
CODESENTRY: REVOLUTIONIZING
REAL-TIME SOFTWARE VULNERABILITY

DETECTION WITH OPTIMIZED
GPT FRAMEWORK

Angel JONES
The University of Virginia, Virginia, USA &

Capitol Technology University, Maryland, USA
Angel.Jones@virginia.edu

Marwan OMAR
Capitol Technology University, Maryland, USA &

Illinois Institute of Technology, Chicago, USA
momar3@iit.edu

ABSTRACT
The escalating complexity and sophistication of software vulnerabilities

demand innovative approaches in cybersecurity. This study introduces a
groundbreaking framework, named “CodeSentry”, employing a transformer-based
model for vulnerability detection in software code. “CodeSentry” leverages a
finely-tuned version of the Generative Pre-trained Transformer (GPT), optimized for
pinpointing vulnerable code patterns across various benchmark datasets.
This approach stands apart by its remarkable computational efficiency, making it
suitable for real-time applications − a significant advancement over traditional,
resource-intensive deep learning models like CNNs and LSTMs. Empirical results
showcase “CodeSentry” achieving an impressive 92.65% accuracy in vulnerability
detection, surpassing existing state-of-the-art methods such as SyseVR and
VulDeBERT. This novel methodology marks a paradigm shift in vulnerability
detection, blending advanced AI with practical application efficiency.

KEYWORDS: CodeSentry, generative pre-trained language models, software
 vulnerability detection, software security, GPT2, advanced AI
 security

1. Introduction
Cybersecurity is pivotal in

safeguarding computational resources from
escalating attacks. With rapid technological
advancements, interconnectedness in the
business realm is intensifying, raising
concerns about the ability to withstand
sophisticated cyber threats. According to
the Verizon Cost of Data Breach Report
2023, an average organization takes 197

days to detect and an additional 69 days to
contain a security breach. Prolonged response
times to such incidents expose companies to
significant financial, operational losses, and
productivity downturns.

The burgeoning necessity for
computers to process extensive language
data for natural language interactions
further accentuates the need for robust
cybersecurity measures (Tang & Mahmoud,

Land Forces Academy Review
Vol. XXIX, No. 1(113), 2024

DOI: 10.2478/raft-2024-0010
© 2024 Angel Jones et al. This work is licensed under the Creative Commons Attribution-Non Commercial-No Derivatives 3.0 License.

98

2021). Studies have revealed the efficacy of
Natural Language Processing (NLP) in
cybersecurity applications, notably in
detecting vulnerabilities in software codes.
Software bugs, a frequent source of
cyberattacks, pose a considerable threat, as
evidenced by the annually updated
Common Vulnerabilities and Exposures
(CVE) list. Traditional code error detection
methods are plagued by inefficiencies,
necessitating the development of machine
learning techniques to overcome these
constraints.

In light of these challenges, this paper
presents a novel deep learning-based
vulnerability detection framework, named
“CodeSentry”, leveraging the
transformative capabilities of Large
Language Models (LLMs) in processing
programming languages. CodeSentry
employs a fine-tuned GPT model,
optimized for identifying vulnerabilities in
C, C++, and Java source code. This
approach circumvents the need for
extensive feature engineering and manual
input required in traditional methods,
enabling a more efficient and automated
detection process.

2. Contributions
The primary contributions of this

study are as follows:
1) Development of CodeSentry, a

novel framework for detecting software
vulnerabilities using large language models.

2) Demonstrating the efficacy of
CodeSentry through benchmark datasets
and GPT-based models for various
programming languages.

3) Comparative analysis showing that
CodeSentry outperforms existing state-of-
the-art vulnerability detection techniques.

3. Related Work
In the realm of cybersecurity, the

detection of software vulnerabilities is a
constantly evolving challenge that has
garnered significant attention in both

academic and industrial research (Abbasi et
al., 2023; Ayub et al., 2023; Gholami &
Omar, 2023; Omar, Choi, Nyang &
Mohaisen, 2022; Omar et al., 2023; Salimi
& Kharrazi, 2022). The development of
detection methods has transitioned through
various phases, leading up to the recent
implementation of deep learning
techniques. This shift has been instrumental
in refining the vulnerability detection
process, particularly with the integration of
transformer-based models like GPT-2 in
frameworks like “CodeSentry”.

