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1.	 Introduction
Excellent dynamics, high power density and torque inertia ratio, and a wide range of speed control make permanent 
magnet synchronous motors (PMSMs) one of the most attractive motor types for modern drive systems (Dai et 
al., 2021). PMSMs have been used in various applications, including automotive, transportation, aviation, and 
HVAC (Zhou et al., 2021b). Despite their reliability, PMSMs are subject to electrical (stator winding), magnetic 
(demagnetisation) and mechanical (eccentricity, unbalance, bearings) faults. According to statistics, stator winding 
faults are one of the most common sources of AC motor faults, accounting for more than 36% of all failures, 
depending on the size and type of the machine (He et al., 2014; O’Donnell, 1985).

Stator winging faults are highly destructive in nature (Orlowska-Kowalska et al., 2022). They usually start 
with a difficult-to-detect short circuit between adjacent turns and then spreads to subsequent coils and phases, 
leading to a critical motor failure in a short time. The motor winding can be replaced if the stator winding fault is 
detected at an early stage. Nevertheless, core damage caused by a phase-to-ground short circuit is irreversible. 
Therefore, detection before catastrophic failure can be achieved if interturn short circuit (ITSC) faults are detected 
by appropriate condition monitoring systems at an early stage (Wolkiewicz et al., 2016).

The extraction of electric motor fault symptoms is typically based on the processing of various types of diagnostic 
signals, such as stator phase current (SPCSC), mechanical vibration, temperature and stray (radial or axial) flux 
(Bhuiyan et al., 2020; Chen et al., 2019; Orlowska-Kowalska et al., 2022). Among them, SPCSC is most often used 
for stator winding fault diagnosis (Kim, 2011). The most popular methods of processing this signal to extract the fault 
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symptoms of the PMSM stator windings are frequency-domain analysis methods, such as motor current signature 
analysis (MCSA) which is based on the application of fast Fourier transform (FFT) (Krzysztofiak et al., 2020; Haddad 
and Strangas, 2016). However, although frequency-domain analysis methods have many advantages, they also 
have limitations, such as time information loss when moving from the time domain to the frequency domain. Time–
frequency (TF) analysis methods do not have such drawbacks. In addition to extraction of the symptoms of damage, 
they allow for determining when the fault occurred. These methods include short-time Fourier transform (STFT) 
(Pietrzak and Wolkiewicz, 2022; Zanardelli et al., 2007), Hilbert–Huang transform (HHT) (Urresty et al., 2009) and 
continuous wavelet transform (CWT). However, in the case of the CWT, despite its many advantages and proven 
effectiveness in fault diagnosis of induction motors (Zaman et al., 2019), it has not been extensively studied for its 
use in extracting the symptoms of PMSM stator winding faults.

The signal processing algorithms can be used for the extraction of fault symptoms and the determination of 
certain fault indicators. Nevertheless, modern diagnostic systems should also guarantee automatic inference of the 
motor condition. In recent years, artificial neural networks (ANNs) have been most often used in this field. Shallow 
neural networks, such as the multilayer perceptron (MLP) (Skowron et al., 2022a) or radial basis function neural 
network (Ewert et al., 2021), are particularly popular, as well as those with a deep structure, especially convolutional 
neural networks (CNNs)(Pietrzak et al., 2022; Skowron et al., 2022b; Song et al., 2023). However, classical and 
computationally uncomplicated machine learning (ML) algorithms, such as k-nearest neighbour (KNN) model, with 
effective signal preprocessing algorithms to extract fault symptoms may be sufficient.

There is a lack of studies that combine advanced signal processing methods, such as CWT, with classic ML 
algorithms for condition monitoring of the PMSM stator winding. Thus, the present study aims to analyse the 
applicability of the CWT analysis of symmetrical components of SPCSCs in fault diagnosis of PMSM stator windings 
and then to verify the effectiveness of selected ML-based fault classifiers in the automation of the condition monitoring 
process of the PMSM stator winding. Classical ML algorithms were chosen, which are less mathematically and 
computationally complex than solutions based on deep learning, achieving short training and model response 
times. The main contributions of this research are as follows:

(1)	 Extraction of the incipient PMSM stator winding fault (ITSC) symptoms from the SPCSC signal using CWT 
analysis.

(2)	 Experimental verification and comparison of the effectiveness of ML-based PMSM stator winding condition 
classifiers.

(3)	 Improving the classification effectiveness of the fault classifiers by properly tuning their hyperparameters.
(4)	 Development of an original and fully automatic ML-based stator winding condition monitoring system that 

operates online and detects and classifies ITSCs at an incipient stage.

