𝜙 𝑑𝑉; 𝑪𝑣𝑣
𝑒 = 𝛼𝑴𝑣𝑣

𝑒 + 𝛽𝑲𝑣𝑣
𝑒  
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𝑭𝑒 and 𝑸𝑒 represent nodal forces and nodal charges on considered element. 

For whole investigated structure we can formally write 

[
𝑴𝑣𝑣 𝟎
𝟎 𝟎

] [
𝒗̈
𝝓̈

] + [
𝑪𝑣𝑣 𝟎
𝟎 𝟎

] [
𝒗̇
𝝓̇

] + [
𝑲𝑣𝑣 𝑲𝑣𝜙

𝑲𝜙𝑣 𝑲𝜙𝜙
] [

𝒗
𝝓] = [

𝑭
𝑸

] (23) 

3.3 FEM equations of FGM beam with piezoelectric layers 

2D beam element with piezoelectric layers and FGM core with all degrees of freedom and all 

intermal mechanical and electrical forces is shown in Fig. 2. 

 

 
Fig. 2 2D beam element with piezoelectric layers – degrees of freedom and internal forces. 

Length of beam element is 𝐿𝑒, cross-section of FGM core is 𝐴𝐹𝐺𝑀 and cross-section of 

piezolayer is 𝐴𝑝. Homogenized Youngs’ moduli for axial loading and bending are computed 

according to equations (6) and (7) and homogenized density is computed according to 

equation (8). Mechanical degrees of freedom of element are displacements and rotations in 

both nodes (𝑢𝑖
𝑒 , 𝑣𝑖

𝑒 , 𝜑𝑖
𝑒 , 𝑢𝑗

𝑒 , 𝑣𝑗
𝑒 , 𝜑𝑗

𝑒), electrical degree of freedom are electric potential on all 4 

electrodes of both piezoelectric layers (𝜙1
𝑒 , 𝜙2

𝑒 , 𝜙3
𝑒 , 𝜙4

𝑒). Internal element mechanical loads are 

forces and moments in both nodes (𝐹𝑥𝑖
𝑒 , 𝐹𝑦𝑖

𝑒 , 𝑀𝑖
𝑒 , 𝐹𝑥𝑗

𝑒 , 𝐹𝑦𝑗
𝑒 , 𝑀𝑗

𝑒) and internal element electric 

loads are electric charge on all 4 electrodes of both piezoelectric layers (𝑄1
𝑒 , 𝑄2

𝑒 , 𝑄3
𝑒 , 𝑄4

𝑒) [13]. 

FEM equation of 2D piezoelectric beam element with FGM core has formally the same 

equation as equation (22), but individual stiffness submatrices have different form, because 

they are using transfer constant and not classical shape functions. Mass submatrix 𝑴𝑣𝑣
𝑒  can be 

constructed by classical shape functions [5].  

The structural submatrix for the beam element with piezoelectric layers can be expressed in 

a form 

𝑲𝑣𝑣
𝑒 =

[
 
 
 
 
 
 

𝑘′𝑢 0 0 −𝑘′𝑢 0 0

0 𝑘′𝑣2 𝑘′𝑣3 0 −𝑘′𝑣2 𝑘𝑣2

0 𝑘′𝑣3 𝑘′𝑣33 0 −𝑘′𝑣3 𝑘𝑣3

−𝑘′𝑢 0 0 𝑘′𝑢 0 0

0 −𝑘′𝑣2 −𝑘′𝑣3 0 𝑘′𝑣2 −𝑘𝑣2

0 𝑘𝑣2 𝑘𝑣3 0 −𝑘𝑣2 𝑘𝑣23 ]
 
 
 
 
 
 

 (24) 

Computation of individual components of the structural submatrix contains the influence 

of FGM core and piezoelectric layers, where homogenized material properties of beam is 

considered. The calculation of individual components is identical for classical multilayer or 

FGM beam without piezoelectric layer and is described in [11]. The electrical submatrix for 

the beam element with piezoelectric layers can be expressed in a form [13] 
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𝑲𝜙𝜙
𝑒 =

[
 
 
 
 
 
 
 
 
 −

𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2

𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2

0 0

𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2

−
𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2

0 0

0 0 −
𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2

𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2

0 0
𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2

−
𝐴𝑝𝐿𝜖𝜀

ℎ𝑝
2 ]

 
 
 
 
 
 
 
 
 

 (25) 

where 𝜖𝜀  is permitivity of piezoelectric layer under constant strain. 

