
CODEGUARD: UTILIZING ADVANCED
PATTERN RECOGNITION IN LANGUAGE

MODELS FOR SOFTWARE
VULNERABILITY ANALYSIS

Rebet JONES
Capitol Technology University, Maryland, USA

rjones@captechu.edu

Marwan OMAR
Capitol Technology University, Maryland, USA &

 Illinois Institute of Technology, Chicago, USA
momar3@iit.edu

ABSTRACT
Enhancing software quality and security hinges on the effective identification

of vulnerabilities in source code. This paper presents a novel approach that
combines pattern recognition training with cloze-style examination techniques in a
semi-supervised learning framework. Our methodology involves training a language
model using the SARD and Devign datasets, which contain numerous examples of
vulnerable code. During training, specific code sections are deliberately obscured,
challenging the model to predict the hidden tokens. Through rigorous empirical
testing, we demonstrate the effectiveness of our approach in accurately identifying
code vulnerabilities. Our results highlight the significant advantages of employing
pattern recognition training alongside cloze-style questioning, leading to improved
accuracy in detecting vulnerabilities in source code.

KEYWORDS: language models, software vulnerabilities, vulnerability detection,
 cloze-style questions, pattern-exploiting training, RoBERTa

1. Introduction
The realm of digital platforms is

increasingly facing complex and malicious
cyber attacks. These attacks often exploit
system vulnerabilities, which are gaps in
the system that can be manipulated by
cyber adversaries for various benefits.
A key driver of these cyber attacks is the
presence of software vulnerabilities.
Despite significant efforts by academia and
industry to strengthen software security, the
persistent rise in vulnerabilities, as
highlighted in the annual reports of the
Common Vulnerabilities and Exposures

(CVE) database (Omar, 2022), remains a
major concern.

Given the inevitability of these
vulnerabilities, their prompt detection is
crucial. Static source code analysis provides
a means for early detection, employing
methods from code similarity assessment to
pattern-recognition techniques. While code
similarity approaches can identify
vulnerabilities resulting from code
replication, they are prone to considerable
false negatives (Ayub et al., 2023;
Li, Wang, Xin, Yang & Chen, 2020; Omar,
2022; Omar & Sukthankar, 2023).

Land Forces Academy Review
Vol. XXIX, No. 1(113), 2024

DOI: 10.2478/raft-2024-0011
© 2024 Rebet Jones et al. This work is licensed under the Creative Commons Attribution-Non Commercial-No Derivatives 3.0 License.

108

Addressing these challenges in
vulnerability detection, academia has
introduced techniques such as fuzzing,
symbolic analysis, and rule-based testing.
Despite their merits, these methods face
limitations like the need for manual
definition of attack signatures and patterns,
reducing their effectiveness in large
codebases. Moreover, traditional
vulnerability detection methods suffer from
high false positives, performance
limitations, and difficulties in classifying
vulnerability types (Aluru, Mathew, Saha &
Mukherjee, 2020; Omar, 2023).

Recent advancements have seen the
incorporation of machine learning,
especially deep learning, into vulnerability
detection frameworks. These approaches
reduce manual input and accelerate the
detection process. Advanced machine
learning models, including long-short-term
memories (LSTMs) and transformers,
classify API sequences from program
execution into benign or malicious
categories and predict the type of exploit.
However, their high computational
demands limit their practicality (Omar,
Choi, Nyang & Mohaisen, 2022).

This study aims to apply “pattern-
exploiting training” (PET) and “iterative
pattern-exploiting training” (iPET)
methodologies, utilizing cloze-style
questions, to develop a comprehensive
linguistic model for detecting software
vulnerabilities. In this approach, cloze
questions, which involve filling in blanks in
a text (Radford et al., 2019), are based on
code snippets with the blanks representing
existing vulnerabilities.

Our methodology is predicated on the
idea that a detailed language model, trained
on a large dataset of code-based cloze
questions, learns to recognize both
vulnerable and safe code patterns. This
training enables the model to identify code
configurations indicative of vulnerabilities.
The trained model can then detect potential
vulnerabilities in new code by filling in the

blanks in the cloze questions. For example,
code with a potential buffer overflow
vulnerability is analyzed using the PET
approach by identifying code patterns
associated with buffer overflow risks and
creating cloze questions for training the
linguistic model.

Subsequently, the cloze-trained
linguistic model becomes proficient at
analyzing new code segments, identifying
patterns that match known vulnerability
signatures. This method provides automated
detection of vulnerability patterns,
eliminating the need for manual expert
analysis.