Early attempts to apply deep learning
to vulnerability detection involved using
Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) as
feature extractors, followed by classifiers
like Random Forest (RF) (Perl et al., 2015;
Yamaguchi, Golde, Arp & Rieck, 2014).
These models showcased substantial
capabilities, evidenced by significant AUC
(Area under curve) scores in real-world
dataset applications (Gholami & Omar,
2023; Omar, 2022; Omar, 2023; Omar et
al., 2023; Omar & Sukthankar, 2023).

The study of “VulDeePecker”
introduced the concept of “code gadgets”,
focusing on library/API function calls (Li et
al., 2018). This approach, although initially
narrow in scope, was later expanded in
frameworks like SySeVR (Li et al., 2022),
which incorporated both syntactic and
semantic aspects of code for a more
comprehensive analysis.

Simultaneously, research also delved
into graph-based approaches for
vulnerability detection, such as in Devign
(Zhou et al., 2019) and DeepWukong
(Cheng et al., 2021), employing Graph
Neural Networks (GNNs) to analyze code
fragments. This direction highlighted the
potential of neural network architectures in
understanding complex code structures.

Transformer-based language models
like CodeBERT (Feng et al., 2020) further
propelled this field, demonstrating the
feasibility of using such models for

99

programming language analysis and
automated documentation generation. These
models, including GraphCodeBERT (Guo
et al., 2020) and BART (Lewis et al., 2020),
underpin the architecture for more
advanced applications in software
vulnerability detection.

The introduction of “CodeSentry”
marks a significant milestone in this
journey. This novel deep learning-based
vulnerability detection framework leverages
the GPT-2 model, a transformer-based
architecture renowned for its performance
in natural language processing tasks (Feng
et al., 2020). “CodeSentry” uniquely
processes program source code as inputs
and identifies vulnerable code fragments
with remarkable efficiency and accuracy.
This approach exemplifies the latest
advancements in the field, showcasing a
sophisticated blend of neural network
architectures and deep learning strategies to
tackle the ever present challenge of
software vulnerabilities.

Figure no. 1: Schematics diagram
of the defense framework

(Source: Authors)

4. Overview of CodeSentry
The defense framework, named

CodeSentry, is an innovative approach
designed to revolutionize the detection of
vulnerabilities in software code.
This advanced framework is built upon the
robust foundations of the Generative
Pre-trained Transformer (GPT-2), a large
language model renowned for its
exceptional performance in understanding
and processing complex language
structures. The overarching goal of
CodeSentry is to provide an automated,
efficient, and highly accurate system for
identifying potential security vulnerabilities
in source code. The framework operates
through a series of interconnected
processes, each contributing to the holistic
analysis and assessment of the code under
scrutiny. The following paragraphs describe
the sequential steps involved in the
CodeSentry defense framework, as depicted
in the accompanying schematic diagram.

4.1. Input Source Code
The initial stage of the framework

involves the input of source code, which
serves as the raw data for vulnerability
analysis. This source code can be in various
programming languages, including but not
limited to C, C++, and Java. The versatility
of CodeSentry allows it to process source
code from diverse software projects,
ensuring broad applicability across different
development environments.

4.2. Tokenization
Once the source code is inputted, the

next step involves tokenization. In this
phase, the framework utilizes sophisticated
algorithms to break down the source code
into smaller, manageable units known as
tokens. These tokens may represent
individual words, symbols, or syntactical
elements inherent in the programming
language. The tokenization process is
crucial as it simplifies the complex
structure of the source code, making it more
amenable to subsequent analysis.

100

4.3. Vector Encoding
Following tokenization, the tokens

are then encoded into vector
representations. This encoding process
transforms the discrete tokens into a
continuous vector space, facilitating the
application of machine learning algorithms.
Vector encoding is a vital step in the
framework, as it converts the symbolic
representations of the code into a format
that can be efficiently processed by the
GPT-2 model.

4.4. GPT-2 Model
At the heart of the CodeSentry

framework lies the GPT2 model. This stage
involves the processing of the vector
encoded tokens through the GPT-2
architecture. GPT-2’s advanced capabilities
in natural language processing allow it to
understand and interpret the contextual and
syntactical nuances of the source code.
The model analyzes the code to identify
patterns and structures that are indicative of
potential vulnerabilities.