Submatrices of piezoelectric coupling can be expressed in following forms [13] 

𝑲𝑣𝜙
𝑒 =

[
 
 
 
 
 
 
 
 
 
 
 −

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝
−

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝

0 0 0 0
𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝
−

𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝

𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝
−

𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝
−

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝
−

𝐴𝑝𝑑21𝐸𝑝

ℎ𝑝

0 0 0 0

−
𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝

𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝
−

𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝

𝐴𝑦𝑑21𝐸𝑝

ℎ𝑝 ]
 
 
 
 
 
 
 
 
 
 
 

 (26) 

  

𝑲𝜙𝑣
𝑒 =

[
 
 
 
 
 
 
 
 
 −

𝐴𝑝𝑒21

ℎ𝑝
0

𝐴𝑦𝑒21

ℎ𝑝

𝐴𝑝𝑒21

ℎ𝑝
0 −

𝐴𝑦𝑒21

ℎ𝑝

𝐴𝑝𝑒21

ℎ𝑝
0 −

𝐴𝑦𝑒21

ℎ𝑝
−

𝐴𝑝𝑒21

ℎ𝑝
0

𝐴𝑦𝑒21

ℎ𝑝

−
𝐴𝑝𝑒21

ℎ𝑝
0

𝐴𝑦𝑒21

ℎ𝑝

𝐴𝑝𝑒21

ℎ𝑝
0 −

𝐴𝑦𝑒21

ℎ𝑝

𝐴𝑝𝑒21

ℎ𝑝
0 −

𝐴𝑦𝑒21

ℎ𝑝
−

𝐴𝑝𝑒21

ℎ𝑝
0

𝐴𝑦𝑒21

ℎ𝑝 ]
 
 
 
 
 
 
 
 
 

 (27) 

where 𝐴𝑦 =
1

2
𝐴𝑝(ℎ𝐹𝐺𝑀 + ℎ𝑝), 𝑑21 and 𝑒21 are piezoelectric constants. 

3.4 Sensor and actuator FEM equations  

The matrix equation (23) of investigated structure can be rewritten in the form 

𝑴𝑣𝑣𝒗̈ + 𝑪𝑣𝑣𝒗̇ + 𝑲𝑣𝑣𝒗 + 𝑲𝑣𝜙(𝝓)sens = 𝑭 − 𝑲𝑣𝜙(𝝓)actu (28) 

𝑲𝜙𝑣𝒗 + 𝑲𝜙𝜙(𝝓)sens = (𝑸)sens (29) 

𝑲𝜙𝑣𝒗 + 𝑲𝜙𝜙(𝝓)actu = (𝑸)actu (30) 

where (𝝓)sens and (𝑸)sens is electric potential and electric charge of sensors, respectively, 

and (𝝓)actu and (𝑸)actu is electric potential and electric charge of actuators, respectively. If 

electrodes on piezoelectric sensors are short circuit, i.e., (𝝓)sens = 𝟎, and electrodes on 

piezoelectric actuators are open circuit, i.e., (𝑸)actu = 𝟎, then equations of investigated 

structure have form 
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𝑴𝑣𝑣𝒗̈ + 𝑪𝑣𝑣𝒗̇ + 𝑲𝑣𝑣𝒗 = 𝑭 − 𝑲𝑣𝜙(𝝓)𝑎𝑐𝑡𝑢 (31) 

𝑲𝜙𝑣𝒗 = (𝑸)𝑠𝑒𝑛𝑠 (32) 

Equation (31) is used to calculate the deformation of the whole structure, which is loaded by 

external forces on the structure as well as the electric potential on the piezoelectric actuator. 

Equation (32) is used to calculate the electric charge, which is collected on the piezoelectric 

sensor. If electrodes on piezoelectric sensors and actuators are open circuit, i.e., (𝑸)sens = 𝟎 

and (𝑸)actu = 𝟎, then these equations have form 

𝑴𝑣𝑣𝒗̈ + 𝑪𝑣𝑣𝒗̇ + 𝑲𝑣𝑣𝒗 + 𝑲𝑣𝜙(𝝓)𝑠𝑒𝑛𝑠 = 𝑭 − 𝑲𝑣𝜙(𝝓)𝑎𝑐𝑡𝑢 (33) 

𝑲𝜙𝑣𝒗 + 𝑲𝜙𝜙(𝝓)𝑠𝑒𝑛𝑠 = 𝟎 (34) 

Equations (33) and (34) can be rewritten to form 

𝑴𝑣𝑣𝒗̈ + 𝑪𝑣𝑣𝒗̇ + (𝑲𝑣𝑣 − 𝑲𝑣𝜙𝑲𝜙𝜙
−1 𝑲𝜙𝑣)𝒗 = 𝑭 − 𝑲𝑣𝜙(𝝓)actu (35) 

𝑲𝜙𝑣𝒗 + 𝑲𝜙𝜙(𝝓)sens = 𝟎 (36) 

Equation (35) is used to calculate the deformation of investigated structure, which is loaded 

by external forces on the structure as well as the electric potential on the piezoelectric 

actuator. Equation (36) is used to calculate the electric potential that is induced on the 

piezoelectric sensor. Developed FEM equations were implemented in FEM code MultiFEM, 

which is programmed in software Mathematica [10]. 