The article is organised as follows: Section 2 describes the theoretical basis of the methods proposed in this 
study. Section 3 presents the motor test stand. Section 4 presents the results of experimental verifications, including 
the ITSC fault symptom extraction step, as well as the training, testing and comparison of the ML-based fault 
classifiers. The main conclusions of this research are provided in Section 5.

2.	 Methods
The method of PMSM stator winding condition monitoring proposed in this article consists of two main parts: 
The first realises the extraction of the ITSCs symptoms and is based on TF analysis (CWT) of the SPCSCs. The 
extracted symptoms will then be used in the second module as elements of the input vectors of fault classifiers, 
which are based on ML. The classifier models tested and compared are KNN, support vector machine (SVM) and 
MLP.

2.1.  CWT
TF analysis methods are popular in fault diagnosis because information about the time of occurrence of a given 
component is not lost after signal processing (Cohen, 1989). One of the most common and classic TF analysis 
methods is STFT. STFT can be used to observe frequency components at a specific time interval. However, the 
size of the window that is sliding along with the time axis in STFT analysis and therefore the time and frequency 
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resolution is fixed (Diao et al., 2022). The scale factor that is used in CWT analysis, the length of the time window, 
is adjustable. Therefore, it is possible to achieve good resolution in both TF domains, overcoming the limitations of 
STFT.

CWT is an effective approach for the extraction of the fault features (Shao et al., 2020). Thanks to the good TF 
resolution, the CWT has been used also in the fault diagnosis field. Nevertheless, its effectiveness has been verified 
for the diagnosis of induction motor faults (Diao et al., 2022; Shao et al., 2020; Zaman et al., 2019). The CWT of a 
signal x(t) can be expressed by the following equation (Diao et al., 2022):
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where a is the scale factor, τ is the parameter of the translation in the time domain, ѱ is the mother wavelet, ѱ*(∙) 
is the complex conjugate of function ѱ(∙) and ѱa,τ is the baby wavelet (translated and scaled version of the mother 
wavelet ѱ (Shao et al., 2020)):
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2.2.  Applied machine learning models

2.2.1.  KNNs
The first ML model analysed is based on the KNN algorithm, which is one of the basic and most popular algorithms 
in the field of data classification. It assumes that the classes (labels) of the data included in the training dataset are 
known. For the new data, this algorithm compares the features of the new data with those of the training dataset. 
The distance between the new point and the points included in the dataset is calculated. The label of the new input 
data is the label that appears most frequently among the nearest K points (Ma and Chi, 2022). Different metrics for 
calculating the distance between the neighbouring points have been proposed in the literature. Introducing feature 
vectors: A = (x1, x2,…, xn) and B = (y1, y2,…, yn), where n denotes the dimensionality of the feature space, the most 
popular distance metrics (Euclidean, Minkowski, Mahalanobis, correlation) can be calculated as follows:
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where n is the feature space dimension; s is the standard deviation;  and y are mean values of x and y vectors, 
respectively; r is the order of the Minkowski distance metric.

2.2.2.  Support vector machine
The SVM algorithm, proposed by Vapnik (2000), is an ML algorithm that is based on structural risk minimisation. 
The basic form of the SVM algorithm is a binary classifier that learns a linear hyperplane that separates data points 
belonging to different classes as much as possible, which maximises the margin between two classes. The support 
vectors are the nearest data points that define the margin (Namdari and Jazayeri-Rad, 2014).

108

x



109

Pietrzak and Wolkiewicz

Given a known training sample set S = {(xi,yi), i = 1,…, M}, M is the number of samples and each sample xi Є 
Rd. The data included in the training dataset are assumed to have two classes: positive class and negative class. 
These two classes are associated with a label, yi Є {+1,-1}, for positive and negative classes, respectively. For the 
linearly separable data, it is possible to define the hyperplane that separates the data (Namdari and Jazayeri-Rad, 
2014; Widodo and Yang, 2007):

	 ( ) 0,Tf b= + =x w x 	 (7)

where W is a vector of a d-dimension and b is a scalar bias.
The vectors W and b are used to define the separating hyperplane position. For the case that is linearly 

separable, to find the optimal hyperplane—the hyperplane that provides the maximum classification margin 
and better generalisation availability, a positive slack variable for each training sample is defined zi. To find this 
hyperplane, the following optimisation problem has to be solved (Widodo and Yang, 2007; Zhou et al., 2021a):
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where C is the regularisation parameter determining the trade-off between the minimisation of the classification 
error and maximisation of the margin between two classes.