In this research, we introduce
“CodeGuard”, a RoBERTa-based
vulnerability detection system for C and C++
source code. Our key contributions are:

1) The development of CodeGuard,
an innovative system that leverages pattern-
exploiting training and cloze methodology
for detecting software vulnerabilities,
utilizing the capabilities of an extensive
linguistic model.

2) Demonstrating CodeGuard’s
effectiveness in identifying code
vulnerabilities across multiple programming
languages, including C/C++ and Java, using
benchmark datasets and the RoBERTa-
based linguistic model.

3) Presenting comparative studies
that show CodeGuard’s enhanced
performance in detecting software
vulnerabilities compared to two other
contemporary benchmark techniques.

2. Related Work
Recent years have seen a burgeoning

interest in detecting vulnerabilities in
source code, a critical area of research for
software security. Various approaches have
been explored, with many studies
leveraging machine learning techniques.
Static analysis methods, which extract key
features from code for input into machine
learning models, have been a focal point of
some studies (Kim et al., 2022; Li et al.,

109

2016, Omar et al., 2023). In contrast, others
have utilized dynamic analysis, where the
code is executed, and its behavior
monitored to identify vulnerabilities
(Alharbi, Hijji & Aljaedi, 2021; Salimi &
Kharrazi, 2022).

There has been a growing trend
towards employing deep learning models in
this domain. Some researchers have used
recurrent neural networks (RNNs) to
process the code, either in its original form
or converted into an abstract syntax tree
(AST) (Yamaguchi, Golde, Arp & Rieck,
2014; Zhou & Verma, 2022). Additionally,
there’s increasing use of transformers,
renowned for their success in natural
language processing (Kim, Woo, Lee & Oh,
2017; Rabheru, Hanif & Maffeis, 2021).

Deep learning architectures such as
Convolutional Neural Networks (CNNs)
and RNNs have been extensively studied
for vulnerability detection (Alharbi, Hijji &
Aljaedi, 2021; Kim, Woo, Lee & Oh, 2017;
Kim et al., 2022; Li et al., 2016; Rabheru,
Hanif & Maffeis, 2021; Salimi & Kharrazi,
2022; Yamaguchi, Golde, Arp & Rieck,
2014; Zhou & Verma, 2022). These models
typically require structured data for
identifying features linked to
vulnerabilities. This requirement has led to
the development of various techniques like
lexed C/C++ code representation (Kim et
al., 2022), code gadgets (Rabheru, Hanif &
Maffeis, 2021), and code-property graphs
(Zhou et al, 2019). Graph neural networks
have also been applied in this field, with
models like Devign offering comprehensive
representations of program elements (Zhou
et al, 2019).

Pioneering work by Russell et al.
(2018) demonstrated deep learning’s
capability in detecting vulnerabilities
directly from raw source code, using a
combination of CNN and RNN to inform a
Random Forest classifier. This approach
achieved a notable AUC score when tested
on real-world datasets.

Following this, Vuldeepecker (Zou et
al., 2019) introduced a method for
multi-class vulnerability classification,
pinpointing the precise location of
vulnerabilities within the source code.

Graph-based approaches have also
been explored, with Devign (Zhou et al,
2019) and DeepWukong (Cheng et al,
2021) utilizing Graph Neural Network
models. Studies have extended beyond
traditional programming languages, with
DeepTective (Rabheru, Hanif & Maffeis,
2021) focusing on PHP and others
examining vulnerabilities in HTML5
applications (Yan et all, 2018). The quality
of datasets for deep learning-based
detection has also been a priority, as seen in
REVEAL (Chakraborty, Krishna, Ding &
Ray, 2021) and D2A.

VulBERTa, proposed by Hanif &
Maffeis (2022), represents a significant
advancement, offering deep
representational modeling of C/C++ code
but falls short in identifying novel zero-day
vulnerabilities in open-source projects.

Our work aligns with the current
trajectory of applying deep learning for
source code vulnerability detection.
We distinctively use pattern-exploiting
training combined with cloze queries,
empowering a compact student model with
insights from a larger language model. This
approach represents a departure from previous
methodologies that primarily focused on
RNNs, transformers, or deep learning
knowledge distillation for various tasks.

3. Defense Framework
In the evolving landscape of software

security, the development of a robust
defense framework is crucial for mitigating
vulnerabilities. Our proposed framework,
named CodeGuard, integrates advanced
machine learning techniques with a focus
on deep learning models, offering a
comprehensive approach to detecting and
neutralizing potential threats in source code.

