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Abstract 
Introduction: Based on the tumor’s growth potential and aggressiveness, glioma is most often classified into low or high-
grade groups. Traditionally, tissue sampling is used to determine the glioma grade. The aim of this study is to evaluate 
the efficiency of the Laplacian Re-decomposition (LRD) medical image fusion algorithm for glioma grading by advanced 
magnetic resonance imaging (MRI) images and introduce the best image combination for glioma grading. 
Material and methods: Sixty-one patients (17 low-grade and 44 high-grade) underwent Susceptibility-weighted image 
(SWI), apparent diffusion coefficient (ADC) map, and Fluid attenuated inversion recovery (FLAIR) MRI imaging. To 
fuse different MRI image, LRD medical image fusion algorithm was used. To evaluate the effectiveness of LRD in the 
classification of glioma grade, we compared the parameters of the receiver operating characteristic curve (ROC). 
Results: The average Relative Signal Contrast (RSC) of SWI and ADC maps in high-grade glioma are significantly lower 
than RSCs in low-grade glioma. No significant difference was detected between low and high-grade glioma on FLAIR 
images. In our study, the area under the curve (AUC) for low and high-grade glioma differentiation on SWI and ADC 
maps were calculated at 0.871 and 0.833, respectively. 
Conclusions: By fusing SWI and ADC map with LRD medical image fusion algorithm, we can increase AUC for low 
and high-grade glioma separation to 0.978. Our work has led us to conclude that, by fusing SWI and ADC map with LRD 
medical image fusion algorithm, we reach the highest diagnostic accuracy for low and high-grade glioma differentiation 
and we can use LRD medical fusion algorithm for glioma grading. 

Key words: glioma; laplacian re-decomposition; susceptibility-weighted imaging; diffusion-weighted imaging; image 
fusion. 

 
Introduction 

Glioma represents roughly 30 percent of all brain tumors and 
central nervous system tumors and 80 percent of all malignant 
brain tumors.1 Glioma treatment and management are 
determined by the cell type, location, and grade of malignancy.2 
Glioma grade set to become a vital factor for treatment decision.3 
According to the WHO report, glioma are classified as either 
‘low-grade’ (grade I or II) or ‘high-grade’ (grade III or IV) 
depending on their development potential and aggressiveness.4 
The current gold standard for glioma grading is based on tumor 
morphologic observations and histopathologic findings. 
However, these approaches have disadvantages and limitations, 
such as high intra-observer variation, mistakes in tissue 
sampling during the biopsy, and invasive procedures.5,6 
Researchers have proposed non-invasive imaging techniques to 
overcome these limitations. 
 Thanks to high soft-tissue contrast, non-ionizing radiation, 
high resolution, and anatomical and functional imaging, 
Magnetic Resonance Imaging (MRI) has become an essential 