4 Reduced state-space model 

Smart structures made from piezoelectric material, are usually connected to controller in 

order to have required behavior of structure. For this purpose, FEM equations are transformed 

to state-space equations [14]. The displacement of the nodal points can be expressed as 

𝒗 = 𝒁𝒘 (37) 

where the matrix 𝒁 contains eigenshapes and 𝒘 is vector of amplitudes of these eigenshapes. 

Using the transformation equation (37), equations (31) and (32) of investigated structure, 

where electrodes on piezoelectric sensors are short circuit and electrodes on piezoelectric 

actuators are open circuit, can be rewritten in form 

𝑴𝑣𝑣 𝒁𝒘̈ + 𝑪𝑣𝑣𝒁𝒘̇ + 𝑲𝑣𝑣𝒁𝒘 = 𝑭 − 𝑲𝑣𝜙 (𝝓)actu (38) 

(𝑸)sens = 𝑲𝜙𝑣𝒁𝒘 (39) 

Using orthogonality property of mode shapes 

𝒁𝑇𝑴𝑣𝑣  𝒁 = diag(𝜇𝑘) (40) 

𝒁𝑇𝑲𝑣𝑣 𝒁 = diag(𝜇𝑘𝜔𝑘
2) (41) 

𝒁𝑇𝑪𝑣𝑣 𝒁 = diag(2𝜉𝑘𝜇𝑘𝜔𝑘) (42) 

equations (38) and (39) can be rewritten in form 

𝝁 𝒘̈ + 2 𝝃 𝝁 𝝎 𝒘̇ + 𝝁 𝝎𝟐 𝒘 = 𝒁𝑇𝑭 − 𝒁𝑇𝑲𝑣𝜙 (𝝓)actu (43) 

(𝑸)sens = 𝑲𝜙𝑣𝒁𝒘 (44) 

where 𝝁, 𝝎 and 𝝃 represent matrix of modal masses, matrix of modal frequencies and matrix 

of modal damping ratios of structure, respectively. Equations (43) and (44) can be rewritten 

into form 

[
𝒘̇
𝒘̈

(𝑸)sens

] = [

𝟎 𝑰
−𝝎𝟐 −2 𝝃𝝎
𝑲𝜙𝑣𝒁 𝟎

] [
𝒘
𝒘̇

] + [
𝟎 𝟎

−𝝁−1𝒁𝑇𝑲𝑣𝜙 𝝁−1𝒁𝑇

𝟎 𝟎

] [
(𝝓)actu

𝑭
] (45) 
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Equation (45) can be formally written as state-space model 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 (46) 

𝒚 = 𝑪𝒙 + 𝑫𝒖 (47) 

where individual matrices 𝑨,  𝑩, 𝑪 and 𝑫 have form 

𝑨 = [
𝟎 𝑰

−𝝎𝟐 −𝟐 𝝃𝝎
]      𝑩 = [

𝟎 𝟎
−𝝁−𝟏𝒁𝑻𝑲𝒗𝝓 𝝁−𝟏𝒁𝑻] (48) 

  𝑪 = [𝑲𝝓𝒗𝒁 𝟎]               𝑫 = [𝟎 𝟎]                                  (49) 

and vector 𝒙 = [𝒘 𝒘̇]𝑇 is state vector, 𝒚 = (𝑸)sens is output vector and 𝒖 =
[𝒘(𝝓)actu 𝑭]𝑇 is input vector. If electrodes on piezoelectric sensors and actuators are open 

circuit, matrices 𝑨 and 𝑪 have shape 

𝑨 = [
𝟎 𝑰

−𝝎𝟐 + 𝒁𝑻𝑲𝒗𝝓𝑲𝝓𝝓
−𝟏 𝑲𝝓𝒗𝒁 −𝟐 𝝃𝝎]      𝑪 = [−𝑲𝝓𝝓

−𝟏 𝑲𝝓𝒗𝒁 𝟎] (50) 

and output vector is 𝒚 = (𝝓)sens. 

When in the transformation process from the FEM model to the state-space model only 

selected eigenmodes and appropriate eigenfrequencies of system are considered, we obtain 

reduced modal truncation model [6]. 

