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ABSTRACT 
The escalating complexity and sophistication of software vulnerabilities 

demand innovative approaches in cybersecurity. This study introduces a 
groundbreaking framework, named “CodeSentry”, employing a transformer-based 
model for vulnerability detection in software code. “CodeSentry” leverages a 
finely-tuned version of the Generative Pre-trained Transformer (GPT), optimized for 
pinpointing vulnerable code patterns across various benchmark datasets. 
This approach stands apart by its remarkable computational efficiency, making it 
suitable for real-time applications − a significant advancement over traditional, 
resource-intensive deep learning models like CNNs and LSTMs. Empirical results 
showcase “CodeSentry” achieving an impressive 92.65% accuracy in vulnerability 
detection, surpassing existing state-of-the-art methods such as SyseVR and 
VulDeBERT. This novel methodology marks a paradigm shift in vulnerability 
detection, blending advanced AI with practical application efficiency. 

KEYWORDS: CodeSentry, generative pre-trained language models, software 
  vulnerability detection, software security, GPT2, advanced AI 
  security 

1. Introduction
Cybersecurity is pivotal in 

safeguarding computational resources from 
escalating attacks. With rapid technological 
advancements, interconnectedness in the 
business realm is intensifying, raising 
concerns about the ability to withstand 
sophisticated cyber threats. According to 
the Verizon Cost of Data Breach Report 
2023, an average organization takes 197 

days to detect and an additional 69 days to 
contain a security breach. Prolonged response 
times to such incidents expose companies to 
significant financial, operational losses, and 
productivity downturns. 

The burgeoning necessity for 
computers to process extensive language 
data for natural language interactions 
further accentuates the need for robust 
cybersecurity measures (Tang & Mahmoud, 

Land Forces Academy Review 
Vol. XXIX, No. 1(113), 2024

DOI: 10.2478/raft-2024-0010
© 2024 Angel Jones et al. This work is licensed under the Creative Commons Attribution-Non Commercial-No Derivatives 3.0 License. 

98



2021). Studies have revealed the efficacy of 
Natural Language Processing (NLP) in 
cybersecurity applications, notably in 
detecting vulnerabilities in software codes. 
Software bugs, a frequent source of 
cyberattacks, pose a considerable threat, as 
evidenced by the annually updated 
Common Vulnerabilities and Exposures 
(CVE) list. Traditional code error detection 
methods are plagued by inefficiencies, 
necessitating the development of machine 
learning techniques to overcome these 
constraints. 

In light of these challenges, this paper 
presents a novel deep learning-based 
vulnerability detection framework, named 
“CodeSentry”, leveraging the 
transformative capabilities of Large 
Language Models (LLMs) in processing 
programming languages. CodeSentry 
employs a fine-tuned GPT model, 
optimized for identifying vulnerabilities in 
C, C++, and Java source code. This 
approach circumvents the need for 
extensive feature engineering and manual 
input required in traditional methods, 
enabling a more efficient and automated 
detection process.  

2. Contributions
The primary contributions of this

study are as follows: 
1) Development of CodeSentry, a

novel framework for detecting software 
vulnerabilities using large language models. 

2) Demonstrating the efficacy of
CodeSentry through benchmark datasets 
and GPT-based models for various 
programming languages. 

3) Comparative analysis showing that
CodeSentry outperforms existing state-of-
the-art vulnerability detection techniques. 

3. Related Work
In the realm of cybersecurity, the

detection of software vulnerabilities is a 
constantly evolving challenge that has 
garnered significant attention in both 

academic and industrial research (Abbasi et 
al., 2023; Ayub et al., 2023; Gholami & 
Omar, 2023; Omar, Choi, Nyang & 
Mohaisen, 2022; Omar et al., 2023; Salimi 
& Kharrazi, 2022). The development of 
detection methods has transitioned through 
various phases, leading up to the recent 
implementation of deep learning 
techniques. This shift has been instrumental 
in refining the vulnerability detection 
process, particularly with the integration of 
transformer-based models like GPT-2 in 
frameworks like “CodeSentry”. 

