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ABSTRACT 
Enhancing software quality and security hinges on the effective identification 

of vulnerabilities in source code. This paper presents a novel approach that 
combines pattern recognition training with cloze-style examination techniques in a 
semi-supervised learning framework. Our methodology involves training a language 
model using the SARD and Devign datasets, which contain numerous examples of 
vulnerable code. During training, specific code sections are deliberately obscured, 
challenging the model to predict the hidden tokens. Through rigorous empirical 
testing, we demonstrate the effectiveness of our approach in accurately identifying 
code vulnerabilities. Our results highlight the significant advantages of employing 
pattern recognition training alongside cloze-style questioning, leading to improved 
accuracy in detecting vulnerabilities in source code. 

KEYWORDS: language models, software vulnerabilities, vulnerability detection, 
  cloze-style questions, pattern-exploiting training, RoBERTa 

1. Introduction
The realm of digital platforms is

increasingly facing complex and malicious 
cyber attacks. These attacks often exploit 
system vulnerabilities, which are gaps in 
the system that can be manipulated by 
cyber adversaries for various benefits. 
A key driver of these cyber attacks is the 
presence of software vulnerabilities. 
Despite significant efforts by academia and 
industry to strengthen software security, the 
persistent rise in vulnerabilities, as 
highlighted in the annual reports of the 
Common Vulnerabilities and Exposures 

(CVE) database (Omar, 2022), remains a 
major concern. 

Given the inevitability of these 
vulnerabilities, their prompt detection is 
crucial. Static source code analysis provides 
a means for early detection, employing 
methods from code similarity assessment to 
pattern-recognition techniques. While code 
similarity approaches can identify 
vulnerabilities resulting from code 
replication, they are prone to considerable 
false negatives (Ayub et al., 2023; 
Li, Wang, Xin, Yang & Chen, 2020; Omar, 
2022; Omar & Sukthankar, 2023). 
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Addressing these challenges in 
vulnerability detection, academia has 
introduced techniques such as fuzzing, 
symbolic analysis, and rule-based testing. 
Despite their merits, these methods face 
limitations like the need for manual 
definition of attack signatures and patterns, 
reducing their effectiveness in large 
codebases. Moreover, traditional 
vulnerability detection methods suffer from 
high false positives, performance 
limitations, and difficulties in classifying 
vulnerability types (Aluru, Mathew, Saha & 
Mukherjee, 2020; Omar, 2023). 

Recent advancements have seen the 
incorporation of machine learning, 
especially deep learning, into vulnerability 
detection frameworks. These approaches 
reduce manual input and accelerate the 
detection process. Advanced machine 
learning models, including long-short-term 
memories (LSTMs) and transformers, 
classify API sequences from program 
execution into benign or malicious 
categories and predict the type of exploit. 
However, their high computational 
demands limit their practicality (Omar, 
Choi, Nyang & Mohaisen, 2022).  

This study aims to apply “pattern-
exploiting training” (PET) and “iterative 
pattern-exploiting training” (iPET) 
methodologies, utilizing cloze-style 
questions, to develop a comprehensive 
linguistic model for detecting software 
vulnerabilities. In this approach, cloze 
questions, which involve filling in blanks in 
a text (Radford et al., 2019), are based on 
code snippets with the blanks representing 
existing vulnerabilities. 

Our methodology is predicated on the 
idea that a detailed language model, trained 
on a large dataset of code-based cloze 
questions, learns to recognize both 
vulnerable and safe code patterns. This 
training enables the model to identify code 
configurations indicative of vulnerabilities. 
The trained model can then detect potential 
vulnerabilities in new code by filling in the 

blanks in the cloze questions. For example, 
code with a potential buffer overflow 
vulnerability is analyzed using the PET 
approach by identifying code patterns 
associated with buffer overflow risks and 
creating cloze questions for training the 
linguistic model. 

Subsequently, the cloze-trained 
linguistic model becomes proficient at 
analyzing new code segments, identifying 
patterns that match known vulnerability 
signatures. This method provides automated 
detection of vulnerability patterns, 
eliminating the need for manual expert 
analysis. 

In this research, we introduce 
“CodeGuard”, a RoBERTa-based 
vulnerability detection system for C and C++ 
source code. Our key contributions are: 

1) The development of CodeGuard,
an innovative system that leverages pattern-
exploiting training and cloze methodology 
for detecting software vulnerabilities, 
utilizing the capabilities of an extensive 
linguistic model. 