5 Control of MOR model 

Input vector 𝒖 can be split into external input 𝒖𝑒 and controller input 𝒖𝑐.  The control for a 

linear system with full-state feedback [15], which is shown in Fig. 3, is given by proportional 

control law 

𝒖𝒄 = −𝑲𝒙 (51) 

 

 

Fig. 3 Control of system with full-state feedback. 

The goal of the linear quadratic control law is to design the gain matrix 𝑲 so that the state of 

the system 𝒙 converges to the zero state as quickly as possible, but with the least possible 

effort. Mathematically, this can be expressed using the so-called cost function in the form 

𝐽 =
𝟏

𝟐
∫(𝒙𝑻𝑸𝒙 + 𝒖𝒄

𝑻𝑹𝒖𝒄)

∞

𝟎

𝒅𝒕 (52) 

and the goal is to construct 𝒖𝑐 = −𝑲𝒙 in such a way to minimize 𝐽 = lim
𝑡→∞

𝐽(𝑡). The resulting 

full-state feedback controller is called a linear quadratic regulator (LQR), since it is a linear 

control law that minimizes a quadratic cost function to regulate the system. 
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Matrix 𝑸 is positive semidefinite matrix and 𝑹 is positive matrix and they represent weights 

of state and input vectors in the process of minimization of a cost function 𝐽. These matrices 

are often diagonal, and the diagonal elements may be tuned to change the relative importance 

of the control objectives. 

6 Numerical examples 

Numerical experiments contain two examples, both of which contain a functionally graded 

beam on which piezoelectric layers are placed. The material composition of the functionally 

graded beam as well as the piezoelectric layers are the same in both investigated examples. 

Since the mathematical models use the homogenization of the material properties of both the 

FGM beam without piezoelectric layers and the FGM beam with piezoelectric layers, it is 

necessary to create these homogenized material properties – this is discussed in section 6.1. 

The created homogenized material properties are then used in the analysis of a simple FGM 

beam with piezoelectric layers – section 6.2 as well as in the analysis of FGM beam structure 

with piezoelectric layers – section 6.3. 

6.1 Homogenized material properties 

Beam, shown in Fig. 1, consists of beam core and outer piezoelectric layers. The height of 

the core is ℎ𝐹𝐺𝑀 = 0.01 m and the height of the piezoelectric layer is ℎ𝑝 = 0.001 m. The 

width of the analysed beam is 𝑏 = 0.01 m and length is 0.1 m.   

Beam core is made of functionally graded materials. Material of matrix (index 𝑚) is NiFe 

with constant density and Young's modulus and material of fibre (index 𝑓) is tungsten with 

constant density and Young's modulus: 

• Young's modulus: 𝐸𝑚 = 255 GPa, 𝐸𝑓 = 400 GPa 

• density: 𝜌𝑚 = 9200 kg/m3, 𝜌𝑓 = 19300 kg/m3 

Volume fractions of both constituents 𝑣𝑚(𝑥, 𝑦) and 𝑣𝑓(𝑥, 𝑦) vary along the length and height 

of beams (𝑥 is longitudinal axis and 𝑦 is transversal axis of beam – see Fig. 1) according to 

equations: 

𝑣𝑚(𝑥, 𝑦) = −1. 3̅ × 108𝑥3𝑦2 + 1333. 3̅𝑥3 + 2 × 107𝑥2𝑦2 − 200𝑥2 − 40000𝑦2 + 1 [−] 

𝑣𝑓(𝑥, 𝑦) = 1. 3̅ × 108𝑥3𝑦2 − 1333. 3̅𝑥3 − 2 × 107𝑥2𝑦2 + 200𝑥2 + 40000𝑦2 [−] 

Both functions of volume fractions for beam core with length 0.1 m and height 0.01 m are 

shown in Fig. 4. 

 

Fig. 4 Volume fraction of matrix – left, volume fraction of fibre – right. 
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Effective material properties of FGM are defined by material properties of constituents and 

their variations and Young's modulus and density of considered FGM (equations (1) and (2)) 

have form 

𝐸𝐹𝐺𝑀(𝑥, 𝑦) = 1.93̅ × 1019𝑥3𝑦2 − 1.93̅ × 1014𝑥3 − 2.9 × 1018𝑥2𝑦2 + 2.9 × 1013𝑥2

+ 5.8 × 1015𝑦2 + 2.55 × 1011 [Pa] 

𝜌𝐹𝐺𝑀(𝑥, 𝑦) = 1.34667 × 1012𝑥3𝑦2 − 1.34667 × 107𝑥3 − 2.02 × 1011𝑥2𝑦2

+ 2.02 × 106𝑥2 + 4.04 × 108𝑦2 + 9200 [kg/m3] 