Early attempts to apply deep learning 
to vulnerability detection involved using 
Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs) as 
feature extractors, followed by classifiers 
like Random Forest (RF) (Perl et al., 2015; 
Yamaguchi, Golde, Arp & Rieck, 2014). 
These models showcased substantial 
capabilities, evidenced by significant AUC 
(Area under curve) scores in real-world 
dataset applications (Gholami & Omar, 
2023; Omar, 2022; Omar, 2023; Omar et 
al., 2023; Omar & Sukthankar, 2023).  

The study of “VulDeePecker” 
introduced the concept of “code gadgets”, 
focusing on library/API function calls (Li et 
al., 2018). This approach, although initially 
narrow in scope, was later expanded in 
frameworks like SySeVR (Li et al., 2022), 
which incorporated both syntactic and 
semantic aspects of code for a more 
comprehensive analysis. 

Simultaneously, research also delved 
into graph-based approaches for 
vulnerability detection, such as in Devign 
(Zhou et al., 2019) and DeepWukong 
(Cheng et al., 2021), employing Graph 
Neural Networks (GNNs) to analyze code 
fragments. This direction highlighted the 
potential of neural network architectures in 
understanding complex code structures. 

Transformer-based language models 
like CodeBERT (Feng et al., 2020) further 
propelled this field, demonstrating the 
feasibility of using such models for 
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programming language analysis and 
automated documentation generation. These 
models, including GraphCodeBERT (Guo 
et al., 2020) and BART (Lewis et al., 2020), 
underpin the architecture for more 
advanced applications in software 
vulnerability detection. 

The introduction of “CodeSentry” 
marks a significant milestone in this 
journey. This novel deep learning-based 
vulnerability detection framework leverages 
the GPT-2 model, a transformer-based 
architecture renowned for its performance 
in natural language processing tasks (Feng 
et al., 2020). “CodeSentry” uniquely 
processes program source code as inputs 
and identifies vulnerable code fragments 
with remarkable efficiency and accuracy. 
This approach exemplifies the latest 
advancements in the field, showcasing a 
sophisticated blend of neural network 
architectures and deep learning strategies to 
tackle the ever present challenge of 
software vulnerabilities. 

Figure no. 1: Schematics diagram  
of the defense framework 

(Source: Authors) 

4. Overview of CodeSentry
The defense framework, named

CodeSentry, is an innovative approach 
designed to revolutionize the detection of 
vulnerabilities in software code. 
This advanced framework is built upon the 
robust foundations of the Generative 
Pre-trained Transformer (GPT-2), a large 
language model renowned for its 
exceptional performance in understanding 
and processing complex language 
structures. The overarching goal of 
CodeSentry is to provide an automated, 
efficient, and highly accurate system for 
identifying potential security vulnerabilities 
in source code. The framework operates 
through a series of interconnected 
processes, each contributing to the holistic 
analysis and assessment of the code under 
scrutiny. The following paragraphs describe 
the sequential steps involved in the 
CodeSentry defense framework, as depicted 
in the accompanying schematic diagram. 

4.1. Input Source Code 
The initial stage of the framework 

involves the input of source code, which 
serves as the raw data for vulnerability 
analysis. This source code can be in various 
programming languages, including but not 
limited to C, C++, and Java. The versatility 
of CodeSentry allows it to process source 
code from diverse software projects, 
ensuring broad applicability across different 
development environments. 

4.2. Tokenization 
Once the source code is inputted, the 

next step involves tokenization. In this 
phase, the framework utilizes sophisticated 
algorithms to break down the source code 
into smaller, manageable units known as 
tokens. These tokens may represent 
individual words, symbols, or syntactical 
elements inherent in the programming 
language. The tokenization process is 
crucial as it simplifies the complex 
structure of the source code, making it more 
amenable to subsequent analysis. 
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4.3. Vector Encoding 
Following tokenization, the tokens 

are then encoded into vector 
representations. This encoding process 
transforms the discrete tokens into a 
continuous vector space, facilitating the 
application of machine learning algorithms. 
Vector encoding is a vital step in the 
framework, as it converts the symbolic 
representations of the code into a format 
that can be efficiently processed by the 
GPT-2 model. 