4.5. Vulnerability Assessment
The final stage of the CodeSentry

framework is the vulnerability assessment.
In this phase, the output from the GPT-2
model is scrutinized to determine the
presence of any security vulnerabilities.
The framework employs sophisticated
algorithms to classify the code segments
based on their likelihood of containing
vulnerabilities. Each segment of code is
assigned a probability score, indicating the
potential risk associated with it.

The comprehensive nature of the
CodeSentry framework, from the initial
input of source code to the final
vulnerability assessment, ensures a
thorough and accurate detection of potential
security risks. The utilization of the GPT-2
model within this framework allows for a
nuanced analysis that goes beyond the
capabilities of traditional vulnerability
detection methods. This approach not only

enhances the accuracy of vulnerability
detection but also significantly reduces the
time and computational resources required
for such analyses, making it an ideal
solution for real-time application in various
software development scenarios.

In summary, the CodeSentry defense
framework presents a cutting-edge solution
in the domain of cybersecurity, particularly
in the area of software vulnerability
detection. Its integration of advanced
language processing capabilities with
practical application efficiency positions it
as a significant advancement in the ongoing
efforts to secure software against
increasingly sophisticated cyber threats.

CodeSentry, our novel classification
model, is built on the robust large language
model GPT-2. Designed to automatically
detect security vulnerabilities in software
source code, CodeSentry employs the
fine-tuned GPT-2 model to identify vectors
corresponding to vulnerable code gadgets
from the target source, as depicted in
Figure no. 1.

In this framework, a C file is input as
a lengthy character string to the NLP
vulnerability model. The tokenizer then
breaks this string into words and sub-words,
treating syntax characters like periods,
semicolons, parentheses, and brackets as
separate entities. These tokenized words are
encoded into vector representations and fed
into the model either token by token or in
larger chunks.

For identifying software
vulnerabilities, CodeSentry produces an
output vector corresponding to the number
of vulnerability classes within the dataset.
Given 124 distinct vulnerability classes, the
output vector has a dimension of 124.
This vector undergoes normalization via a
Softmax function, converting it into a
probability distribution, where each vector
element represents the likelihood of a
particular vulnerability class being present
in the analyzed code.

101

5. Methodology and Base Models
In our study, “CodeSentry:

Revolutionizing Real-Time Software
Vulnerability Detection with Optimized
GPT Framework”, we explore the
application of advanced NLP classifiers −
including BERT, WordCNN, and LSTM −
within the context of software vulnerability
detection. These classifiers form the basis
of our comparative analysis, where
CodeSentry, our proposed model, is
evaluated against existing models such as
SySeVR and VulDeBERT.

To begin with, our methodology
involved the adaptation of the GPT-2 model
into the CodeSentry framework for
detecting vulnerabilities in source code.
The inclusion of BERT, WordCNN, and
LSTM classifiers in our study serves a dual
purpose. First, it establishes a foundational
understanding of how transformer-based
models (like BERT) and other neural
network architectures (such as WordCNN
and LSTM) are traditionally applied to NLP
tasks, including text classification and
sequence modeling. This theoretical basis is
crucial for contextualizing the novelty of
CodeSentry’s approach, which integrates
the transformer architecture’s strengths in
handling complex language structures with
the specific task of software vulnerability
detection.

Furthermore, our comparative analysis
leverages these classifiers to benchmark the
performance of CodeSentry against SySeVR
and VulDeBERT. Specifically, we utilize
BERT as a representative of transformer-
based models, WordCNN for its
convolutional approach to text classification,
and LSTM for its efficacy in sequence
modeling. This comparison allows us to
highlight the advantages of CodeSentry’s
optimized GPT framework in accurately
identifying vulnerable code patterns,
demonstrating its superiority over both
traditional and state-of-the-art methods in
terms of accuracy, precision, recall, F1 score,
and computational efficiency.

The evaluation of CodeSentry,
alongside SySeVR and VulDeBERT, is
conducted on the SARD and SeVC datasets.
This comparative study not only showcases
CodeSentry’s enhanced performance but also
illustrates the specific contributions of
transformer-based models to the domain of
software security, particularly in the real-time
detection of vulnerabilities. Through this
methodology, we aim to provide a
comprehensive overview of how CodeSentry
leverages the capabilities of advanced NLP
classifiers to set a new benchmark in the field
of cybersecurity.

