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Abstract

Introduction: Based on the tumor’s growth potential and aggres&iss, glioma is most often classified into lovigh-
grade groups. Traditionally, tissue sampling isdusedetermine the glioma grade. The aim of thislgtis to evaluate
the efficiency of the Laplacian Re-decompositioR[) medical image fusion algorithm for glioma graglby advanced
magnetic resonance imaging (MRI) images and intedbe best image combination for glioma grading.

Material and methods: Sixty-one patients (17 low-grade and 44 high-gradelerwent Susceptibility-weighted image
(SWI), apparent diffusion coefficient (ADC) map,daRluid attenuated inversion recovery (FLAIR) MRidging. To
fuse different MRI image, LRD medical image fusagorithm was used. To evaluate the effectivené&$sk® in the
classification of glioma grade, we compared thepaaters of the receiver operating characteristieec(ROC).

Results: The average Relative Signal Contrast (RSC) of &idl ADC maps in high-grade glioma are significafdlyer
than RSCs in low-grade glioma. No significant diéiece was detected between low and high-grade glimmFLAIR
images. In our study, the area under the curve (AldClow and high-grade glioma differentiation 8Vl and ADC

maps were calculated at 0.871 and 0.833, respéctive

Conclusions: By fusing SWI and ADC map with LRD medical imagesibn algorithm, we can increase AUC for low
and high-grade glioma separation to 0.978. Our vhaskled us to conclude that, by fusing SWI and ADdgp with LRD
medical image fusion algorithm, we reach the highdésgnostic accuracy for low and high-grade gliafiféerentiation
and we can use LRD medical fusion algorithm foogla grading.

Key words: glioma; laplacian re-decomposition; susceptipiliteighted imaging; diffusion-weighted imaging; igea

fusion.

Introduction

Glioma represents roughly 30 percent of all braimdrs and
central nervous system tumors and 80 percent ahalignant
brain tumors. Glioma treatment and management are
determined by the cell type, location, and gradmalignancy?
Glioma grade set to become a vital factor for tresait decision.
According to the WHO report, glioma are classifesl either
‘low-grade’ (grade | or Il) or ‘high-grade’ (gradé or 1V)
depending on their development potential and agiyesess.
The current gold standard for glioma grading issblasn tumor
morphologic observations and histopathologic figgin
However, these approaches have disadvantagesnaitatitbns,
such as high intra-observer variation, mistakes tigsue
sampling during the biopsy, and invasive proceddfes
Researchers have proposed non-invasive imagingitpas to
overcome these limitations.

Thanks to high soft-tissue contrast, non-ioniziagiation,
high resolution, and anatomical and functional imgg
Magnetic Resonance Imaging (MRI) has become amtake

medical imaging modality in brain imaging. Variob4RI
imaging protocols have been suggested for glioradigg, such
as Susceptibility-weighted imaging (SWIDiffusion-weighted
imaging (DWIY, Susceptibility contrast enhancement (SCE)
Dynamic contrast enhancement (D&ERrterial spin labelling
(ASL)', Magnetic resonance spectroscopy (MR3tc.

SWI is an MRI technique for detecting and chandzieg
tissue components based on the difference in tissue
susceptibility propertie§ SWI is an essential and accurate MRI
imaging protocol to diagnose the disease and pceserf
paramagnetic substance such as iron, blood prqdactd
hemorrhage$**® It has now been demonstrated that with
increasing glioma grade, micro bleeding and henagek inside
the tumor were observédi® Because hemorrhage and micro
bleeding (specifically blood products) can chanbe tocal
susceptibility properties, they can easily be dettavith SWI.

In a major advance in 2014, Ding et*dldemonstrated the SWI
capability for glioma grading. They concluded thatcould use
SWI images for primary central nervous system lyompa
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(PCNSLs) from high-grade glioma and brain metastase

differentiation with the area under the curve (AWED.873.
DWI is one of the advanced MRI imaging sequendeishvis
based on measuring the random Brownian motion demw

a

molecules of tissu¥. The typical DWI protocol produces us

DWI images and apparent diffusion coefficient (AD@aps.
ADC maps have become an essential issue in turadirgy with

MRI.1° Therefore, much work on ADC's potential for glioma

grading has been carried d&i??