4.4. GPT-2 Model 
At the heart of the CodeSentry 

framework lies the GPT2 model. This stage 
involves the processing of the vector 
encoded tokens through the GPT-2 
architecture. GPT-2’s advanced capabilities 
in natural language processing allow it to 
understand and interpret the contextual and 
syntactical nuances of the source code. 
The model analyzes the code to identify 
patterns and structures that are indicative of 
potential vulnerabilities. 

4.5. Vulnerability Assessment 
The final stage of the CodeSentry 

framework is the vulnerability assessment. 
In this phase, the output from the GPT-2 
model is scrutinized to determine the 
presence of any security vulnerabilities. 
The framework employs sophisticated 
algorithms to classify the code segments 
based on their likelihood of containing 
vulnerabilities. Each segment of code is 
assigned a probability score, indicating the 
potential risk associated with it. 

The comprehensive nature of the 
CodeSentry framework, from the initial 
input of source code to the final 
vulnerability assessment, ensures a 
thorough and accurate detection of potential 
security risks. The utilization of the GPT-2 
model within this framework allows for a 
nuanced analysis that goes beyond the 
capabilities of traditional vulnerability 
detection methods. This approach not only 

enhances the accuracy of vulnerability 
detection but also significantly reduces the 
time and computational resources required 
for such analyses, making it an ideal 
solution for real-time application in various 
software development scenarios. 

In summary, the CodeSentry defense 
framework presents a cutting-edge solution 
in the domain of cybersecurity, particularly 
in the area of software vulnerability 
detection. Its integration of advanced 
language processing capabilities with 
practical application efficiency positions it 
as a significant advancement in the ongoing 
efforts to secure software against 
increasingly sophisticated cyber threats. 

CodeSentry, our novel classification 
model, is built on the robust large language 
model GPT-2. Designed to automatically 
detect security vulnerabilities in software 
source code, CodeSentry employs the 
fine-tuned GPT-2 model to identify vectors 
corresponding to vulnerable code gadgets 
from the target source, as depicted in 
Figure no. 1. 

In this framework, a C file is input as 
a lengthy character string to the NLP 
vulnerability model. The tokenizer then 
breaks this string into words and sub-words, 
treating syntax characters like periods, 
semicolons, parentheses, and brackets as 
separate entities. These tokenized words are 
encoded into vector representations and fed 
into the model either token by token or in 
larger chunks. 

For identifying software 
vulnerabilities, CodeSentry produces an 
output vector corresponding to the number 
of vulnerability classes within the dataset. 
Given 124 distinct vulnerability classes, the 
output vector has a dimension of 124. 
This vector undergoes normalization via a 
Softmax function, converting it into a 
probability distribution, where each vector 
element represents the likelihood of a 
particular vulnerability class being present 
in the analyzed code. 
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5. Methodology and Base Models
In our study, “CodeSentry:

Revolutionizing Real-Time Software 
Vulnerability Detection with Optimized 
GPT Framework”, we explore the 
application of advanced NLP classifiers − 
including BERT, WordCNN, and LSTM − 
within the context of software vulnerability 
detection. These classifiers form the basis 
of our comparative analysis, where 
CodeSentry, our proposed model, is 
evaluated against existing models such as 
SySeVR and VulDeBERT. 

To begin with, our methodology 
involved the adaptation of the GPT-2 model 
into the CodeSentry framework for 
detecting vulnerabilities in source code. 
The inclusion of BERT, WordCNN, and 
LSTM classifiers in our study serves a dual 
purpose. First, it establishes a foundational 
understanding of how transformer-based 
models (like BERT) and other neural 
network architectures (such as WordCNN 
and LSTM) are traditionally applied to NLP 
tasks, including text classification and 
sequence modeling. This theoretical basis is 
crucial for contextualizing the novelty of 
CodeSentry’s approach, which integrates 
the transformer architecture’s strengths in 
handling complex language structures with 
the specific task of software vulnerability 
detection. 

Furthermore, our comparative analysis 
leverages these classifiers to benchmark the 
performance of CodeSentry against SySeVR 
and VulDeBERT. Specifically, we utilize 
BERT as a representative of transformer-
based models, WordCNN for its 
convolutional approach to text classification, 
and LSTM for its efficacy in sequence 
modeling. This comparison allows us to 
highlight the advantages of CodeSentry’s 
optimized GPT framework in accurately 
identifying vulnerable code patterns, 
demonstrating its superiority over both 
traditional and state-of-the-art methods in 
terms of accuracy, precision, recall, F1 score, 
and computational efficiency. 