medical imaging modality in brain imaging. Various MRI 
imaging protocols have been suggested for glioma grading, such 
as Susceptibility-weighted imaging (SWI)7, Diffusion-weighted 
imaging (DWI)8, Susceptibility contrast enhancement (SCE)9, 
Dynamic contrast enhancement (DCE)10, Arterial spin labelling 
(ASL)11, Magnetic resonance spectroscopy (MRS)12, etc.  
 SWI is an MRI technique for detecting and characterizing 
tissue components based on the difference in tissue 
susceptibility properties.13 SWI is an essential and accurate MRI 
imaging protocol to diagnose the disease and presence of 
paramagnetic substance such as iron, blood products, and 
hemorrhages.14,15 It has now been demonstrated that with 
increasing glioma grade, micro bleeding and hemorrhages inside 
the tumor were observed.15,16 Because hemorrhage and micro 
bleeding (specifically blood products) can change the local 
susceptibility properties, they can easily be detected with SWI. 
In a major advance in 2014, Ding et al. 17 demonstrated the SWI 
capability for glioma grading. They concluded that we could use 
SWI images for primary central nervous system lymphoma 
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(PCNSLs) from high-grade glioma and brain metastases 
differentiation with the area under the curve (AUC) of 0.873. 
 DWI is one of the advanced MRI imaging sequences which is 
based on measuring the random Brownian motion of water 
molecules of tissue.18. The typical DWI protocol produces us 
DWI images and apparent diffusion coefficient (ADC) maps. 
ADC maps have become an essential issue in tumor grading with 
MRI.19 Therefore, much work on ADC’s potential for glioma 
grading has been carried out.19–22 
 Fluid attenuated inversion recovery (FLAIR) is an anatomical 
and conventional MRI inversion recovery pulse sequence that 
removes cerebrospinal fluid (CSF) signals from the images. The 
contrast of the brain on FLAIR images is similar to T2-weighted 
images, but CSF is dark. The FLAIR’s usefulness in the 
diagnostic of many central nervous system disorders such as 
cortical, meningeal, and periventricular diseases has been 
evaluated. 
 One of the main issues we know about glioma grading with 
different MRI protocols is a lack of sufficient diagnostic value 
of these images. Therefore, there are still some low diagnostic 
accuracy issues. Much work on the potential of data combination 
of different imaging protocols for glioma grading has been 
carried out.23–25 However, there are still some critical issues. One 
way to overcome this limitation would be medical image fusion. 
Using the medical image fusion techniques, we combine the 
information of two different images and display them as one 
image. The result will be an increase in the diagnostic accuracy 
of the fused image. There are two kinds of image fusion 
methods: spatial and transform domain approaches.26,27 In 
medical image fusion, transform domain-based methods are 
commonly used.28,29 Source images are firstly transformed into 
specific coefficients by transform domain methods. The source 
image coefficients are then fused, and the fused image is 
reconstructed by inversely transforming all of the fused 
coefficients. 
 Multi-scale transform (MST), as a transform domain-based 
and frequency domain method, has recently attracted particular 
attention for medical image fusion tasks.30 The MST-based 
algorithm divided source images into high and low-frequency 
sub-images using a transform and then generated separate fusion 
rules for the high and low-frequency sub-images to reconstruct 
the final fused images. One of the MST-based algorithms used 
for medical image fusion was Laplacian Re-decomposition 
(LRD) fusion algorithm.30 This paper examines the significance 
of the LRD medical fusion algorithm in the rise of diagnostic 
accuracy for glioma grading with the fusion of SWI, ADC, and 
FLAIR images. In the light of the foregoing, we tried to use SWI 
images, T2-FLAIR images, and ADC maps in the current study 
as the input images of the LRD fusion algorithm for glioma 
grading purposes. The aim of this study is to evaluate the 
usefulness of the LRD image fusion algorithm for brain tumor 
grading with SWI, T2-FLAIR, and ADC map and improve the 
grading accuracy for brain tumors with the fusion of advanced 
MRI images. 

 

Figure 1. Patient population flow-chart of study. 

Material and methods 

Patients 
This study included 79 patients with histologically confirmed 
glioma by surgical resection who underwent magnetic resonance 
examination between April 2020 and February 2021. One 
experienced neuropathologist examined the tumor specimens 
according to the WHO 2016 classification.4 
 Of these patients, 61 of them ((32 men, 29 women; mean age 
53.16 years; range [23 85] years), 17 low-grade gliomas and 44 
high-grade gliomas) were included (Figure 1) under the 
following criteria in this study: (1) histopathology confirmation 
of the glioma; (2) no radiotherapy or chemotherapy performed 
before the magnetic resonance imaging (MRI) examination; (3) 
lesion equal to or greater than 10 mm; (4) adequate image quality 
(without patient motion or susceptibility artifact); (5) do not 
have an allergy to the gadolinium-based contrast agent. So, a 
total of 61 glioma patients were analyzed in this study. Figure 1 
shows a flow chart of the study population. Before the MRI scan, 
all the patients provided informed consent, and the local research 
ethics committee has approved the study. 
 

MRI imaging 
MRI imaging examinations were performed at a 1.5T scanner 
(GE MRI Signa Explorer 1.5T) using a 16-channel head coil 
with the patient in a supine position. The imaging protocols 
included: a 3-plane localizer sequence, axial T1 pre-contrast 
(TR = 400 ms, TE = 10 ms, FA = 90, Slice thickness = 5 mm, 
and spacing = 5 mm) and post-contrast (TR = 6.1 ms, 
TE = 2.2 ms, TI = 20 ms, FA = 12, Slice thickness = 5 mm, and 
spacing = 5 mm), axial echo-planar DWI imaging (TR = 
5268 ms, TE = 113.2 ms, FA = 90, Slice thickness = 5 mm, and 
spacing = 5 mm with b-values = 50, 1000), axial SWI imaging 
(TR = 87 ms, TE = 47.5 ms, FA = 25, Slice thickness = 3 mm, 
and spacing = 1.5 mm, MR Acquisition Type: 3D), and axial 
T2-FLAIR (T2F) weighted (TR = 8500 ms, TE = 97.05 ms, 
TI = 2503 ms, FA = 170, Slice thickness = 5 mm, and 
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spacing = 5 mm) imaging. DWI and SWI imaging protocols 
were acquired before the administration of contrast media. 
 Raising the starting b-value to 50, instead of 0, provided a 
clear visualization of the tumor image and decreased T2 shine 
through artifact. DWI MRI data were collected in three 
orthogonal directions and combined to produce a trace image. 
By using these data, ADC maps were created on a pixel-by-pixel 
basis with an MRI imaging unit workstation. 
 Using quadrature detection, both magnitude and phase data 
are separately reconstructed to magnitude and phase images. 
First, the magnitude image is saved. Then, a phase mask is next 
created that scales data from the filtered phase images over a 0-1 
range to accentuate tissues with different SWI image. 
 