Fluid attenuated inversion recovery (FLAIR) isaratomical
and conventional MRI inversion recovery pulse segeethat
removes cerebrospinal fluid (CSF) signals fromithages. The
contrast of the brain on FLAIR images is similafteweighted
images, but CSF is dark. The FLAIR's usefulnessthn
diagnostic of many central nervous system disordech as
cortical, meningeal, and periventricular diseases lbeen
evaluated.

One of the main issues we know about glioma gradiith
different MRI protocols is a lack of sufficient diaostic value
of these images. Therefore, there are still somed@mgnostic
accuracy issues. Much work on the potential of databination
of different imaging protocols for glioma gradingsh been

carried out®25However, there are still some critical issues. One

way to overcome this limitation would be medicabipe fusion.
Using the medical image fusion techniques, we camlthe
information of two different images and display rth@s one
image. The result will be an increase in the diagjnaccuracy
of the fused image. There are two kinds of imagsiofu
methods: spatial and transform domain approatdésin

medical image fusion, transform domain-based methmc

commonly used®?° Source images are firstly transformed into

specific coefficients by transform domain methotlse source
image coefficients are then fused, and the fusedg@mis
reconstructed by inversely transforming all of thased
coefficients.

Multi-scale transform (MST), as a transform dorbased
and frequency domain method, has recently attrguaetcular
attention for medical image fusion tasRsThe MST-based
algorithm divided source images into high and loegfiency
sub-images using a transform and then generatedagegusion
rules for the high and low-frequency sub-imagegetmnstruct
the final fused images. One of the MST-based algms used
for medical image fusion was Laplacian Re-decontjuorsi

(LRD) fusion algorithm® This paper examines the significance

of the LRD medical fusion algorithm in the rise dignostic
accuracy for glioma grading with the fusion of SWDC, and
FLAIR images. In the light of the foregoing, weetllito use SWI
images, T2-FLAIR images, and ADC maps in the curstundy
as the input images of the LRD fusion algorithm fioma
grading purposes. The aim of this study is to eaaluthe
usefulness of the LRD image fusion algorithm fagibrtumor
grading with SWI, T2-FLAIR, and ADC map and improthe
grading accuracy for brain tumors with the fusidradvanced
MRI images.
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Figure 1. Patient population flow-chart of study.

Material and methods

Patients

This study included 79 patients with histologicatignfirmed
glioma by surgical resection who underwent magrresonance
examination between April 2020 and February 202he O
experienced neuropathologist examined the tumocisgas
according to the WHO 2016 classificatibn.

Of these patients, 61 of them ((32 men, 29 womegn age
53.16 years; range [23 85] years), 17 low-gradenggis and 44
high-grade gliomas) were includedrigure 1) under the
following criteria in this study: (1) histopatholpgonfirmation
of the glioma; (2) no radiotherapy or chemotherppyformed
before the magnetic resonance imaging (MRI) exatioina(3)
lesion equal to or greater than 10 mm; (4) adequoege quality
(without patient motion or susceptibility artifac{p) do not
have an allergy to the gadolinium-based contrashtagSo, a
total of 61 glioma patients were analyzed in thislg. Figure 1
shows a flow chart of the study population. BetbeeMRI scan,
all the patients provided informed consent, anddbal research
ethics committee has approved the study.

MRI imaging

MRI imaging examinations were performed at a 1.6anser
(GE MRI Signa Explorer 1.5T) using a 16-channelcheail
with the patient in a supine position. The imagpmtocols
included: a 3-plane localizer sequence, axial Td-quntrast
(TR =400 ms, TE =10 ms, FA =90, Slice thickness mm,
and spacing=5mm) and post-contrast
TE =2.2ms, Tl =20 ms, FA = 12, Slice thickness mm, and
spacing =5 mm), axial echo-planar DWI imaging &R
5268 ms, TE = 113.2 ms, FA = 90, Slice thickne&smm, and
spacing = 5 mm with b-values = 50, 1000), axial Skvaging
(TR =87 ms, TE =47.5 ms, FA = 25, Slice thickressmm,
and spacing = 1.5 mm, MR Acquisition Type: 3D), andal
T2-FLAIR (T2F) weighted (TR =8500ms, TE =97.05,m
TI=2503ms, FA=170, Slice thickness=5 mm,

(TR=6.1ms,

and
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spacing =5 mm) imaging. DWI and SWI imaging proisc
were acquired before the administration of contnaetlia.