Homogenized material properties of investigated FGM beams can be calculated by defined 

cross-section parameters of beams and by effective material properties (equations (3), (4) and 

(5)) and have following forms: 

𝐸𝐹𝐺𝑀
𝑁 (𝑥) = −3. 2̅ × 1013𝑥3 + 4.83̅ × 1012𝑥2 + 3.03̅ × 1011 [Pa] 

𝐸𝐹𝐺𝑀
𝑀 (𝑥) = 9. 6̅ × 1013𝑥3 − 1.45 × 1013𝑥2 + 3.42 × 1011 [Pa] 

𝜌𝐹𝐺𝑀(𝑥) = −2.24̅ × 106𝑥3 + 33666. 6̅𝑥2 + 12566. 6̅ [kg/m3] 

𝐸𝐹𝐺𝑀
𝑁 (𝑥) and 𝐸𝐹𝐺𝑀

𝑀 (𝑥) represent homogenized Young's modulus for axial loading and for 

bending and 𝜌𝐹𝐺𝑀(𝑥) is homogenized density of FGM core, respectively.   

Piezoelectric layers in investigated beams are made from PZT5A piezoelectric material. 

PZT5A is orthotropic material and has following material properties (direction of poling has 

index 3): 

• mechanical properties: 

o Young's moduli: 𝐸1 = 61 GPa, 𝐸2 = 61 GPa, 𝐸3 = 53.2 GPa  

o Poisson numbers: 𝜇12 = 0.35, 𝜇13 = 0.38,  𝜇23 = 0.38 

o shear moduli: 𝐺12 = 22.6 GPa, 𝐺13 = 21.1 GPa, 𝐺23 = 21.1 GPa 

o density: 7750 kg/m3 

• piezoelectric properties: 𝑑31 = −171 × 10−12 C/N, 𝑑33 = 374 × 10−12 C/N, 

𝑑15 = 584 × 10−12 C/N, 𝑑24 = 584 × 10−12 C/N 

• relative permittivity: 𝜖11
𝜎 = 1728.8, 𝜖22

𝜎 = 1728.8, 𝜖33
𝜎 = 1694.9  

Homogenized Young’s modulus for axial loading 𝐸𝐻𝑁(𝑥) and bending 𝐸𝐻𝑁(𝑥) and density 

𝜌(𝑥) of beam with FGM core and piezoelectric layers can be calculated by (6), (7) and (8) 

and they have form 

𝐸𝑁(𝑥) = −2.685 × 1013𝑥3 + 4.027 × 1012𝑥2 + 2.629 × 1011 [Pa] 

𝐸𝑀(𝑥) = 5.594 × 1013𝑥3 − 8.391 × 1012𝑥2 + 2.236 × 1011 [Pa] 

𝜌(𝑥) = −1.871 × 106𝑥3 + 305833. 3̅𝑥2 + 11762.16̅ [kg/m3] 

6.2 Simple FGM beam with piezoelectric layers 

Analysed system 

Fig. 5 left shows the analysed FGM beam structure on which the piezoelectric actuators 

and sensors are placed. The length of FGM beam is 0.1, the length of sensor and actuator is 

0.01 m and they are placed 0.01 m and 0.03 m from fixed left end, respectively. The 

discretized FEM model is shown in Fig. 5 right. 
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Fig. 5 Analysed FGM beam system with piezoelectric actuators and sensors – left, discretized 

FEM model – right. 

Homogenized material properties of FGM core without piezoelectric layers as well as 

FGM core with piezoelectric layers were defined in section 6.1. Damping of structure is 

considered as Rayleigh damping with mass and stiffness constants 3 × 10−5s-1 and 3 × 10−5 

s, respectively. The inner electrodes of piezoelectric layers are grounded. 

The goal of the analysis is to perform a static and dynamic FEM analysis of the beam 

structure with different excitations and then create a MOR model and compare the results 

obtained from the MOR model and the FEM model. The analysis also includes a design of 

LQR controller of the structure to minimize the vibration of the structure. 

Static FEM analysis 

Static FEM analysis is considered as an initial analysis that defines the initial state for the 

selected transient analysis. The deformed state is defined by the prescribed vertical 

displacement at node 8 with a value −0.25 × 10−5 m and at node 21 with a value of 1× 10−5  

m – see Fig. 5. Calculated deformed shape is shown in Fig. 6. 

 

Fig. 6 Static deformed shape of analysed beam structure. 