Image fusion 
For the image fusion process, the patient images were 
transferred from the picture archiving and communication 
system (PACS) to a personal computer (PC) (Figure 2) and 
resized to 256×256. Through the image resize, we were able to 
reduce the fusion time and code run time. The fusion algorithm 
used in this study is practically the same as the one proposed by 
Li et al. 30 using MATLAB 2019a Mathworks. We selected the 
LRD medical image fusion algorithm due to its better 
performance than the other medical image fusion methods.30–32 
 Briefly, the Laplacian Re-decomposition (LRD) medical 
fusion algorithm process (Figure 3) started with Gradient 
Domain Image Enhancement (GDIE) component. GDIE 
includes four steps: Maximum Local Difference (MLD), interval 
division of feature information, remapping gradient feature, and 
convolution operation. The result of the GDIE function on each 

source image is an enhancement image (HA and HB) that 
highlight the edge and detail information of source images. In 
the next stage of the LRD process, Laplacian Pyramid (LP) 
transform decomposes the HA and HB into High-frequency sub-
band images (LA and LB) with edge and details information and 
Low-frequency sub-band images (GA and GB) with background 
information. In the third stage of the LRD medical fusion 
algorithm process, Decision Graph Re-decomposition (DGR) 
was used. The DGR could properly classify the complementary 
and redundant data of LA and LB by designing two classifiers. 
The first classifier could efficiently separate redundant data of 
LA and LB into overlapping domain images (OA and OB). The 
second classifier of the DGR function stores complementary 
information of LA and LB in the image of the Non-overlapping 
domain (NA and NB). In the next step of the LRD medical fusion 
algorithm, we fuse the images created from the previous steps 
by several fusion rules. GA and GB with Local Energy Maximum 
(LEM) fusion rule were fused to form Low-frequency sub-band 
fusion image (GF). 
 To create the overlapping domain fusion image (OF) 
containing both source images’ feature images, the overlapping 
domain (OD) fusion rule was used. According to the definition 
of the Non-overlapping domain by DGR, the fusion image (NF) 
of NA and NB could be obtained by the Non-overlapping domain 
(NOD) fusion rule. To reconstruct the High-frequency sub-band 
fusion image (LF) by fusing OF and NF and eliminating image 
artifacts, Inverse Re-decomposition Scheme (IRS) fusion rule 
was proposed. Finally, the inverse LP method reconstructs the 
final fused image (F) from GF and LF images. More details of 
this medical fusion algorithm are in 30. 
 

 

 

Figure 2. Workflow of the study - methodology abstract 
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Figure 3. Laplacian Re-decomposition (LRD) algorithm for medical image fusion includes several steps. HA and HB: enhancement images, 
LA and LB: High-frequency sub-band images, GA and GB: Low-frequency sub-band images, OA and OB: overlapping domain images, NA 
and NB: Non-overlapping domain images, OF: overlapping domain fusion images, NF: Non-overlapping domain fusion images, GF: low-
frequency sub-band fusion images, LF: high-frequency sub-band fusion images. 