The evaluation of CodeSentry, 
alongside SySeVR and VulDeBERT, is 
conducted on the SARD and SeVC datasets. 
This comparative study not only showcases 
CodeSentry’s enhanced performance but also 
illustrates the specific contributions of 
transformer-based models to the domain of 
software security, particularly in the real-time 
detection of vulnerabilities. Through this 
methodology, we aim to provide a 
comprehensive overview of how CodeSentry 
leverages the capabilities of advanced NLP 
classifiers to set a new benchmark in the field 
of cybersecurity. 

GPT Model: The Generative 
Pre-Trained Transformer (GPT) is a series of 
advanced deep-learning language models 
based on transformers, known for their 
effectiveness in various NLP tasks. GPT 
models, including the latest GPT-2, inherit 
the core elements of the baseline transformer 
model such as embedding algorithms, 
positional encoding, and attention 
mechanisms. Their comprehensive design is 
crucial for tasks like spam detection. 

CodeBERT: Developed by Feng et al. 
(2020), CodeBERT is a pre-trained model 
capable of understanding both programming 
languages (PL) and natural language (NL). 
This model supports various NL-PL 
applications, thanks to its transformerbased 
architecture trained with a unique objective 
function. CodeBERT, consisting of 12 layers 
and 345M parameters, is fundamental for 
tasks like code documentation generation and 
natural language code search. 

LSTM: Long Short-Term Memory 
(LSTM) networks are recurrent neural 
networks that excel in learning order 
dependencies. Li et al. (2018) utilized an 
LSTM-based architecture for source code 
vulnerability detection, employing 
pre-trained GLOVE embeddings and a 
dropout rate of 0.1 during training. 
The Adam optimizer, a batch size of 100, 
and a learning rate of 1•10-3 were used to 
train the model for 20 epochs, selecting the 
best-performing checkpoints for testing. 
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5.1. Datasets 
We employ two benchmark datasets 

for our study: the Software Assurance 
Reference Dataset (SARD) (Zhou & 
Verma, 2022) and the Semantics-based 
Vulnerability Candidate (SeVC) dataset 
(Shoeybi et al., 2019). 

1) SARD: SARD provides both secure
and vulnerable code examples, enabling our 
models to distinguish between them. 
Preprocessing steps are applied to remove 
artifacts that could cause overfitting. 

2) SeVC: SeVC contains a mixture of
vulnerable and nonvulnerable C/C++ open-
source programs from the NVD and SARD. 
This dataset is essential for training our 
models to detect a variety of vulnerabilities. 

6. Evaluation and Results
To assess the performance of our

NLP classifiers (BERT, WordCNN, and 
LSTM), we utilize metrics such as 
Accuracy, Precision, Recall, F1 Score, and 
AUC (Area under curve). These metrics 
provide a comprehensive evaluation of the 
classifiers’ ability to correctly identify 
vulnerabilities in software. 

‒ Configuration 
Our experiments were conducted on 

an ASUS TUF Gaming laptop equipped 

with an Intel Core i7-8th generation CPU, 
featuring six cores with a maximum 
frequency of 2.2 GHz per core. 

‒ Comparative Analysis 
CodeSentry was compared with state-

of-the-art models SySeVR and VulDeBERT 
using NLP classifiers. The framework 
consistently outperformed these models in 
vulnerability detection. On the SARD dataset 
using the GPT-2 model, CodeSentry achieved 
an F1 score of 92.4%. In contrast, the LSTM 
model showed a lower performance with an 
F1 score of 68.32%. 