2) Demonstrating CodeGuard’s 
effectiveness in identifying code 
vulnerabilities across multiple programming 
languages, including C/C++ and Java, using 
benchmark datasets and the RoBERTa-
based linguistic model. 

3) Presenting comparative studies
that show CodeGuard’s enhanced 
performance in detecting software 
vulnerabilities compared to two other 
contemporary benchmark techniques.  

2. Related Work
Recent years have seen a burgeoning

interest in detecting vulnerabilities in 
source code, a critical area of research for 
software security. Various approaches have 
been explored, with many studies 
leveraging machine learning techniques. 
Static analysis methods, which extract key 
features from code for input into machine 
learning models, have been a focal point of 
some studies (Kim et al., 2022; Li et al., 
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2016, Omar et al., 2023). In contrast, others 
have utilized dynamic analysis, where the 
code is executed, and its behavior 
monitored to identify vulnerabilities 
(Alharbi, Hijji & Aljaedi, 2021; Salimi & 
Kharrazi, 2022). 

There has been a growing trend 
towards employing deep learning models in 
this domain. Some researchers have used 
recurrent neural networks (RNNs) to 
process the code, either in its original form 
or converted into an abstract syntax tree 
(AST) (Yamaguchi, Golde, Arp & Rieck, 
2014; Zhou & Verma, 2022). Additionally, 
there’s increasing use of transformers, 
renowned for their success in natural 
language processing (Kim, Woo, Lee & Oh, 
2017; Rabheru, Hanif & Maffeis, 2021).  

Deep learning architectures such as 
Convolutional Neural Networks (CNNs) 
and RNNs have been extensively studied 
for vulnerability detection (Alharbi, Hijji & 
Aljaedi, 2021; Kim, Woo, Lee & Oh, 2017; 
Kim et al., 2022; Li et al., 2016; Rabheru, 
Hanif & Maffeis, 2021; Salimi & Kharrazi, 
2022; Yamaguchi, Golde, Arp & Rieck, 
2014; Zhou & Verma, 2022). These models 
typically require structured data for 
identifying features linked to 
vulnerabilities. This requirement has led to 
the development of various techniques like 
lexed C/C++ code representation (Kim et 
al., 2022), code gadgets (Rabheru, Hanif & 
Maffeis, 2021), and code-property graphs 
(Zhou et al, 2019). Graph neural networks 
have also been applied in this field, with 
models like Devign offering comprehensive 
representations of program elements (Zhou 
et al, 2019). 

Pioneering work by Russell et al. 
(2018) demonstrated deep learning’s 
capability in detecting vulnerabilities 
directly from raw source code, using a 
combination of CNN and RNN to inform a 
Random Forest classifier. This approach 
achieved a notable AUC score when tested 
on real-world datasets. 

Following this, Vuldeepecker (Zou et 
al., 2019) introduced a method for 
multi-class vulnerability classification, 
pinpointing the precise location of 
vulnerabilities within the source code. 

Graph-based approaches have also 
been explored, with Devign (Zhou et al, 
2019) and DeepWukong (Cheng et al, 
2021) utilizing Graph Neural Network 
models. Studies have extended beyond 
traditional programming languages, with 
DeepTective (Rabheru, Hanif & Maffeis, 
2021) focusing on PHP and others 
examining vulnerabilities in HTML5 
applications (Yan et all, 2018). The quality 
of datasets for deep learning-based 
detection has also been a priority, as seen in 
REVEAL (Chakraborty, Krishna, Ding & 
Ray, 2021) and D2A. 

VulBERTa, proposed by Hanif & 
Maffeis (2022), represents a significant 
advancement, offering deep 
representational modeling of C/C++ code 
but falls short in identifying novel zero-day 
vulnerabilities in open-source projects. 

Our work aligns with the current 
trajectory of applying deep learning for 
source code vulnerability detection. 
We distinctively use pattern-exploiting 
training combined with cloze queries, 
empowering a compact student model with 
insights from a larger language model. This 
approach represents a departure from previous 
methodologies that primarily focused on 
RNNs, transformers, or deep learning 
knowledge distillation for various tasks. 