 

Data evaluation 
For each patient, a slice with the largest tumor size was selected 
and analyzed. Two circular regions of interest (ROI) for each 
patient were manually drawn by a radiologist in the T1 images 
with gadolinium injection (T1Gd) with the ImageJ software. 
These two ROIs are located: (a) in the normal white matter 
(WM) as the background value for normalization process, and 
(b) in the enhancement region (ER) on T1Gd images for high-
grade glioma and high-signal intensity region on T2F-weighted 
images for low-grade glioma because on low-grade tumors the 
enhancement in T1Gd is scarce.33 The ROIs drawn in the T1Gd 
and T2F images were transferred to the co-aligned SWI image 
and ADC maps and fused images (SWI+T2F, SWI+ADC, and 
T2F+ADC) to calculate the signal intensity of each ROI. Three 
ROIs were sampled and averaged for each region. 
 The Relative Signal Contrast (RSC) was calculated by: 

������ =
�	
����

��
 Eq. 1 

Where, ���� is the mean signal intensity of the ROI, and ��� is 
the mean signal intensity of the normal white matter as the mean 
background values in each picture. Six RSC were calculated, 
������, ������, ������, ����������, ����������, 
����������, and evaluated for brain tumor grading.  

Statistical analysis 
Statistical analyses were carried out using SPSS 26.0 software 
(IBM Corp. Armonk, NY, USA). The two-tailed unpaired 
student t-test was performed to statistically analyze the mean 
signal value and RSCs between low and high-grade glioma. 
Moreover, the Exact Fisher test was used for the assessment of 
the sex and age relationship with the tumor grade. RSCs values 
were presented as the mean ± standard deviation. The area under 
the curve (AUC), sensitivity, and specificity of the receiver 
operating characteristic (ROC) curve for the significant 
parameters was calculated. The cut-off value of significant 
parameters in ROC analysis was calculated by setting the 
maximum Youden index. P < 0.05 was indicated to be 
statistically significant. 
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Results 

The study consisted of 17 low-grade (27.86%) and 44 high-
grade (72.14%) glioma. The histopathologic findings are 
presented in Table 1. There was no significant difference in 
gender and age between low-grade and high-grade glioma 
(Table 1) 
 
Table 1. Characteristics of patients with low-grade and high-grade 
gliomas. 

 Low-grade High-grade P-value 

Mean age (years) 49.18 ± 15.17 56.89 ± 16.33 0.25 

Sex 
Man 8 24 

0.99 
Woman 9 20 

 
No significant difference was observed in mean signal intensity 
values of normal-appearing white matter (WM) between the 
low-grade and high-grade glioma in all MRI imaging protocols 
of the current study (P-value > 0.05). In Figure 4, you can see 
some of the results of the LRD fusion algorithm on a patient with 
high-grade glioma. 
 The average RSCs with standard deviation for low-grade and 
high-grade glioma in differently weighted images were shown 
in Figure 5. No significant difference was detected in ������ 
and ���������� between low and high-grade glioma. Statistical 
tests revealed that the mean ������, and ������ and some 
fused images (����������, ����������) were significantly 
different between low and high-grade glioma (Figure 5). 
Interestingly, for high-grade glioma, in comparison with low-
grade glioma, lower values of ������, ������, ����������, 
and ���������� were found. 
 
 

 
Figure 4. The image of a 71-year-old woman with high-grade 
glioma. (A) axial SWI (B) axial T2-FLAIR (C) axial ADC map (D) 
fused image of SWI+T2F with LRD fusion algorithm. (E) fused 
image of SWI+ADC with LRD fusion algorithm. (F) fused image of 
T2F+ADC with LRD fusion algorithm. In all images, ROI 1 is the 
white matter region (WM), and ROI 2 is the enhancement region 
on T1Gd. 

 

Figure 5. Average RSCs in SWI, T2F, ADC map, and fused images (SWI+T2F, SWI+ADC, and R2F+ADC) of low and high-grade glioma 
(* P-value<0.05; ** P-value <0.01; *** P-value<0.001) 
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Table 2. ROC parameters in SWI, ADC map, and fused image (SWI+T2F, and SWI+ADC) for differentiation of low and high-grade glioma. 

 RSC Cutoff value AUC Sensitivity Specificity Maximum Youden Index 

������ 0.062 0.871 0.814 1 0.814 

���� � 0.726 0.833 0.674 0.842 0.516 

�������!"# 0.303 0.860 0.872 0.833 0.705 

�������� � 0.168 0.978 0.916 1 0.916 

 

To distinguish between low and high-grade glioma in different 
MRI imaging protocols and fused images and assess the 
diagnostic value of these images, ROC curve analysis was used 
(Figure 6). Table 2 represents the cut-off value, an area under 
curve (AUC), sensitivity, specificity, and maximum Youden 
index for RSCs in SWI, ADC, and fused images (SWI+T2F, and 
SWI+ADC) for discrimination of low and high-grade glioma. 
The analysis did not reveal any significant difference in �����$ 
and �����$���� between low and high-grade glioma. So further 
analysis on the ROC curve of these images was not performed. 
 The most remarkable result to emerge from Table 2 is that the 
AUC for low and high-grade glioma differentiation, with RCSs 
cutoff-value 0.062 and 0.726, was 0.871 and 0.833 in SWI and 
ADC map, respectively. Image fusion of SWI and ADC map 
with ���������� cut-off value of 0.168 increased the AUC to 
0.978 (12.3% improvement toward SWI images and 17.4% 
improvement toward ADC map) (Table 2) to low and high-
grade glioma differentiation by LRD medical image fusion 
algorithm. 
 