Modal FEM analysis 

The goal of the modal analysis is to obtain the first four bending eigenfrequencies and the 

corresponding eigenmodes of the analysed beam structure. These eigenfrequencies and 

eigenmodes are subsequently used both in the creation of a reduced model of the system and 

in the definition of the modal initial state of the system. The first four eigenshapes are shown 

in Fig. 7. First four bending eigenfrequencies of analysed systems are 188.4 Hz, 988.5 Hz, 

5532 Hz and 9765 Hz. 
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Fig. 7 The first four bending eigenmodes. 

Harmonic FEM analysis 

The response of the analysed structure to the harmonic vertical force with amplitude 20 N 

acting at the free end of the structure – node 21 (see Fig. 5) is shown in Fig. 8. 

 

Fig. 8 Response of system to harmonic vertical force, without considering damping – left, 

with damping – right. 

As can be seen from the harmonic analysis of piezoelectric system with damping, the 

dominant natural frequencies are the first four. For this reason, the first four bending 

eigenshapes and eigenfrequencies of the analysed system are used in the reduced model. 

Transient analysis 

In the transient analysis, 3 different excitations were considered: excitation by initial 

conditions, excitation by external force, excitation by electric potential on actuators. 

Investigated time for transient analysis is 0.025 s. 

Excitation by initial conditions: the initial conditions of the system are defined by the static 

deformation, which was presented at the subsection Static analysis. Newmark's numerical 

method was used to calculate the system response. The displacements of the nodes 10 and 21 

and the electric charge on the electrodes on the elements 7 and 8 are shown in Fig. 9. 
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Fig. 9: Excitation by initial conditions – displacements and the electric charge, without 

considering damping – left, with damping – right. 

Excitation by external force: the external force is located at the free end of the system – 

node 21 (see Fig. 5). The system had zero deformation and zero velocity at the beginning of 

investigated time. The force has a harmonic character with frequency 80 Hz and an amplitude 

of 10 N. The displacement of nodes 10 and 21 as well as the electric charge on elements 7 and 

8 of damped system are shown in Fig. 10.  

 

Fig. 10 Excitation by external force – displacements and the electric charge. 

Excitation by electric potential on actuators: piezoelectric actuators are located closer to the 

left fixed end – elements 3 and 4 – see Fig. 5. The system had zero deformation and zero 

velocity at the beginning of investigated time. The inner electrodes are grounded, an electric 

harmonic potential with an amplitude of 100 V and a frequency of 40 Hz is prescribed at the 

outer electrodes. The displacement of the nodes 10 and 21 as well as the electric charge on the 

elements 7 and 8 of damped system are shown in Fig. 11.  

 

Fig. 11 Excitation by electric potential on actuators – displacements and the electric charge. 

MOR state-space model 

Based on the modal analysis results, a reduced state-space model described by equation 

(45) was created using the first four bending eigenfrequencies and their corresponding 
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eigenshapes. In the model, the damping of system was defined as in the FEM model. In the 

dynamic analysis of the reduced state-space model, all excitations which were used in the 

transient FEM analysis with the same set-up, were considered. Initial deformations, external 

vertical force located at the free end of the beam structure and electric potential on actuators 

had to be transformed into modal space. Fig. 12 shows the vertical displacement of the node 

21 caused by initial deformation of system, which was calculated from the full FEM model – 

blue line and from the reduced state-space model – brown rings, considering a system without 

damping as well as a system with damping. 

 

Fig. 12 Vertical displacement of the node 21 calculated by FEM model – blue line and by 

MOR model – brown rings, without considering damping – left, with damping – right. 

Fig. 13 shows time variation of the vertical displacement of the node 21 in the model with the 

damping under the load of the vertical harmonic force – the left figure, and under the load of 

the electric harmonic potential on the piezoelectric actuator – the right figure.  

 

Fig. 13 Vertical displacement of the node 21 calculated by FEM model – blue line and by 

MOR model – brown rings, system loaded by vertical harmonic force – left, system loaded by 

electric harmonic potential on the piezoelectric actuator – right. 

The blue line in Fig. 13 represents the results from the FEM analysis and the brown rings 

represent the results from the reduced state-space model. As can be seen from Fig. 12 and 13, 

MOR state-space model very faithfully describes the behaviour of the system and the state-

space model have significantly fewer degrees of freedom than the full FEM model. 

Control law 

A reduced state-space model was used to design the LQR controller, with a state weight of 

50,000 and an input weight of 1. Based on the parameters thus selected, the gain matrix 𝑲  
was calculated and then a feedback state-space model was built. Subsequently, the state-space 

model with feedback was analysed, considering the initial conditions defined by static FEM 

analysis and transformed into modal space. Comparison of the system response, i.e., the 

vertical deflection of the node 21 for the system without control – blue line and for the system 

with control – brown line, is shown in Fig. 14 left. 
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Fig. 14 Comparison of the system response, blue line is response of the system without 

control and brown line for the system with control – left, the electric potential on the actuators 

generated from the linear quadratic controller – right. 