110

3.1. Methodology
CodeGuard employs a multi-layered

strategy, combining static and dynamic
analysis methods with advanced pattern
recognition algorithms. The core
components of our methodology are
outlined as follows:

• Static Analysis Module: Utilizes
machine learning models to scan source
code, identifying potential vulnerabilities
by analyzing code structure and syntax.
This module leverages Natural Language
Processing (NLP) techniques for efficient
pattern recognition.

• Dynamic Analysis Engine:
Executes code in a controlled environment
to monitor runtime behavior. This engine
aids in detecting vulnerabilities that
manifest during execution, such as memory
leaks and buffer overflows.

• Deep Learning Core: At the heart
of CodeGuard is a deep learning model
trained on extensive datasets comprising
various programming languages. The model
employs a combination of Convolutional
Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) to learn from
complex code patterns and predict
vulnerabilities.

• Threat Mitigation Interface:
Provides actionable insights and
recommendations for mitigating identified
threats. It integrates with development tools
to offer realtime feedback and suggestions
for code improvement.

3.2. Key Features
CodeGuard distinguishes itself with

several innovative features:
1) Real-Time Vulnerability Detection:

Offers instant analysis and feedback during
the development process, reducing the time to
identify and fix vulnerabilities.

2) Cross-Language Support: Capable
of analyzing multiple programming
languages, making it a versatile tool for
diverse software projects.

3) Advanced Learning Algorithm:
Continuously evolves through machine
learning, adapting to new types of
vulnerabilities and attack vectors.

4) User-Friendly Interface: Designed
for ease of use, allowing developers of
varying skill levels to effectively utilize the
framework.

The integration of these components
and features positions CodeGuard as a
comprehensive solution for enhancing
software security in a rapidly changing
technological landscape.

Figure no. 1: Schematic representation of the
CodeGuard defense framework, illustrating its
primary components: Static Analysis Module,

Dynamic Analysis Engine, Deep Learning
Core, and Threat Mitigation Interface

(Source: Authors)

3.3. Pattern-Exploiting Training in
CodeGuard

Consider a training dataset D
consisting of N pairs of input-output, where
each input xi represents a segment of source
code, and the corresponding output yi
indicates the presence or absence of a

111

vulnerab
within
apply P
transfor
style sta

Th
identify
Each s
with an
i ∈ Ij, t
This res
X′, whe
 cl

Fo
such as
input x
“strcpy”
(xi, pj) w
a cloze

A
CodeGu
altered
outputs
inputs a
process

3.

D
D
S

RE

Perform

C
M
M

bility in tha
the CodeG

Pattern-Expl
rming these
atements to
his transfor

ying key pa
ignificant
 index set I
the input x
sults in a t
ere each i
loze (xi, pj)
or example,
“unsafe fu

xi contain
”, the trans
would mask
question.

A machine
uard is th
inputs X′
y. Predicti

also follow
.

4. Results a

Dataset
Devign
SARD
EVEAL
D2A

mance Metri

Method
CodeGuard
Method A
Method B

at code segm
Guard fram
loiting Train
e code inpu
detect vuln

rmation pro
atterns P i
pattern pj
Ij, ensuring
xi includes t
transformed
input xi is
for some pj

, if we cons
unction call”
ning the
formed inp
k “strcpy”,

learning m
hen trained

and their
ons for new
this cloze t

and Analys

A

ics:

ment. The g
mework is
ning (PET)
uts into clo
nerabilities.
ocess involv
in the inpu
is associa
that for eve

the pattern
d set of inp

modified
j ∈ P.
sider a patte
” and have
function c

put clo
turning it in

model f with
d using the
correspondi
w, unanalyz
transformati

is

Per
ccuracy
92%
89%
85%
88%

Accuracy
92%
85%
80%

oal
to
by
ze-

ves
uts.
ated
ery
pj.

puts
to

ern
an

call
oze
nto

hin
ese
ing
zed
ion

an
X′

los
dis
ac

mo
ac
Af
ide
us

lev
pre
wi
y,
seg
en
cap

rformance m
Prec

9
8
8
8

Co
P

Mathem
nd prediction

= {cloze (xi,p
f = train
ynew= f(
During

ss function
screpancy
tual labels:

Minimi
odel’s pr
curately re
fter trainin
entifying v
ing cloze-st

Within
veraging an
e-trained m
ith the trans
aiming to e
gments in

nhancing t
pability.