Discussion 

Accurate glioma grading became a vital factor in glioma 
treatment management and treatment decision. Despite its 
shortcoming, invasiveness, and time-consuming, biopsies and 
sampling have been widely used as the gold standard for glioma 
grading in the clinic. The current solution to overcome these 
limitations is using advanced and functional imaging modality 
such as MRI. Through the use of MRI as a medical imaging 
modality for brain imaging, we were able to reconstruct and 
acquire images with high soft-tissue contrast, non-invasive 
process, non-ionizing imaging modality, anatomical and 
functional imaging. Recent development in MRI imaging 
protocols has led to the use of this modality for glioma grading. 
One of the main issues in our knowledge of glioma grading with 
different MRI imaging protocols is a lack of proper diagnostic 
value of these images. In the light of recent development in 
medical image fusion methods and fusing the different images, 
there is now a considerable solution to overcome these 
limitations for glioma grading with MRI. 
 The analysis did not confirm any significant difference in 
������ between low and high-grade glioma. There are several 
possible explanations for this result. A possible explanation may 
be that conventional MRI imaging protocols, such as T1 and 
T2F-weighted images, provide valuable structural information 
about glioma dominated by tissue water content but limited 

 
Figure 6. ROC curve of SWI, ADC, and fused images (SWI+T2F, 
and SWI+ADC) for differentiation of low-grade and high-grade 
glioma. 

 
physiological details. This structural information is not enough 
for glioma grading. As suggested by previous publications,34 the 
evidence we found points to the low diagnostic value of 
conventional T2 images for low and high-grade glioma 
differentiation. 
 Significantly, ������, and ������ and some fused images 
(����������, ����������) were different between low and 
high-grade glioma. According to our results, it is interesting to 
note that the ������, ������, ����������, and ���������� 
decreased significantly with glioma grade increased. 
 We believed that the relationship between ������ and glioma 
grade is related to tumor cellularity. An increasing number of 
studies have found that the tumor cellularity was decreased with 
tumor grade.19–22 ADC map provides information about the 
water molecules' motility and diffusion coefficient in the tissue. 
With cellularity increase in the tissues, motility of water 
molecules was restricted, and ADC value was decreased.20,21 So, 
there was a significant negative correlation between mean 
������ values and tumor grade. This is in complete agreement 
with previous results.19,20,35–37 
 



Khorasani et al: Glioma grading by MRI images fusion  Pol J Med Phys Eng 2021;27(4):261-269 

 267 

Significantly, ������ are decreased with glioma grade increase 
(Figure 5). SWI imaging protocol is very sensitive and 
advanced MRI imaging. Paramagnetic substances such as iron 
and blood product appear dark and have low signal intensity on 
SWI images. The reason is that the presence of these substances 
changes the susceptibility properties of the tissue. Several 
studies, for example 38, and 39, have highlighted that as the tumor 
grade increases, the micro-bleeding and vascularization inside 
the tumor also increase. Our study provides additional support 
for ������ decrease with glioma grade increase because of the 
presence of micro-bleeding and tumor vascularization in high-
grade glioma. These values correlate satisfactorily well with 
Wasif et al. 40 and further support the role of micro-bleeding on 
image darkness in SWI images. 
 We used LRD medical fusion algorithm to fuse two different 
MRI images and increase the diagnostic value of the fused image 
for glioma grading. It was found that AUC, sensitivity, and 
specificity for low and high-grade glioma differentiation in SWI 
and ADC map fusion (SWI+ADC) was significantly higher than 
other images. This finding points to the usefulness of the LRD 
fusion algorithm as a method for increasing the diagnostic value 
of the different images by combining the source image data. The 
most striking result to emerge from Table 2 and Figure 6 is that 
the fused image of ADC map and SWI (SWI+ADC) has a higher 
diagnostic value for glioma grading than the individual SWI and 
ADC images. It is important to note that, the ADC map contrast 
is based on water molecules motility, and SWI contrast is based 
on susceptibility properties of tissue. By fusing ADC map and 
SWI images using the LRD medical fusion algorithm, a final 
image will be reconstructed containing the data of ADC map 
(water molecules motility) and SWI (susceptibility properties) 
images simultaneously. Remarkably, some fused images which 
were fused with T2F images, such as SWI+T2F and ADC+T2F 
have lower AUC, sensitivity, and specificity than SWI+ADC 
fused images. In our view, this relationship is related to 
statistical meaningless ������ difference between low and 
high-grade glioma. We are aware that our research may have 
limitations. Because the aim of this study is to examine the LRD 
medical image fusion algorithm's usefulness for glioma grading 
with SWI, ADC map, and T2F, small sample size was chosen. 
 