3. Defense Framework
In the evolving landscape of software

security, the development of a robust 
defense framework is crucial for mitigating 
vulnerabilities. Our proposed framework, 
named CodeGuard, integrates advanced 
machine learning techniques with a focus 
on deep learning models, offering a 
comprehensive approach to detecting and 
neutralizing potential threats in source code. 
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3.1. Methodology 
CodeGuard employs a multi-layered 

strategy, combining static and dynamic 
analysis methods with advanced pattern 
recognition algorithms. The core 
components of our methodology are 
outlined as follows: 

• Static Analysis Module: Utilizes
machine learning models to scan source 
code, identifying potential vulnerabilities 
by analyzing code structure and syntax. 
This module leverages Natural Language 
Processing (NLP) techniques for efficient 
pattern recognition. 

• Dynamic Analysis Engine: 
Executes code in a controlled environment 
to monitor runtime behavior. This engine 
aids in detecting vulnerabilities that 
manifest during execution, such as memory 
leaks and buffer overflows. 

• Deep Learning Core: At the heart
of CodeGuard is a deep learning model 
trained on extensive datasets comprising 
various programming languages. The model 
employs a combination of Convolutional 
Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) to learn from 
complex code patterns and predict 
vulnerabilities. 

• Threat Mitigation Interface:
Provides actionable insights and 
recommendations for mitigating identified 
threats. It integrates with development tools 
to offer realtime feedback and suggestions 
for code improvement. 

3.2. Key Features 
CodeGuard distinguishes itself with 

several innovative features: 
1) Real-Time Vulnerability Detection:

Offers instant analysis and feedback during 
the development process, reducing the time to 
identify and fix vulnerabilities. 

2) Cross-Language Support: Capable
of analyzing multiple programming 
languages, making it a versatile tool for 
diverse software projects. 

3) Advanced Learning Algorithm:
Continuously evolves through machine 
learning, adapting to new types of 
vulnerabilities and attack vectors. 

4) User-Friendly Interface: Designed
for ease of use, allowing developers of 
varying skill levels to effectively utilize the 
framework. 

The integration of these components 
and features positions CodeGuard as a 
comprehensive solution for enhancing 
software security in a rapidly changing 
technological landscape. 

Figure no. 1: Schematic representation of the 
CodeGuard defense framework, illustrating its 
primary components: Static Analysis Module, 

Dynamic Analysis Engine, Deep Learning 
Core, and Threat Mitigation Interface 

(Source: Authors) 

3.3. Pattern-Exploiting Training in 
CodeGuard 

Consider a training dataset D 
consisting of N pairs of input-output, where 
each input xi represents a segment of source 
code, and the corresponding output yi 
indicates the presence or absence of a 
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Comparative Analysis: 

Figure no. 2: Bar chart representing the F1 Scores of CodeGuard on different datasets 
(Source: Authors) 

Figure no. 3: Bar chart comparing the F1 Scores of CodeGuard  
and other methods on the Devign dataset 

(Source: Authors) 
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3.5. Analysis of Results 
− Performance across Datasets:

The performance metrics of CodeGuard, as 
shown in table no. 1 and figure no. 2, 
indicate a high level of efficacy in 
vulnerability detection across various 
datasets. The framework achieved the 
highest F1 Score of 90.5% on the Devign 
dataset, underscoring its effectiveness in 
handling practical, real-world code 
functions. The SARD dataset, with its 
diverse range of vulnerability types, also 
saw a strong performance from CodeGuard, 
with an F1 Score of 87.5%. The slightly 
lower scores on REVEAL and D2A 
datasets, at 83.5% and 86.5% respectively, 
suggest that CodeGuard may face 
challenges with datasets that have a more 
skewed vulnerability distribution or those 
employing differential analysis techniques. 
Overall, the consistent performance across 
various datasets highlights CodeGuard’s 
robustness and adaptability in different 
contexts of software vulnerability detection. 

− Comparative Analysis: In
comparative analysis on the Devign dataset, 
as illustrated in Table no. 2 and Figure no. 3, 
CodeGuard outperforms the other two 
methods, Method A and Method B, by a 
significant margin. With an F1 Score of 
90.5% compared to 83.5% for Method A 
and 78.5% for Method B, CodeGuard 
demonstrates its superior capability in 
accurately identifying and predicting 
software vulnerabilities. This superiority 
can be attributed to its integration of 
pattern-exploiting training and cloze-style 
queries, which enhances its ability to 
discern complex vulnerability patterns 
within source code. The lower scores of the 
other methods suggest a possible limitation 

in their approach to pattern recognition or 
adaptability to varied code structures. 