Raising the starting b-value to 50, instead opfvided a
clear visualization of the tumor image and decréake shine
through artifact. DWI MRI data were collected inrgb
orthogonal directions and combined to produce eetienage.
By using these data, ADC maps were created oned-pixpixel
basis with an MRI imaging unit workstation.

Using quadrature detection, both magnitude andeluata
are separately reconstructed to magnitude and pihzesges.
First, the magnitude image is saved. Then, a phmask is next
created that scales data from the filtered phasgésover a 0-1
range to accentuate tissues with different SWI ienag

Image fusion
For the image fusion process, the patient imagese we
transferred from the picture archiving and commatiis
system (PACS) to a personal computer (PEipyre 2) and
resized to 256x256. Through the image resize, we able to
reduce the fusion time and code run time. The fusigorithm
used in this study is practically the same as tteeproposed by
Li et al.3° using MATLAB 2019a Mathworks. We selected the
LRD medical image fusion algorithm due to its bette
performance than the other medical image fusiorouks£0-32
Briefly, the Laplacian Re-decomposition (LRD) neadi
fusion algorithm processFigure 3) started with Gradient
Domain Image Enhancement (GDIE) component. GDIE
includes four steps: Maximum Local Difference (ML Diterval
division of feature information, remapping gradiésdture, and
convolution operation. The result of the GDIE fuanton each

@

Scanned the head

source image is an enhancement image éad H) that
highlight the edge and detail information of souitages. In
the next stage of the LRD process, Laplacian PydafiP)
transform decomposes the knd H into High-frequency sub-
band images (i-and Lg) with edge and details information and
Low-frequency sub-band imagesa@nd G) with background
information. In the third stage of the LRD medidakion
algorithm process, Decision Graph Re-decomposifDBR)
was used. The DGR could properly classify the cemgintary
and redundant data ofaland Ls by designing two classifiers.
The first classifier could efficiently separate wadant data of
La and Lg into overlapping domain images {@nd @). The
second classifier of the DGR function stores commgletary
information of L and Ls in the image of the Non-overlapping
domain (M and Ns). In the next step of the LRD medical fusion
algorithm, we fuse the images created from theipusvsteps
by several fusion rules.A&nd G with Local Energy Maximum
(LEM) fusion rule were fused to form Low-frequensyb-band
fusion image (@®.

To create the overlapping domain fusion imager) (O
containing both source images’ feature imageseptteglapping
domain (OD) fusion rule was used. According to dieéinition
of the Non-overlapping domain by DGR, the fusioraga (M)
of Na and Ns could be obtained by the Non-overlapping domain
(NOD) fusion rule. To reconstruct the High-frequgsab-band
fusion image (k) by fusing @ and N and eliminating image
artifacts, Inverse Re-decomposition Scheme (IRSjofurule
was proposed. Finally, the inverse LP method recocts the
final fused image (F) from &Gand Lr images. More details of
this medical fusion algorithm are if
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Figure 3. Laplacian Re-decomposition (LRD) algorithmfor medical image fusion includes several steps. HAnd HB: enhancement images,
LA and LB: High-frequency sub-band images, GA and GB: Lav-frequency sub-band images, OA and OB: overlappingomain images, NA
and NB: Non-overlapping domain images, OF: overlappig domain fusion images, NF: Non-overlapping domairusion images, GF: low-
frequency sub-band fusion images, LF: high-frequencgub-band fusion images.