GPT Model: The Generative
Pre-Trained Transformer (GPT) is a series of
advanced deep-learning language models
based on transformers, known for their
effectiveness in various NLP tasks. GPT
models, including the latest GPT-2, inherit
the core elements of the baseline transformer
model such as embedding algorithms,
positional encoding, and attention
mechanisms. Their comprehensive design is
crucial for tasks like spam detection.

CodeBERT: Developed by Feng et al.
(2020), CodeBERT is a pre-trained model
capable of understanding both programming
languages (PL) and natural language (NL).
This model supports various NL-PL
applications, thanks to its transformerbased
architecture trained with a unique objective
function. CodeBERT, consisting of 12 layers
and 345M parameters, is fundamental for
tasks like code documentation generation and
natural language code search.

LSTM: Long Short-Term Memory
(LSTM) networks are recurrent neural
networks that excel in learning order
dependencies. Li et al. (2018) utilized an
LSTM-based architecture for source code
vulnerability detection, employing
pre-trained GLOVE embeddings and a
dropout rate of 0.1 during training.
The Adam optimizer, a batch size of 100,
and a learning rate of 1•10-3 were used to
train the model for 20 epochs, selecting the
best-performing checkpoints for testing.

102

5.1. Datasets
We employ two benchmark datasets

for our study: the Software Assurance
Reference Dataset (SARD) (Zhou &
Verma, 2022) and the Semantics-based
Vulnerability Candidate (SeVC) dataset
(Shoeybi et al., 2019).

1) SARD: SARD provides both secure
and vulnerable code examples, enabling our
models to distinguish between them.
Preprocessing steps are applied to remove
artifacts that could cause overfitting.

2) SeVC: SeVC contains a mixture of
vulnerable and nonvulnerable C/C++ open-
source programs from the NVD and SARD.
This dataset is essential for training our
models to detect a variety of vulnerabilities.

6. Evaluation and Results
To assess the performance of our

NLP classifiers (BERT, WordCNN, and
LSTM), we utilize metrics such as
Accuracy, Precision, Recall, F1 Score, and
AUC (Area under curve). These metrics
provide a comprehensive evaluation of the
classifiers’ ability to correctly identify
vulnerabilities in software.

‒ Configuration
Our experiments were conducted on

an ASUS TUF Gaming laptop equipped

with an Intel Core i7-8th generation CPU,
featuring six cores with a maximum
frequency of 2.2 GHz per core.

‒ Comparative Analysis
CodeSentry was compared with state-

of-the-art models SySeVR and VulDeBERT
using NLP classifiers. The framework
consistently outperformed these models in
vulnerability detection. On the SARD dataset
using the GPT-2 model, CodeSentry achieved
an F1 score of 92.4%. In contrast, the LSTM
model showed a lower performance with an
F1 score of 68.32%.

Table no. 1
F1 Score comparison of CodeSentry

with SySeVR and VulDeBERT

(Source: Authors)

Figure no. 2: ROC curves comparing CodeSentry, VulBerTA, and CodeBERT
(Source: Authors)

103

Figure no. 3: Performance comparison on different datasets
(Source: Authors)

Figure no. 4: Performance comparison of CodeSentry, VulBerTA, and CodeBERT
(Source: Authors)

104

7. Analysis
In our study “CodeSentry:

Revolutionizing Real-Time Software
Vulnerability Detection with Optimized GPT
Framework”, we meticulously applied a
methodology incorporating advanced NLP
classifiers, including BERT, WordCNN, and
LSTM, as benchmarks for evaluating the
performance of our proposed model,
CodeSentry, against existing models such as
SySeVR and VulDeBERT. This evaluation,
centered around the F1 Score to balance
precision and recall, was conducted using the
Software Assurance Reference Dataset
(SARD) and Semantics-based Vulnerability
Candidate (SeVC) datasets. The F1 Score,
chosen for its comprehensive reflection of
model performance in vulnerability detection,
served as the primary metric depicted on the
OY axis in Figures no. 3 & 4, highlighting
CodeSentry’s superior capability in accurately
identifying software vulnerabilities.