Table no. 1 
F1 Score comparison of CodeSentry 

with SySeVR and VulDeBERT 

(Source: Authors) 

Figure no. 2: ROC curves comparing CodeSentry, VulBerTA, and CodeBERT 
(Source: Authors) 
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Figure no. 3: Performance comparison on different datasets
(Source: Authors) 

Figure no. 4: Performance comparison of CodeSentry, VulBerTA, and CodeBERT
(Source: Authors) 
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7. Analysis
In our study “CodeSentry: 

Revolutionizing Real-Time Software 
Vulnerability Detection with Optimized GPT 
Framework”, we meticulously applied a 
methodology incorporating advanced NLP 
classifiers, including BERT, WordCNN, and 
LSTM, as benchmarks for evaluating the 
performance of our proposed model, 
CodeSentry, against existing models such as 
SySeVR and VulDeBERT. This evaluation, 
centered around the F1 Score to balance 
precision and recall, was conducted using the 
Software Assurance Reference Dataset 
(SARD) and Semantics-based Vulnerability 
Candidate (SeVC) datasets. The F1 Score, 
chosen for its comprehensive reflection of 
model performance in vulnerability detection, 
served as the primary metric depicted on the 
OY axis in Figures no. 3 & 4, highlighting 
CodeSentry’s superior capability in accurately 
identifying software vulnerabilities. 

Figures no. 2 & 3 in our analysis 
distinguish themselves by their evaluative 
focus: Figure no. 2 uses ROC curves to 
compare the discriminative power of 
CodeSentry, VulBerTA, and CodeBERT, 
illustrating their abilities to distinguish 
between vulnerable and non-vulnerable 
code segments. In contrast, Figure no. 3 
specifically examines the F1 Score across 
different datasets, showcasing 
CodeSentry’s enhanced performance. This 
distinction underscores the varied 
evaluative lenses − general discriminative 
abilities versus a balanced precision-recall 
metric − employed to thoroughly assess the 
models’ effectiveness in vulnerability 
detection. 

The comparative analysis, as depicted 
in Figures no. 3 & 4, demonstrates 
CodeSentry’s robustness and adaptability, 
with its performance on the SARD dataset 
standing out significantly. CodeSentry not 
only outperforms VulBerTA and 
CodeBERT but also sets a new benchmark 
in real-time vulnerability detection. This 
nuanced evaluation, leveraging the F1 

Score across diverse testing environments, 
elucidates CodeSentry’s advancements in 
cybersecurity, underscoring its potential to 
revolutionize vulnerability detection through 
optimized GPT frameworks. The results 
underscore the importance of employing 
advanced, transformer-based models in the 
ongoing battle against software 
vulnerabilities, marrying computational 
efficiency with high accuracy and precision. 

The performance evaluation of Code 
Sentry, VulBerTA, and CodeBERT on the 
SARD and SeVC datasets is illustrated in 
Figure no. 1. CodeSentry exhibited superior 
accuracy, particularly notable on the SARD 
dataset with a peak performance of 92.59%. 
This performance was approximately 2% 
higher than that of VulBerTA and 
CodeBERT. On the SeVC dataset, Code 
Sentry maintained its lead, albeit with a 
narrower margin. 

In terms of ROC curve analysis 
(Figure no. 2), CodeSentry demonstrated an 
enhanced ability to balance true positive 
and false positive rates. The higher AUC 
for CodeSentry indicates its robust 
capability in differentiating between 
vulnerable and non-vulnerable code 
segments, likely due to its advanced 
transformer-based architecture. 

8. Conclusions and Future
Research Directions 

This study introduces CodeSentry, a 
novel vulnerability detection framework 
leveraging transformer-based language 
models. Empirical evaluations on the 
SARD and SeVC datasets confirm that 
CodeSentry outperforms VulBerTA and 
CodeBERT. Its success is attributed to the 
GPT-based architecture’s effectiveness in 
capturing the complexities of software 
vulnerabilities. 

8.1. Future Research Directions 
‒ Expanding support for additional 

programming languages to enhance 
applicability in diverse environments. 
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‒ Integration with traditional static 
analysis tools for comprehensive 
vulnerability detection. 

‒ Optimizing computational 
efficiency for deployment in large-scale 
environments. 

8.2. Insights and Open Challenges 
‒ Insights: The study highlights the 

advantages of transformer-based models in 
accurately detecting software vulnerabilities 
and the importance of comprehensive 
datasets for training and evaluation. 

‒ Open Challenges: 
1) Addressing data privacy and

security concerns in models requiring 
access to sensitive codebases. 

2) Maintaining relevance against
evolving cybersecurity threats. 

3) Integrating models like Code
Sentry with existing software development 
tools. 

4) Enhancing model interpretability
for acceptance and trustworthiness among 
developers.
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