To solve the aforementioned optimisation problem, by introducing Lagrange multiplier ai > 0 and subject to (11), 
the dual quadratic optimisation problem is obtained (Widodo and Yang, 2007):

	 1 , 1
max  ( )

s sN N

i i j i j i j
i i j

L y y x x
a

a a a a
= =

= −∑ ∑ 	 (10)

subject to

	 1
0,  1,2,..., , 0

sN

i s i i
i

i N ya a
=

≥ = =∑ � (11)

The kernel trick is utilised to make the linear classification possible. Kernel functions are used to transform the 
data from the original input space to a high-dimensional feature space (Zhou et al., 2021a). There are different 
kernel functions known in the literature. The most popular from them are the linear, polynomial and Gaussian kernel 
functions. They are defined as follows:
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where s is the Gaussian function width and g is the polynomial degree.

2.2.3.  MLP
Feedforward MLP is one of the most commonly used structures of the shallow neural networks, which has been 
used in various applications, including fault diagnosis of electric motors (Ewert et al., 2021). The MLP approximation 
constructs a unique model that is composed of the following layers: input layer, hidden layer(s) and output layer 

109



110

Condition monitoring and fault diagnosis of PMSM stator winding

(García-Cuesta et al., 2008). The operation principle of the MLPs can be explained in three main steps (Kaminski 
and Orlowska-Kowalska, 2015): first, input signals are preliminary scaled with input weights wij, then input signals 
of each hidden neuron are summed and then processed with the activation function, and at the end, output (usually 
linear neuron) is used for the summation of the scaled signal. Therefore, the output of the neurons, which is a 
function f of the weighted inputs plus a bias, can be simply expressed (García-Cuesta et al., 2008):

	 1
out ,

n

i ij j i
j
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where xj and bi are weights and biases of the neuron i.
There are different training methods for MLPs. Nevertheless, one of the most common and fastest MLP training 

algorithms is the Levenberg–Marquardt optimisation (Chiddarwar and Ramesh Babu, 2010).

3.	 Experimental Setup
All results presented in the following sections are the experimental test results conducted on a specially prepared 
test bench. The photo of the experimental setup is shown in Figure 1. The motor under study is a 2.5 kW PMSM. 
This motor was supplied from the voltage source inverter (VSI) by Lenze, Aerzen, Germany (Topline 8400). The 
rated parameters of this motor are grouped in Table 1. The construction of the PMSM stator winding was specially 
prepared to allow the physical modelling of a selected number of ITSCs. A group of stator winding coils was led out 
to the terminal board. In the scope of the experimental verification, the incipient ITSCs (1÷5 shorted turns) were 
analysed. Given that the number of turns in each of the phases is 250, the minimum number of turns that were 
shorted (Nsh = 1) during the tests represents 0.4% of all turns in one phase. Direct ITSCs were physically modelled 

Fig. 1. Overview of the experimental setup. PMSM, permanent magnet synchronous motor.
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with a wire without the additional resistor to limit the current in the shorted-circuit with an additional resistor. To verify 
the impact of the ITSC under different operating conditions, a second PMSM with a nominal power of 4.7 kW was 
coupled to the PMSM under test. The SPCSCs were measured using LEM LA 25-NP current transducers. The DAQ 
NI PXI-4492 measurement card housed inside an industrial PC by National Instruments, Austin, TX, US (PXI 1082) 
was used for the diagnostic signal acquisition purposes.

4.	 Results and Discussion
4.1.  �Influence of ITSCs on the stator current symmetrical component waveforms of PMSM drive
The SPCSC signal contains information about various types of motor faults, and it is non-invasive and easy to 
measure. This makes it one of the most popular signals in AC motor fault diagnosis. The ITSC in the PMSM stator 
winding causes an asymmetry of the SPCSCs. This asymmetry affects the values of the SPCSC. The instantaneous 
values of the SPCSC are determined using the 90° time-domain shift operator (S90) and are calculated as follows 
(Iravani and Karimi-Ghartemani, 2003):
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where i1 and i2 are the instantaneous values of the positive and negative SPCSC sequence components and isA, isB 
and isC are the instantaneous values of the stator current in phases A, B and C.