Figures no. 2 & 3 in our analysis
distinguish themselves by their evaluative
focus: Figure no. 2 uses ROC curves to
compare the discriminative power of
CodeSentry, VulBerTA, and CodeBERT,
illustrating their abilities to distinguish
between vulnerable and non-vulnerable
code segments. In contrast, Figure no. 3
specifically examines the F1 Score across
different datasets, showcasing
CodeSentry’s enhanced performance. This
distinction underscores the varied
evaluative lenses − general discriminative
abilities versus a balanced precision-recall
metric − employed to thoroughly assess the
models’ effectiveness in vulnerability
detection.

The comparative analysis, as depicted
in Figures no. 3 & 4, demonstrates
CodeSentry’s robustness and adaptability,
with its performance on the SARD dataset
standing out significantly. CodeSentry not
only outperforms VulBerTA and
CodeBERT but also sets a new benchmark
in real-time vulnerability detection. This
nuanced evaluation, leveraging the F1

Score across diverse testing environments,
elucidates CodeSentry’s advancements in
cybersecurity, underscoring its potential to
revolutionize vulnerability detection through
optimized GPT frameworks. The results
underscore the importance of employing
advanced, transformer-based models in the
ongoing battle against software
vulnerabilities, marrying computational
efficiency with high accuracy and precision.

The performance evaluation of Code
Sentry, VulBerTA, and CodeBERT on the
SARD and SeVC datasets is illustrated in
Figure no. 1. CodeSentry exhibited superior
accuracy, particularly notable on the SARD
dataset with a peak performance of 92.59%.
This performance was approximately 2%
higher than that of VulBerTA and
CodeBERT. On the SeVC dataset, Code
Sentry maintained its lead, albeit with a
narrower margin.

In terms of ROC curve analysis
(Figure no. 2), CodeSentry demonstrated an
enhanced ability to balance true positive
and false positive rates. The higher AUC
for CodeSentry indicates its robust
capability in differentiating between
vulnerable and non-vulnerable code
segments, likely due to its advanced
transformer-based architecture.

8. Conclusions and Future
Research Directions

This study introduces CodeSentry, a
novel vulnerability detection framework
leveraging transformer-based language
models. Empirical evaluations on the
SARD and SeVC datasets confirm that
CodeSentry outperforms VulBerTA and
CodeBERT. Its success is attributed to the
GPT-based architecture’s effectiveness in
capturing the complexities of software
vulnerabilities.

8.1. Future Research Directions
‒ Expanding support for additional

programming languages to enhance
applicability in diverse environments.

105

‒ Integration with traditional static
analysis tools for comprehensive
vulnerability detection.

‒ Optimizing computational
efficiency for deployment in large-scale
environments.

8.2. Insights and Open Challenges
‒ Insights: The study highlights the

advantages of transformer-based models in
accurately detecting software vulnerabilities
and the importance of comprehensive
datasets for training and evaluation.

‒ Open Challenges:
1) Addressing data privacy and

security concerns in models requiring
access to sensitive codebases.

2) Maintaining relevance against
evolving cybersecurity threats.

3) Integrating models like Code
Sentry with existing software development
tools.

4) Enhancing model interpretability
for acceptance and trustworthiness among
developers.

REFERENCES

Abbasi, R., Bashir, A.K., Mateen, A., Amin, F., Ge, Y., & Omar, M. (2023). Efficient
Security and Privacy of Lossless Secure Communication for Sensor-based Urban Cities. IEEE
Sensors Journal PP (99). DOI:10.1109/JSEN.2023.3305716.

Ayub, M.F., Li, X., Mahmood, K., Shamshad, S., Saleem, M.A., & Omar, M. (2023).
Secure Consumer-Centric Demand Response Management in Resilient Smart Grid as Industry 5.0
Application with Blockchain-Based Authentication. IEEE Transactions on Consumer Electronics.
DOI: 10.1109/TCE.2023.3320974.

Cheng, X., Wang, H., Hua, J., Xu, G., & Sui, Y. (2021). DeepWukong: Statically Detecting
Software Vulnerabilities Using Deep Graph Neural Network. ACM Transactions on Software
Engineering and Methodology, Vol. 30, Issue 3, 1-33. Available at:
https://doi.org/10.1145/3436877.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., & Zhou, M. (2020). CodeBERT: A Pre-Trained Model for Programming and Natural
Languages. Findings of the Association for Computational Linguistics: EMNLP 2020, 1536-1547.
Available at: https://aclanthology.org/2020.findings-emnlp.139.