Conclusion 

This paper has investigated the use of the LRD medical fusion 
algorithm for glioma grading with SWI, ADC map, and T2F 
MRI images. The most important limitation is due to the small 
sample size of the low-grade group. Future work should focus 
on larger sample size and population. The evidence from this 
study points towards the idea that, with the LRD medical fusion 
algorithm, we were able to improve the diagnostic values of MRI 
images for glioma grading. The findings of this study suggest 

that by fusing ADC map and SWI images, the highest AUC, 
sensitivity, and specificity to low and high-grade differentiation 
can be achieved. The present findings have important 
implications for an alternative method of biopsy and surgical 
resection for glioma grading. Future work will investigate fusing 
different MRI images weights and protocol for glioma grading 
by the LRD medical fusion algorithm. 
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MRI magnetic resonance imaging 
T1Gd T1 post enhancement  
ADC apparent diffusion coefficient  
ROC receiver operating characteristic curve  
RSC Relative Signal Contrast  
AUC Aera Under Curve  
SWI Susceptibility-weighted imaging 
DWI Diffusion-weighted imaging  
SCE Susceptibility contrast enhancement  
DCE Dynamic contrast enhancement  
MRS Magnetic resonance spectroscopy  
MST Multi-scale transform  
TR repetition time  
TE time of echo 
TI time of inversion 
FA flip angle 
PACS picture archiving and communication system  
GDIE Gradient Domain Image Enhancement  
MLD Maximum Local Difference  
LP Laplacian Pyramid  
DGR Decision Graph Re-decomposition  
LEM Local Energy Maximum  
OD overlapping domain  
NOD Non-overlapping domain  
IRS Inverse Re-decomposition Scheme  
ROI regions of interest 
FLAIR Fluid attenuated inversion recovery 
 

 



Khorasani et al: Glioma grading by MRI images fusion  Pol J Med Phys Eng 2021;27(4):261-269 

 268 

References 
1. Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205(12):613-621. 

https://doi.org/10.1016/j.cancergen.2012.10.009 

2. Sasaki S, Tomomasa R, Nobusawa S, et al. Anaplastic pleomorphic xanthoastrocytoma associated with an H3G34 mutation: a case 
report with review of literature. Brain Tumor Pathol. 2019;36(4):169-173. https://doi.org/10.1007/s10014-019-00349-8 

3. Hakyemez B, Erdogan C, Ercan I, Ergin N, Uysal S, Atahan S. High-grade and low-grade gliomas: differentiation by using perfusion 
MR imaging. Clin Radiol. 2005;60(4):493-502. https://doi.org/10.1016/j.crad.2004.09.009 

4. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: 
a summary. Acta Neuropathol. 2016;131(6):803-820. https://doi.org/10.1007/s00401-016-1545-1 

5. Law M, Oh S, Babb JS. Low-grade gliomas: Dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging-prediction of 
patient clinical rewsponse (Radiology (2006) 238,(658-667)). Radiology. 2008;246(3):989. https://doi.org/10.1148/radiol.2382042180 

6. Arvinda HR, Kesavadas C, Sarma PS, et al. RETRACTED ARTICLE: Glioma grading: sensitivity, specificity, positive and negative 
predictive values of diffusion and perfusion imaging. J Neurooncol. 2009;94(1):87-96. https://doi.org/10.1007/s11060-009-9807-6 

7. Hsu CC, Watkins TW, Kwan GNC, Haacke EM. Susceptibility‐weighted imaging of glioma: update on current imaging status and 
future directions. J Neuroimaging. 2016;26(4):383-390. https://doi.org/10.1111/jon.12360 

8. Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim J-H, Sohn C-H. Glioma: application of whole-tumor texture analysis of diffusion-weighted 
imaging for the evaluation of tumor heterogeneity. PLoS One. 2014;9(9):e108335. https://doi.org/10.1371/journal.pone.0108335 

9. Santarosa C, Castellano A, Conte GM, et al. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for 
glioma grading: preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur 
J Radiol. 2016;85(6):1147-1156. https://doi.org/10.1016/j.ejrad.2016.03.020 

10. Jain KK, Sahoo P, Tyagi R, et al. Prospective glioma grading using single-dose dynamic contrast-enhanced perfusion MRI. Clin Radiol. 
2015;70(10):1128-1135. https://doi.org/10.1016/j.crad.2015.06.076 

11. Kim HS, Kim SY. A prospective study on the added value of pulsed arterial spin-labeling and apparent diffusion coefficients in the 
grading of gliomas. Am J Neuroradiol. 2007;28(9):1693-1699. https://doi.org/10.3174/ajnr.A0674 

12. Wang Q, Zhang H, Zhang J, et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-
grade gliomas: a systematic review and meta-analysis. Eur Radiol. 2016;26(8):2670-2684. https://doi.org/10.1007/s00330-015-4046-z 

13. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second 
kinds. Med Phys. 1996;23(6):815-850. https://doi.org/10.1118/1.597854 

14. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J 
Neuroradiol. 2009;30(2):232-252. https://doi.org/10.3174/ajnr.A1461 

15. Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility ‐weighted imaging to visualize blood products and improve tumor contrast in 
the study of brain masses. J Magn Reson Imaging An Off J Int Soc Magn Reson Med. 2006;24(1):41-51. 
https://doi.org/10.1002/jmri.20598 

16. Li C, Ai B, Li Y, Qi H, Wu L. Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol. 2010;75(1):e81-e85. 
https://doi.org/10.1016/j.ejrad.2009.08.003  

17. Ding Y, Xing Z, Liu B, Lin X, Cao D. Differentiation of primary central nervous system lymphoma from high‐grade glioma and brain 
metastases using susceptibility‐weighted imaging. Brain Behav. 2014;4(6):841-849. https://doi.org/10.1002/brb3.288 

18. Minati L, Węglarz WP. Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review. 
Concepts Magn Reson Part A An Educ J. 2007;30(5):278-307. https://doi.org/10.1002/cmr.a.20094 

19. Wang Q, Lei D, Yuan Y, Xiong N. Accuracy of ADC derived from DWI for differentiating high-grade from low-grade gliomas: 
Systematic review and meta-analysis. Medicine (Baltimore). 2020;99(8). https://doi.org/10.1097/MD.0000000000019254 

20. Soliman RK, Essa AA, Elhakeem AAS, Gamal SA, Zaitoun MMA. Texture analysis of apparent diffusion coefficient (ADC) map for 
glioma grading: Analysis of whole tumoral and peri-tumoral tissue. Diagn Interv Imaging. 2021;102(5):287-295. 
https://doi.org/10.1016/j.diii.2020.12.001 

21. Phuttharak W, Thammaroj J, Wara-Asawapati S, Panpeng K. Grading Gliomas Capability: Comparison between Visual Assessment 
and Apparent Diffusion Coefficient (ADC) Value Measurement on Diffusion-Weighted Imaging (DWI). Asian Pacific J Cancer Prev 
APJCP. 2020;21(2):385. https://doi.org/10.31557/APJCP.2020.21.2.385 

22. Sadeghi N, D'haene N, Decaestecker C, et al. Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to 
tumor cell density and tumor microvessel density based on stereotactic biopsies. Am J Neuroradiol. 2008;29(3):476-482. 
https://doi.org/10.3174/ajnr.A0851 

23. Ma X, Lv K, Sheng J, et al. Application evaluation of DCE‑MRI combined with quantitative analysis of DWI for the diagnosis of 

prostate cancer. Oncol Lett. 2019;17(3):3077-3084. https://doi.org/10.3892/ol.2019.9988 



Khorasani et al: Glioma grading by MRI images fusion  Pol J Med Phys Eng 2021;27(4):261-269 

 269 

24. Hilario A, Ramos A, Perez-Nunez A, et al. The added value of apparent diffusion coefficient to cerebral blood volume in the preoperative 
grading of diffuse gliomas. Am J Neuroradiol. 2012;33(4):701-707. https://doi.org/10.3174/ajnr.A2846 