Data evaluation

For each patient, a slice with the largest tumze gias selected
and analyzed. Two circular regions of interest (Rfot each
patient were manually drawn by a radiologist in THeimages
with gadolinium injection (T1Gd) with the ImageJftsare.
These two ROIs are located: (a) in the normal whitatter
(WM) as the background value for normalization @sx; and
(b) in the enhancement region (ER) on T1Gd image$ifjh-
grade glioma and high-signal intensity region ofrfiZeighted
images for low-grade glioma because on low-gradeots the
enhancement in T1Gd is scafédhe ROIs drawn in the T1Gd
and T2F images were transferred to the co-align&d iBvage
and ADC maps and fused images (SWI+T2F, SWI+ADG, an
T2F+ADC) to calculate the signal intensity of e&@l. Three
ROIs were sampled and averaged for each region.

The Relative Signal Contrast (RSC) was calculated

RSCROI — HROI—HWM
HwMm

Eq. 1
Where,uzo; is the mean signal intensity of the ROI, agg, is
the mean signal intensity of the normal white maitethe mean
background values in each picture. Six RSC wereutated,
RSCSWI! RSCADC! RSCTZF! RSCSWI+T2F1 RSCSWI+ADC!

RSCryr1apc, @nd evaluated for brain tumor grading.
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Statistical analysis

Statistical analyses were carried out using SPS® ffftware
(IBM Corp. Armonk, NY, USA). The two-tailed unpaite
student t-test was performed to statistically analthe mean
signal value and RSCs between low and high-grademgl
Moreover, the Exact Fisher test was used for tesssnent of
the sex and age relationship with the tumor grR&Cs values
were presented as the mean + standard deviati@earBa under
the curve (AUC), sensitivity, and specificity ofethreceiver
operating characteristic (ROC) curve for the sigaifit
parameters was calculated. The cut-off value ohigant
parameters in ROC analysis was calculated by gettire
maximum Youden index. P <0.05 was indicated to be
statistically significant.
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Results

The study consisted of 17 low-grade (27.86%) anchidyh-
grade (72.14%) glioma. The histopathologic findingse
presented irTable 1L There was no significant difference in
gender and age between low-grade and high-gradenagli
(Table 1)

Table 1. Characteristics of patients with low-gradeand high-grade
gliomas.

Low-grade High-grade P-value
Mean age (years) 49.18 + 15.17 56.89 + 16.33 0.25
Man 8 24
Sex 0.99
Woman 9 20

No significant difference was observed in mean a@igmtensity

values of normal-appearing white matter (WM) betweke

low-grade and high-grade glioma in all MRI imagimgtocols

of the current study (P-value > 0.05).Rigure 4, you can see
some of the results of the LRD fusion algorithmagratient with
high-grade glioma.

The average RSCs with standard deviation for loadg and
high-grade glioma in differently weighted imagesrevehown
in Figure 5. No significant difference was detectedRSCy,x
andRSCr,r44pc between low and high-grade glioma. Statistical
tests revealed that the me&8Cgy,;, and RSC,,, and some
fused images RSCsy 4125, RSCswirapc) Were significantly
different between low and high-grade gliomgig(re 5).

Figure 4. The image of a 71-year-old woman with higgrade

Interestingly, for high-grade glioma, in compariseith low- —jioma (a) axial SWI (B) axial T2-FLAIR (C) axial ADC map (D)
grade glioma, lower values &SCsy;, RSCapc: RSCswisrar fused image of SWI+T2F with LRD fusion algorithm. (E)fused
andRSCsw;+apc Were found. image of SWI+ADC with LRD fusion algorithm. (F) fused image of

T2F+ADC with LRD fusion algorithm. In all images, ROI 1 is the
white matter region (WM), and ROI 2 is the enhancerant region
on T1Gd.

M Low grade

@High grade

0.8
*k
0.6

0.4

s i
| |

-0.4

Average RSCs

-0.6

RSC(SWI) RSC(T2F) RSC(ADC) RSC(SWI+T2F) RSC(SWI+ADC) RSC(T2F+ADC)

Figure 5. Average RSCs in SWI, T2F, ADC map, and fiesl images (SWI+T2F, SWI+ADC, and R2F+ADC) of low andhigh-grade glioma
(* P-value<0.05; ** P-value <0.01; *** P-value<0.0Q)
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Table 2. ROC parameters in SWI, ADC map, and fusedmage (SWI+T2F, and SWI+ADC) for differentiation of low and high-grade glioma.