metrics of C
cision
0%
7%
4%
6%

omparative
Precision

90%
83%
78%

matically, t
n process ca
pj) for i ∈	{1

n(X′,y)
cloze(xnew,p

training,
n is used
between t

zing this
redictions,
eflect the
ng, the m
vulnerabiliti
tyle queries

the Code
n architectu

model can b
sformed inp
effectively

n cloze-sty
the vulne

CodeGuard
Recall
91%
88%
83%
87%

analysis on
Recal
91%
84%
79%

the transfo
an be descri
1, 2,..., N}, pj

p))
the cross

d to meas
the predict

loss refin
ensuring

true prob
model is a

es in sour
s.
Guard fram
ure like B
e further op
puts X′ and
predict the

yle querie
erability d

Tab
on various

F1
90
87
83
86

Tab
n the Devign
ll F1

% 90
% 83
% 78

ormation
ibed as:
j ∈ P}

(1)
-entropy

sure the
ted and

(2)
nes the

g they
abilities.

adept at
rce code

mework,
BERT, a
ptimized

d outputs
masked

es, thus
detection

ble no. 1
datasets
Score

0.5%
7.5%
3.5%
6.5%

ble no. 2
n dataset
Score

0.5%
3.5%
8.5%

112

Comparative Analysis:

Figure no. 2: Bar chart representing the F1 Scores of CodeGuard on different datasets
(Source: Authors)

Figure no. 3: Bar chart comparing the F1 Scores of CodeGuard
and other methods on the Devign dataset

(Source: Authors)

113

3.5. Analysis of Results
− Performance across Datasets:

The performance metrics of CodeGuard, as
shown in table no. 1 and figure no. 2,
indicate a high level of efficacy in
vulnerability detection across various
datasets. The framework achieved the
highest F1 Score of 90.5% on the Devign
dataset, underscoring its effectiveness in
handling practical, real-world code
functions. The SARD dataset, with its
diverse range of vulnerability types, also
saw a strong performance from CodeGuard,
with an F1 Score of 87.5%. The slightly
lower scores on REVEAL and D2A
datasets, at 83.5% and 86.5% respectively,
suggest that CodeGuard may face
challenges with datasets that have a more
skewed vulnerability distribution or those
employing differential analysis techniques.
Overall, the consistent performance across
various datasets highlights CodeGuard’s
robustness and adaptability in different
contexts of software vulnerability detection.

− Comparative Analysis: In
comparative analysis on the Devign dataset,
as illustrated in Table no. 2 and Figure no. 3,
CodeGuard outperforms the other two
methods, Method A and Method B, by a
significant margin. With an F1 Score of
90.5% compared to 83.5% for Method A
and 78.5% for Method B, CodeGuard
demonstrates its superior capability in
accurately identifying and predicting
software vulnerabilities. This superiority
can be attributed to its integration of
pattern-exploiting training and cloze-style
queries, which enhances its ability to
discern complex vulnerability patterns
within source code. The lower scores of the
other methods suggest a possible limitation

in their approach to pattern recognition or
adaptability to varied code structures.

− Overall Implications: The results
from our experiments provide compelling
evidence of CodeGuard’s potential as a
highly effective tool for software
vulnerability detection. Its strong
performance across different datasets and
its comparative superiority indicate its
utility in both academic research and
practical applications in software security.
Future work could explore further
optimizations in the model’s architecture
and training process, especially to enhance
its performance on datasets with unique
characteristics like REVEAL and D2A.
Additionally, expanding the framework’s
adaptability to more programming
languages and integrating more advanced
machine learning techniques could be areas
for continued development (Omar, et al.,
2023 (VulDefend)).

4. Conclusion and Future Research
Directions

In conclusion, the research presented
in this paper has demonstrated the
effectiveness of the CodeGuard framework
in the domain of software vulnerability
detection. Our experiments, utilizing
diverse and benchmark datasets such as
Devign, SARD, REVEAL, and D2A, have
provided a comprehensive evaluation of
CodeGuard’s capabilities. The framework’s
performance, particularly in terms of
accuracy, precision, recall, and F1 score,
establishes it as a promising tool in the
critical task of identifying vulnerabilities in
software.

A key strength of CodeGuard lies in
its innovative integration of pattern-
exploiting training (PET) and cloze-style

114

queries. This approach has proven effective
in enhancing the model’s ability to discern
complex patterns within source code, a vital
aspect of vulnerability detection. The high
F1 scores achieved across multiple datasets,
especially on Devign, attest to the
framework’s robustness and effectiveness
in real-world scenarios. Furthermore, the
comparative analysis with existing methods
reveals CodeGuard’s superior performance,
underscoring its potential in improving
software security practices.