25. Saini J, Gupta PK, Sahoo P, et al. Differentiation of grade II/III and grade IV glioma by combining "T1 contrast-enhanced brain 
perfusion imaging" and susceptibility-weighted quantitative imaging. Neuroradiology. 2018;60(1):43-50. 
https://doi.org/10.1007/s00234-017-1942-8 

26. Qi G, Wang J, Zhang Q, Zeng F, Zhu Z. An integrated dictionary-learning entropy-based medical image fusion framework. Futur 
Internet. 2017;9(4):61. https://doi.org/10.3390/fi9040061 

27. Wang K, Qi G, Zhu Z, Chai Y. A novel geometric dictionary construction approach for sparse representation based image fusion. 
Entropy. 2017;19(7):306. https://doi.org/10.3390/e19070306 

28. Zhu Z, Chai Y, Yin H, Li Y, Liu Z. A novel dictionary learning approach for multi-modality medical image fusion. Neurocomputing. 
2016;214:471-482. https://doi.org/10.1016/j.neucom.2016.06.036 

29. Zhu Z, Yin H, Chai Y, Li Y, Qi G. A novel multi-modality image fusion method based on image decomposition and sparse 
representation. Inf Sci (Ny). 2018;432:516-529. https://doi.org/10.1016/j.ins.2017.09.010 

30. Li X, Guo X, Han P, Wang X, Li H, Luo T. Laplacian redecomposition for multimodal medical image fusion. IEEE Trans Instrum 
Meas. 2020;69(9):6880-6890. https://doi.org/10.1109/TIM.2020.2975405 

31. Das M, Gupta D, Radeva P, Bakde AM. NSST domain CT-MR neurological image fusion using optimised biologically inspired neural 
network. IET Image Process. 2020;14(16):4291-4305. https://doi.org/10.1049/iet-ipr.2020.0219 

32. Wang G, Li W, Huang Y. Medical image fusion based on hybrid three-layer decomposition model and nuclear norm. Comput Biol Med. 
2021;129:104179. https://doi.org/10.1016/j.compbiomed.2020.104179 

33. Pouratian N, Asthagiri A, Jagannathan J, Shaffrey ME, Schiff D. Surgery Insight: the role of surgery in the management of low-grade 
gliomas. Nat Clin Pract Neurol. 2007;3(11):628-639. https://doi.org/10.1038/ncpneuro0634 

34. Upadhyay N, Waldman A. Conventional MRI evaluation of gliomas. Br J Radiol. 2011;84(special_issue_2):S107-S111. 
https://doi.org/10.1259/bjr/65711810 

35. Al-Agha M, Abushab K, Quffa K, Al-Agha S, Alajerami Y, Tabash M. Efficiency of High and Standard b Value Diffusion-Weighted 
Magnetic Resonance Imaging in Grading of Gliomas. J Oncol. 2020;2020. https://doi.org/10.1155/2020/6942406 

36. Zhang L, Min Z, Tang M, Chen S, Lei X, Zhang X. The utility of diffusion MRI with quantitative ADC measurements for differentiating 
high-grade from low-grade cerebral gliomas: evidence from a meta-analysis. J Neurol Sci. 2017;373:9-15. 
https://doi.org/10.1016/j.jns.2016.12.008 

37. Thust SC, Hassanein S, Bisdas S, et al. Apparent diffusion coefficient for molecular subtyping of non-gadolinium-enhancing WHO 
grade II/III glioma: volumetric segmentation versus two-dimensional region of interest analysis. Eur Radiol. 2018;28(9):3779-3788. 
https://doi.org/10.1007/s00330-018-5351-0 

38. Li X, Zhu Y, Kang H, et al. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI 
and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging. 2015;15(1):1-9. 
https://doi.org/10.1186/s40644-015-0039-z 

39. Gaudino S, Marziali G, Pezzullo G, et al. Role of susceptibility-weighted imaging and intratumoral susceptibility signals in grading and 
differentiating pediatric brain tumors at 1.5 T: a preliminary study. Neuroradiology. 2020;62(6):705-713. 
https://doi.org/10.1007/s00234-020-02386-z 

40. Mohammed W, Xunning H, Haibin S, Jingzhi M. Clinical applications of susceptibility-weighted imaging in detecting and grading 
intracranial gliomas: a review. Cancer Imaging. 2013;13(2):186. https://doi.org/10.1102/1470-7330.2013.0020 