RSC Cutoff value AUC Sensitivity Specificity Maximun Youden Index

RSCgy; 0.062 0.871 0.814 1 0.814
RSC4pc 0.726 0.833 0.674 0.842 0.516
RSCsyyi12r 0.303 0.860 0.872 0.833 0.705
RSCsy1.apc 0.168 0.978 0.916 1 0.916
To distinguish between low and high-grade gliomalifferent 1.0
MRI imaging protocols and fused images and asshes t
diagnostic value of these images, ROC curve arsalyas used
(Figure 6). Table 2 represents the cut-off value, an area under 048
curve (AUC), sensitivity, specificity, and maximuiouden
index for RSCs in SWI, ADC, and fused images (SWAFTand
SWI+ADC) for discrimination of low and high-gradéiamna.
The analysis did not reveal any significant diffeze inRSCr, z 08
andRSCr,r.apc between low and high-grade glioma. So further %
analysis on the ROC curve of these images waserfinmed. 5 sl

The most remarkable result to emerge fiable 2is that the 0.4 ADC
AUC for low and high-grade glioma differentiatiomith RCSs ::m—LZDFC
cutoff-value 0.062 and 0.726, was 0.871 and 0.833WI and --- Reference Line
ADC map, respectively. Image fusion of SWI and AD@p 02
with RSCqy11apc cut-off value of 0.168 increased the AUC to
0.978 (12.3% improvement toward SWI images and %7.4
improvement toward ADC map)Téble 2) to low and high- ,
grade glioma differentiation by LRD medical imagasibn 095 02 04 06 08 10
algorithm- 1 - Specificity

Discussion

Accurate glioma grading became a vital factor inorgh
treatment management and treatment decision. [Restst
shortcoming, invasiveness, and time-consuming, diégpand
sampling have been widely used as the gold starideglioma
grading in the clinic. The current solution to cx@ne these
limitations is using advanced and functional imggmodality
such as MRI. Through the use of MRI as a medicalgimmgy
modality for brain imaging, we were able to recomst and
acquire images with high soft-tissue contrast, mwasive
process, non-ionizing imaging modality, anatomicahd
functional imaging. Recent development in MRI inrapi
protocols has led to the use of this modality fiavrga grading.
One of the main issues in our knowledge of gliomaalng with
different MRI imaging protocols is a lack of propdiagnostic
value of these images. In the light of recent dewelent in
medical image fusion methods and fusing the diffemmages,
there is now a considerable solution to overcomeseh
limitations for glioma grading with MRI.

The analysis did not confirm any significant difface in
RSCr,r between low and high-grade glioma. There are séver
possible explanations for this result. A possilxiplanation may
be that conventional MRI imaging protocols, suchTasand
T2F-weighted images, provide valuable structurérmation
about glioma dominated by tissue water content linited
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Figure 6. ROC curve of SWI, ADC, and fused imagesSWI+T2F,
and SWI+ADC) for differentiation of low-grade and high-grade
glioma.

physiological details. This structural informati@nnot enough
for glioma grading. As suggested by previous pains3* the
evidence we found points to the low diagnostic galof
conventional T2 images for low and high-grade ghom
differentiation.

Significantly, RSCsy,;, andRSC,,. and some fused images
(RSCswi+12F» RSCswi+apc) Were different between low and
high-grade glioma. According to our results, itrigeresting to
note that theRSCsy;, RSCupcs RSCswivr2rs @NARSCoyriranc
decreased significantly with glioma grade increased

We believed that the relationship betw&sit,,- and glioma
grade is related to tumor cellularity. An increagsimumber of
studies have found that the tumor cellularity wasrdased with
tumor gradé®2? ADC map provides information about the
water molecules' motility and diffusion coefficigéntthe tissue.
With cellularity increase in the tissues, motilif water
molecules was restricted, and ADC value was deet438! So,
there was a significant negative correlation betweeean
RSC,pc values and tumor grade. This is in complete agezg¢m
with previous result20.35-87
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Significantly,RSCs,,,; are decreased with glioma grade increase that by fusing ADC map and SWI images, the highedcC,