Gholami, S., & Omar M. (2023). Can a student Large Language Model perform as well as
it’s teacher?. arXiv preprint arXiv:2310.02421. Available at:
https://doi.org/10.48550/arXiv.2310.02421.

Gholami, S., & Omar, M. (2023). Do Generative Large Language Models Need Billions of
Parameters?. arXiv preprint arXiv:2309.06589. Available at: https://doi.org/10.48550/
arXiv.2309.06589.

Gholami, S., & Omar, M. (2023). Does Synthetic Data Make Large Language Models
More Efficient?. arXiv preprint arXiv:2310.07830. Available at: https://doi.org/10.48550/
arXiv.2310.07830.

Guo, D., et al. (2020). GraphcodeBERT: Pre-training Code Representations with data Flow.
International Conference on Learning Representations. Available at: https://doi.org/10.48550/
arXiv.2009.08366.

Lewis, M., et al. (2020). BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension. Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 7871-7880. Available at:
https://aclanthology.org/2020.acl-main.703.pdf.

106

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z. (2022). SySeVR: A Framework for
Using Deep Learning to Detect Software Vulnerabilities. IEEE Transactions on Dependable and
Secure Computing, Vol. 19. DOI: 10.1109/TDSC.2021.3051525.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., & Zhong, Y. (2018).
VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. Network and
Distributed System Security Symposium, DOI:10.14722/ndss.2018.23158.

Omar, M. (2022). Machine learning for cybersecurity: Innovative deep learning solutions.
SpringerBriefs in Computer Science. ISSN: 2191-5768.

Omar, M. (2023). VulDefend: A Novel Technique based on Pattern-exploiting Training for
Detecting Software Vulnerabilities Using Language Models. 2023 IEEE Jordan International
Joint Conference on Electrical Engineering and Information Technology (JEEIT), 287-293.
DOI: 10.1109/JEEIT58638.2023.10185860.

Omar, M., Choi, S., Nyang, D.H., & Mohaisen, D. (2022). Robust Natural Language
Processing: Recent Advances, Challenges, and Future Directions. arXiv preprint
arXiv:2201.00768. Available at: https://doi.org/10.48550/arXiv.2201.00768.

Omar, M., Jones, R., Burrell, D.N., Dawson, M., Nobles, C., Mohammed, D.A., & Bashir,
A.K. (2023). Harnessing the Power and Simplicity of Decision Trees to Detect IoT Malware.
In book: Transformational Interventions for Business, Technology, and Healthcare, 215-229. IGI
Global. DOI:10.4018/979-8-3693-1634-4.ch013.

Omar, M., & Sukthankar, G. (2023). Text-Defend: Detecting Adversarial Examples using
Local Outlier Factor. 2023 IEEE 17th International Conference on Semantic Computing (ICSC),
118-122. DOI: 10.1109/ICSC56153.2023.00026.

Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Fahl, S., & Acar, Y.
(2015). VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist Code
Audits. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 426-437. Available at: https://doi.org/10.1145/2810103.2813604.

Salimi, S., & Kharrazi, M. (2022). VulSlicer: Vulnerability detection through code slicing.
Journal of Systems and Software, Vol. 193. Available at: https://doi.org/10.1016/
j.jss.2022.111450.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019).
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv preprint arXiv:1909.08053. Available at: https://doi.org/10.48550/arXiv.1909.08053.

Tang, L., & Mahmoud, Q.H. (2021). A Survey of Machine Learning-Based Solutions for
Phishing Website Detection. Machine Learning and Knowledge Extraction, Vol. 3, Issue 3,
672-694. Available at: https://doi.org/10.3390/make3030034.

Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. 92014). Modeling and Discovering
Vulnerabilities with Code Property Graphs. 2014 IEEE Symposium on Security and Privacy,
590-604. DOI: 10.1109/SP.2014.44.

Zhou, X., & Verma, R.M. (2022). Vulnerability Detection via Multimodal Learning:
Datasets and Analysis. Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, 1225-1227. Available at: https://doi.org/10.1145/3488932.3527288.

Zhou, Y., Liu, S., Siow, J., Du, X., & Liu, Y. (2019). Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural networks.
Advances in Neural Information Processing Systems, Vol. 32. Available at:
https://papers.nips.cc/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html.

107