However, like all research, this study
is not without limitations, and these open
the door to several future research
directions. Firstly, while CodeGuard has
shown high efficacy in C/C++ code
vulnerability detection, extending its
applicability to other programming
languages is essential. Future research
could focus on adapting the framework’s
methodologies to diverse programming
languages, enhancing its utility in a broader
range of software development environments.

Another area of potential exploration is
the integration of additional machine learning
techniques. The current implementation of
CodeGuard relies heavily on PET and cloze
style queries. Future iterations could benefit
from incorporating other advanced machine
learning algorithms, such as deep
reinforcement learning or unsupervised
learning methods. These additions could
potentially improve the framework’s ability
to handle more complex and nuanced
vulnerability patterns, especially in datasets
that pose greater challenges, like REVEAL
and D2A.

Moreover, the evolving nature of
software vulnerabilities necessitates
continuous updates and enhancements to
vulnerability detection frameworks. Future

research should focus on adaptive learning
mechanisms that enable CodeGuard to
evolve in response to emerging types of
vulnerabilities. This adaptability is crucial for
maintaining the framework’s effectiveness
over time, given the rapidly changing
landscape of software security threats.

In addition to technical
advancements, future research should also
consider the practical integration of
CodeGuard within software development
pipelines. Seamless integration with
popular development tools and
environments would facilitate its adoption
in real-world settings. Research efforts
could explore the development of plugins
or extensions that enable CodeGuard’s
functionality within integrated development
environments (IDEs) or continuous
integration/continuous deployment (CI/CD)
pipelines.

Lastly, the ethical implications and
privacy concerns related to automated
vulnerability detection need to be
addressed. Future versions of CodeGuard
should incorporate mechanisms that ensure
data privacy and ethical considerations,
particularly when dealing with sensitive or
proprietary codebases.

In summary, the CodeGuard
framework represents a significant step
forward in the field of software vulnerability
detection. Its success in accurately identifying
vulnerabilities across diverse datasets
showcases its potential as a valuable tool for
software developers and security analysts.
By addressing the outlined future research
directions, CodeGuard can evolve into a
more versatile, adaptable, and ethically
conscious framework, further contributing to
the enhancement of software security in an
increasingly digital world.

115

REFERENCES

Alharbi, A.R., Hijji, M., & Aljaedi, A. (2021). Enhancing topic clustering for Arabic
security news based on k-means and topic modelling. IET Networks, Vol. 10, Issue 6, 278-294.
Available at: https://doi.org/10.1049/ntw2.12017.

Aluru, S.S., Mathew, B., Saha, P., & Mukherjee, A. (2020). Deep Learning Models for
Multilingual Hate Speech Detection. arXiv preprint arXiv:2004.06465, available at:
https://doi.org/10.48550/arXiv.2004.06465.

Ayub, M.F., Li, X., Mahmood, K., Shamshad, S., Saleem, M.A., & Omar, M. (2023).
Secure Consumer-Centric Demand Response Management in Resilient Smart Grid as Industry 5.0
Application with Blockchain-Based Authentication. IEEE Transactions on Consumer Electronics.
Available at: http://dx.doi.org/10.1109/tce.2023.3320974.

Chakraborty, S., Krishna, R., Ding, Y., & Ray, B. (2021). Deep Learning Based
Vulnerability Detection: Are We There Yet? IEEE Transactions on Software Engineering,
Vol. 48, Issue 9, 3280-3296. DOI: 10.1109/TSE.2021.3087402.

Cheng, X., Wang, H., Hua, J., Xu, G., & Sui, Y. (2021). DeepWukong: Statically
Detecting Software Vulnerabilities Using Deep Graph Neural Network. ACM Transactions on
Software Engineering and Methodology (TOSEM), Vol. 30, Issue 3, 1-33. Available at:
https://doi.org/10.1145/3436877.

Hanif, H., & Maffeis, S. (2022). VulBERTa: Simplified Source Code Pre-Training for
Vulnerability Detection. 2022 IEEE International Joint Conference on Neural Networks (IJCNN),
1-8. DOI: 10.1109/IJCNN55064.2022.9892280.

Kim, S., Woo, S., Lee, H., & Oh, H. (2017). VUDDY: A Scalable Approach for Vulnerable
Code Clone Discovery. 2017 IEEE Symposium on Security and Privacy (SP), 595-614. DOI:
10.1109/SP.2017.62.