(Figure 5). SWI imaging protocol is very sensitive and

advanced MRI imaging. Paramagnetic substances asiifon
and blood product appear dark and have low signi@hsity on
SWI images. The reason is that the presence of thdsstances
changes the susceptibility properties of the tissBeveral

studies, for exampR&, and®, have highlighted that as the tumor

grade increases, the micro-bleeding and vascutanzénside
the tumor also increase. Our study provides additisupport

for RSC,y,,; decrease with glioma grade increase because of the

presence of micro-bleeding and tumor vascularinaitiohigh-
grade glioma. These values correlate satisfactavidl with

Wasif et al° and further support the role of micro-bleeding on

image darkness in SWI images.

We used LRD medical fusion algorithm to fuse tvifbedent
MRI images and increase the diagnostic value dfitbed image
for glioma grading. It was found that AUC, sensitiy and
specificity for low and high-grade glioma differgtton in SWI
and ADC map fusion (SWI+ADC) was significantly hagtthan
other images. This finding points to the usefulnasthe LRD
fusion algorithm as a method for increasing thguigstic value
of the different images by combining the sourcegmdata. The
most striking result to emerge frohable 2 andFigure 6is that
the fused image of ADC map and SWI (SWI+ADC) hagsher
diagnostic value for glioma grading than the indixdl SWI and
ADC images. It is important to note that, the AD@prcontrast
is based on water molecules motility, and SWI casitrs based
on susceptibility properties of tissue. By fusin®@@ map and
SWI images using the LRD medical fusion algorithanfinal
image will be reconstructed containing the dataABIC map
(water molecules motility) and SWI (susceptibilpiyoperties)
images simultaneously. Remarkably, some fused isnagpch
were fused with T2F images, such as SWI+T2F and ADXE
have lower AUC, sensitivity, and specificity thakvB-ADC
fused images. In our view, this relationship isatedl to
statistical meaningles®SC,r difference between low and
high-grade glioma. We are aware that our researa have
limitations. Because the aim of this study is taraine the LRD
medical image fusion algorithm's usefulness foorgk grading
with SWI, ADC map, and T2F, small sample size wassen.

Conclusion

This paper has investigated the use of the LRD caédiiision
algorithm for glioma grading with SWI, ADC map, afi@F
MRI images. The most important limitation is duethe small
sample size of the low-grade group. Future workuhéocus
on larger sample size and population. The eviddrma this
study points towards the idea that, with the LRio&l fusion
algorithm, we were able to improve the diagnosticies of MRI
images for glioma grading. The findings of thisdstisuggest
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sensitivity, and specificity to low and high-gradiéerentiation
can be achieved. The present findings have
implications for an alternative method of biopsydaurgical
resection for glioma grading. Future work will irstigate fusing
different MRI images weights and protocol for gliargrading
by the LRD medical fusion algorithm.

Conflicts of Interest

The authors declare that they have no conflichterests,

Funding Statement

This study was supported by Isfahan University oédidal
Sciences, Isfahan, I.R. Iran (grant number 399077).

Acknowledgment

The authors thank Isfahan University of MedicaleBcies for
the financial support of this work.

List of abbreviations

LRD Laplacian Re-decomposition

MRI magnetic resonance imaging

T1Gd T1 post enhancement

ADC apparent diffusion coefficient

ROC receiver operating characteristic curve
RSC Relative Signal Contrast

AUC Aera Under Curve

SWI Susceptibility-weighted imaging

DWI Diffusion-weighted imaging

SCE Susceptibility contrast enhancement
DCE Dynamic contrast enhancement

MRS Magnetic resonance spectroscopy
MST Multi-scale transform

TR repetition time

TE time of echo

TI time of inversion

FA flip angle

PACS picture archiving and communication system
GDIE Gradient Domain Image Enhancement
MLD Maximum Local Difference

LP Laplacian Pyramid

DGR Decision Graph Re-decomposition
LEM Local Energy Maximum

OD overlapping domain

NOD Non-overlapping domain

IRS Inverse Re-decomposition Scheme
ROI regions of interest

FLAIR Fluid attenuated inversion recovery

impbortan
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