− Overall Implications: The results
from our experiments provide compelling 
evidence of CodeGuard’s potential as a 
highly effective tool for software 
vulnerability detection. Its strong 
performance across different datasets and 
its comparative superiority indicate its 
utility in both academic research and 
practical applications in software security. 
Future work could explore further 
optimizations in the model’s architecture 
and training process, especially to enhance 
its performance on datasets with unique 
characteristics like REVEAL and D2A. 
Additionally, expanding the framework’s 
adaptability to more programming 
languages and integrating more advanced 
machine learning techniques could be areas 
for continued development (Omar, et al., 
2023 (VulDefend)). 

4. Conclusion and Future Research
Directions 

In conclusion, the research presented 
in this paper has demonstrated the 
effectiveness of the CodeGuard framework 
in the domain of software vulnerability 
detection. Our experiments, utilizing 
diverse and benchmark datasets such as 
Devign, SARD, REVEAL, and D2A, have 
provided a comprehensive evaluation of 
CodeGuard’s capabilities. The framework’s 
performance, particularly in terms of 
accuracy, precision, recall, and F1 score, 
establishes it as a promising tool in the 
critical task of identifying vulnerabilities in 
software. 

A key strength of CodeGuard lies in 
its innovative integration of pattern-
exploiting training (PET) and cloze-style 
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queries. This approach has proven effective 
in enhancing the model’s ability to discern 
complex patterns within source code, a vital 
aspect of vulnerability detection. The high 
F1 scores achieved across multiple datasets, 
especially on Devign, attest to the 
framework’s robustness and effectiveness 
in real-world scenarios. Furthermore, the 
comparative analysis with existing methods 
reveals CodeGuard’s superior performance, 
underscoring its potential in improving 
software security practices. 

However, like all research, this study 
is not without limitations, and these open 
the door to several future research 
directions. Firstly, while CodeGuard has 
shown high efficacy in C/C++ code 
vulnerability detection, extending its 
applicability to other programming 
languages is essential. Future research 
could focus on adapting the framework’s 
methodologies to diverse programming 
languages, enhancing its utility in a broader 
range of software development environments. 

Another area of potential exploration is 
the integration of additional machine learning 
techniques. The current implementation of 
CodeGuard relies heavily on PET and cloze 
style queries. Future iterations could benefit 
from incorporating other advanced machine 
learning algorithms, such as deep 
reinforcement learning or unsupervised 
learning methods. These additions could 
potentially improve the framework’s ability 
to handle more complex and nuanced 
vulnerability patterns, especially in datasets 
that pose greater challenges, like REVEAL 
and D2A. 

Moreover, the evolving nature of 
software vulnerabilities necessitates 
continuous updates and enhancements to 
vulnerability detection frameworks. Future 

research should focus on adaptive learning 
mechanisms that enable CodeGuard to 
evolve in response to emerging types of 
vulnerabilities. This adaptability is crucial for 
maintaining the framework’s effectiveness 
over time, given the rapidly changing 
landscape of software security threats. 

In addition to technical 
advancements, future research should also 
consider the practical integration of 
CodeGuard within software development 
pipelines. Seamless integration with 
popular development tools and 
environments would facilitate its adoption 
in real-world settings. Research efforts 
could explore the development of plugins 
or extensions that enable CodeGuard’s 
functionality within integrated development 
environments (IDEs) or continuous 
integration/continuous deployment (CI/CD) 
pipelines. 

Lastly, the ethical implications and 
privacy concerns related to automated 
vulnerability detection need to be 
addressed. Future versions of CodeGuard 
should incorporate mechanisms that ensure 
data privacy and ethical considerations, 
particularly when dealing with sensitive or 
proprietary codebases. 

In summary, the CodeGuard 
framework represents a significant step 
forward in the field of software vulnerability 
detection. Its success in accurately identifying 
vulnerabilities across diverse datasets 
showcases its potential as a valuable tool for 
software developers and security analysts. 
By addressing the outlined future research 
directions, CodeGuard can evolve into a 
more versatile, adaptable, and ethically 
conscious framework, further contributing to 
the enhancement of software security in an 
increasingly digital world. 
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