The electric potential on the piezoelectric actuators generated from the linear quadratic 

controller was determined – time variation of electric potential is shown in Fig. 14 right. This 

voltage was applied as a load to the full FEM model and a transient FEM analysis was 

performed. A comparison of the results from the FEM model and the MOR model when 

control is considered is shown in Fig. 15, where the blue line represents the displacement of 

node 21 from the FEM analysis and the brown rings from the MOR analysis. 

 

Fig. 15. Response of system with control computed by FEM model – blue line and response 

of system with control computed by MOR model – brown rings. 

As can be seen from obtained results, the MOR model of investigated system very 

faithfully describes the behaviour of the system, where the FEM model was used as a 

reference model. 

6.3 FGM beam structure with piezoelectric layers 

Analysed system 

The analysed system is shown in Fig. 16 left. It consists of 3 beams: beam 1 and beam 2 

are made of functionally graded material with variation of material properties along the length 

and height of the beam, beam 3 has constant material properties. A piezoelectric actuator is 

located on the beam 1 and a piezoelectric sensor is placed on the beam 2.  
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Fig. 16 Piezoelectric structure with actuator and sensor – left, discretized FEM model – right. 

Geometry parameters of beams are: 

• cross-section – all beams have height and depth of cross-section 0.01m, height of 

piezoelectric layers is 0.001m and its depth is 0.01m 

• length – beams 1 and 2 have length 0.05 m and beam 3 has length 0.1 m, length of 

piezoelectric layers is 0.01m  

Material parameters of beams are: 

• beams 1 and 2 are made from FGM – homogenized material properties of FGM 

core without piezoelectric layers as well as FGM core with piezoelectric layers 

were defined in section 6.1 

• beam 3 has constant material properties: 𝐸 = 319.4 GPa, 𝜌 = 13989.6 kg/m3   

• damping of structure is considered as Rayleigh damping with mass and stiffness 

constants 1 × 10−5s-1 and 1 × 10−5 s, respectively  

• the inner electrodes of piezoelectric layers are grounded. 

The goal is to perform a FEM transient analysis of the system under defined initial 

conditions, to create an MOR model using the modal properties of the system, to compare the 

results from FEM and MOR models, to design of the linear quadratic regulator (LQR) and 

compare the response of the system without control and with control. 

Analysis of FEM model 

The initial state of the analysed structure is defined by the static deformation of the 

structure, when the horizontal displacement of the free end of beam structure is prescribed – 

node 21 (see Fig. 16), the displacement has value 5× 10−6 m. Free vibration of structure is 

investigated. 

The discretized FEM model is shown in Fig. 16 right. The response of the system – the 

vertical displacement of nodes 21 and 10 and electric charge on element 6 is shown in Fig. 17. 
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Fig. 17 The response of the system, the vertical displacement of nodes 21 and 10 – left, 

electric charge on element 6 – right. 

The goal of the modal analysis is to obtain the first four bending eigenfrequencies and the 

corresponding eigenmodes of the analysed beam structure. These eigenfrequencies and 

eigenmodes are subsequently used both in the creation of a reduced model of the system and 

in the definition of the modal initial state of the system. The first four eigenshapes are shown 

in Fig. 18 and corresponding eigenfrequencies are 1040.24 Hz, 4251.05 Hz, 7256.15 Hz and 

17477.4 Hz.   

 

Fig. 18 The first four bending eigenmodes. 

Analysis of MOR model 

A reduced model was created using the modal truncation method, considering the first four 

eigenshapes of the structure shown in Fig. 18 and their corresponding natural frequencies. The 

created reduced state-space model was analysed in program Mathematica using the 

StateResponse and OutputResponse commands, which simulate state quantities and output 

quantities of defined state-space mode, respectively. The obtained state and output quantities 

from the reduced state-space model were compared with the results obtained from the FEM 

model – Fig. 19, where FEM results are shown by a blue line, and MOR results by a brown 

ring. Fig. 19 left shows the vertical displacement of the node 21 and Fig. 19 right shows the 

electric charge on the piezoelectric sensor – element 6. 
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Fig. 19 Results calculated by FEM model (blue line) and by MOR model (brown rings), 

vertical displacement of free end – left, electric charge on sensor – right. 

As can be seen from these results, the displacement as well as the electric charge obtained 

from the MOR simulation correspond very well with quantities obtained from the FEM 

analysis. 