Kim, S., Choi, J., Ahmed, M.E., Nepal, S., & Kim, H. (2022). VulDeBERT:
A Vulnerability Detection System Using BERT. 2022 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 69-74. DOI:
https://doi.org/10.1109/ISSREW55968.2022.00042.

Li, X., Wang, L., Xin, Y., Yang, Y., & Chen, Y. (2020). Automated vulnerability detection
in source code using minimum intermediate representation learning. Applied Sciences, Vol. 10,
Issue 5, 1692. Available at: https://doi.org/10.3390/app10051692.

Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., & Hu, J. (2016). VulPecker: an automated
vulnerability detection system based on code similarity analysis. Proceedings of the 32nd Annual
Conference on Computer Security Applications, 201-213. Available at:
https://doi.org/10.1145/2991079.2991102.

116

Omar, M. (2022). Machine Learning for Cybersecurity: Innovative Deep Learning
Solutions. Springer International Publishing.

Omar, M. (2023). Backdoor learning for nlp: Recent advances, challenges, and future
research directions. arXiv preprint arXiv. DOI:10.48550/arXiv.2302.06801.

Omar, M. (2023). VulDefend: A Novel Technique based on Pattern-exploiting Training for
Detecting Software Vulnerabilities Using Language Models. 2023 IEEE Jordan International
Joint Conference on Electrical Engineering and Information Technology (JEEIT), 287-293.
DOI: 10.1109/JEEIT58638.2023.10185860.

Omar, M., Choi, S., Nyang, D.H., & Mohaisen, D. (2022). Robust natural language
processing: Recent advances, challenges, and future directions. arXiv preprint arXiv:2201.00768.
Available at: https://arxiv.org/pdf/2201.00768.pdf.

Omar, M., Jones, R., Burrell, D.N., Dawson, M., Nobles, C., Mohammed, D., & Bashir,
A.K. (2023). Harnessing the Power and Simplicity of Decision Trees to Detect IoT Malware.
Transformational Interventions for Business, Technology, and Healthcare, 215-229. IGI Global.

Omar, M., & Sukthankar, G. (2023). Text-defend: Detecting adversarial examples using
local outlier factor. 2023 IEEE 17th International Conference on Semantic Computing (ICSC),
118-122. DOI: 10.1109/ICSC56153.2023.00026.

Rabheru, R., Hanif, H., & Maffeis, S. (2021). DeepTective: Detection of PHP
vulnerabilities using hybrid graph neural networks. Proceedings of the 36th Annual ACM
Symposium on Applied Computing, 1687-1690. Available at: https://doi.org/10.1145/
3412841.3442132.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI blog, No. 8, Vol. 1. Available at:
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf.

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P., &
McConley, M. (2018). Automated vulnerability detection in source code using deep
representation learning. 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), 757-762. DOI: 10.1109/ICMLA.2018.00120.

Salimi, S., & Kharrazi, M. (2022). VulSlicer: Vulnerability detection through code slicing.
Journal of Systems and Software, Vol. 193, 111450. Available at:
https://doi.org/10.1016/j.jss.2022.111450.

Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2014). Modeling and Discovering
Vulnerabilities with Code Property Graphs. 2014 IEEE Symposium on Security and Privacy,
590-604. DOI: 10.1109/SP.2014.44.

Yan, R., Xiao, X., Hu, G., Peng, S., & Jiang, Y. (2018). New deep learning method to
detect code injection attacks on hybrid applications. Journal of Systems and Software, Vol. 137,
67-77. DOI:10.1016/j.jss.2017.11.001.

Zhou, X., & Verma, R.M. (2022). Vulnerability Detection via Multimodal Learning:
Datasets and Analysis. Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, 1225-1227, 2022. Available at: https://doi.org/10.1145/
3488932.3527288.

117

Zhou, Y., Liu, S., Siow, J., Du, X., & Liu, Y. (2019). Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural networks.
NIPS Proceedings − Advances in Neural Information Processing Systems, 32, available at:
https://papers.nips.cc/book/advances-in-neural-information-processing-systems-32-2019.

Zou, D., Wang, S., Xu, S., Li, Z., & Jin, H. (2019). μVulDeePecker: A deep learning-
based system for multiclass vulnerability detection. IEEE Transactions on Dependable and
Secure Computing, Vol. 18, Issue 5, 2224-2236. Available at: https://doi.org/10.1109/
TDSC.2019.2942930.

118