Control of MOR model 

For the analysed system, a linear quadratic regulator was proposed with the smae state 

weight and the same input weight as were used in previous example. The output of gain 

matrix of regulator is the electrical voltage for the piezoelectric actuator and the input of 

controller is the full state of the model. The proposed LQR controller was connected with 

reduced state-space model and the final closed loop system was analysed. The initial state of 

closed loop system was defined in the same way as in the transient FEM analysis. A 

comparison of a deformation of a system represented by vertical displacement of node 21 

without control and a system with control is shown in Fig. 20 left, Fig. 20 right shows the 

electrical voltage that is applied to the piezoelectric actuator as controller output. 

 

Fig. 20 A comparison of a deformation of a system represented by vertical displacement of 

node 21 without control (brown line) and a system with control (blue line) – left, the electrical 

voltage applied to the piezoelectric actuator – right. 

7 Conclusions 

The paper presents beam finite element with piezoelectric layers, where core of the beam is 

made of FGM materials. Such combination of materials is very attractive for mechatronic 

applications because material composition of FGM core can be optimized for design stress 

state and deformation can be controlled by voltages on electrodes. The derived equations were 

implemented in the FEM program MultiFEM. Subsequently, FEM model was reduced using 

the modal truncation method, which is one of the MOR methods. The created MOR model is 

then used to design the LQR controller. The MOR model with feedback with the LQR 

controller is also investigated and the results are compared with the FEM model with the same 

electrical load on the piezoelectric actuators. 

ACKNOWLEDGEMENT 

This work was supported by the Slovak Grant Agency: VEGA 1/0081/18, KEGA 011STU-

4/2020 and APVV-19-0406. 



106 ©2021 SjF STU Bratislava Volume 71, No. 1, (2021) 

 

REFERENCES 

[1]  Bolton, W. “Mechatronics, Electronic Control Systems in Mechanical and Electrical  

Engineering”, 6th edition, Pearson, 2015. ISBN: 9781292076683 

[2]  Schwartz, M. “Encyclopedia of Smart Materials”, John Wiley & Sons, Inc., 1st edition, 

2002. ISBN: 0471177806. 

[3]  Arnau, A. “Piezoelectric Transducers and Applications”, Springer, 2nd edition. 2008. 

ISBN: 9783540775072 

[4]  Dorf, R. C., Bishop, R. H. “Modern Control Systems”, Pearson, 13th edition. 2016. 

ISBN: 0134407628 

[5]  Burnett, D.S. “Finite Element Analysis: From Concepts to Applications”, Addison 

Wesley Publishing Company, 1st edition, 1987. ASIN: B01FIWOG9A 

[6]  Besselink, B. et al. “A Comparison of Model Reduction Techniques from Structural 

Dynamics”, In Numerical Mathematics and Systems and Control, Journal of Sound and 

Vibration 332, pp. 4403 – 4422, 2013. 

[7]  Lewis, F. L., Varabie, D., Syrmos, V. L. “Optimal Control”, John Wiley and Sons, 

Third edition, 2012. ISBN: 9780470633496 

[8]  Mahamood, R. M., Akinlabi, E.T. “Functionally Graded Materials”, Springer 

International Publishing, 2017. ISBN: 9783319537566. 

[9]  Murín J., Hrabovský J., Aminbaghai M., Kutiš V., Paulech J., Kugler S. “Extension of 

the FGM Beam Finite Element by Warping Torsion”, Strojnícky časopis – Journal of 

Mechanical Engineering 69 (2), pp. 57 – 76, 2019. DOI: 10.2478/scjme-2019-0017 

[10]  Wolfram Research, Inc. Mathematica, Champaign, Illinois, Version 12.3. 2021. 

[11]  Kutiš, Murín, J., Belák, R., and Paulech J. “Beam Element with Spatial Variation of 

Material Properties for Multiphysics Analysis of Functionally Graded Materials”, 

Computers and Structures 89, pp. 1192 – 1205, 2011. 

[12]  Nye, J., F. “Physical Properties of Crystals: Their Representation by Tensors and 

Matrices”, Oxford University Press, 1985. ISBN: 0198511655 

[13]  Kutiš, V., Paulech J., Murín J., Gálik, G. “Analysis of Piezoelectric Beams for Smart 

Structures”, In: 24th International Conference on Applied Physics of Condensed Matter, 

June 20 - 22, 2018 - Štrbské Pleso, Slovakia, 2018. 

[14]  Piefort, V. “Finite Element Modeling of Piezoelectric Structures”, PhD Thesis. 

Universite Libre de Bruxelles, 2001. 

[15]  Friedland, B. “Control System Design: An Introduction to State-Space Methods”, Dover 

Publications, Illustrated edition, 2005. ISBN: 0486442780 

 