The waveform of i1 for various conditions of the stator winding—momentary short-circuiting successively 1–5 
turns (Nsh) for various TL levels in the range from 0 to the rated value TN with a step of 0.2TN—is shown in Figure 2. 
The analysis of the waveform shows that the changes in the amplitude of the i1 caused by the ITSCs are noticeable, 
but the influence of the TL level is significantly higher. The percentage increase in the amplitude of i1 by ITSC, 
especially at the early stage of the fault, decreases as the motor load increases. The effects of ITSC in the PMSM 
stator winding can also be seen in the i2 waveform. The waveform of this component for the same conditions as 
presented for i1 is shown in Figure 3. Compared to the i1 component, it is noticeable that the impact of the load 
torque level is much smaller. In addition, a significant increase due to ITSC is visible. This is extremely important 
because in the fault diagnosis, there is a need to look for fault indicators whose values are no drive system 
operating conditions dependent and only changes as a result of the fault. In the case of both i1 and i2 waveforms, 
as TL, increases, the increase in amplitude due to the fault decreases for the initial stage of the fault. It is especially 
visible for TL = {0.6 TN, 0.8 TN, TN}. Therefore, only based on the waveforms of these components, effective fault 
diagnosis and condition monitoring of PMSM stator winding would be hampered. In this regard, in the scope of this 
research, CWT analysis is used to extract the symptoms that are more sensitive to the ITSCs, also at the initial 
stage of the fault.

Parameter Symbol Value Unit

Rated power PN 2,500 W

Rated rotation speed nN 1,500 r/min

Rated torque TN 16 Nm

Rated supply frequency fsN 100 Hz

Rated stator phase voltage UsN 325 V

Rated SPCSC IsN 6.6 A

Number of rotor pole pairs pp 4 -

Number of stator turns (in one phase) Ns 2 × 125 -

PMSM, permanent magnet synchronous motor; SPCSC, stator phase current.

Table 1.  Rated parameters of the tested PMSM.
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Fig. 3. Waveform of the i2 for different stator winding conditions (Nsh) and motor operating conditions, experimental verification for TL = var and  
fs = fsN = 100 Hz.

Fig. 2. Waveform of i1 for different stator winding conditions (Nsh) and motor operating conditions, experimental verification for TL = var and 
fs = fsN = 100 Hz.
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4.2.  CWT-based PMSM stator winding fault symptom extraction
CWT scalograms of the i1 signal for the undamaged stator winding and with ITSC of three turns in phase A for 
different TL levels are shown in Figure 4. The scalograms show a notable increase in the amplitude value of the 
frequency component connected with the fundamental harmonic (fs = fsN = 100 Hz) as the TL level increases. The 
analysis of these scalograms did not reveal frequency components whose amplitude value increased significantly 
as a result of damage. Nevertheless, the fs component amplitude carries information about the TL level. The i2 signal 
CWT scalograms for the same stator and PMSM operating conditions are presented in Figure 5. Comparing these 
scalograms, a notable increase in the amplitude value of the fs caused by the occurrence of the ITSC is visible. 
Moreover, no significant effect of TL on the value of this amplitude can be seen. Nevertheless, further analysis is 
needed, especially for various Nsh, to finally assess its usefulness.

To verify the increase in the coefficient values related to the fs component in the CWT scalogram of i1 and i2 
signals for different severity values of the stator fault, the experimental verification for momentary ITSCs (for 1÷2s) 
and different TL levels is conducted. In Figure 6, the i1 CWT scalogram (Figure 6a) and amplitude changes of the 
CWT coefficient of the fs component |CWTi1(fs,t)| (Figure 6b) during the cyclic short-circuiting of 1–5 turns at each of 
the analysed TL levels are shown. The value of |CWTi1(fs,t)| increases significantly as a result of the TL increase, as 
previously proven, and only slight changes resulting from ITSC are present.

Figure 7 shows the i2 CWT scalogram and |CWTi2(fs,t)| value for the same PMSM operating and stator winding 
conditions as for the i1 analysis. The value of the |CWTi2(fs,t)| increases significantly after the occurrence of the ITSC 
over the entire range studied. This increase is also notable at the incipient stage of the fault (Nsh = 1). In addition, the 
waveforms of the |CWTi2(fs,t)| values for different fs were analysed, as shown in Figure 8. The increase is visible for 
the corresponding coefficient at a given frequency for the entire range analysed. Based on these considerations, it 
can be concluded that this may be a good indication of PMSM stator winding faults.

The presented results of the experimental verification are obtained for the Morse wavelet. Nevertheless, 
the analysis was done for different types of wavelets: Morse, Morlet (Gabor) and bump wavelets. The 
theoretical details and properties of these wavelets are described in detail in previous studies (Gao et al., 2009; 

Fig. 4. CWT scalograms of i1: (a) undamaged stator winding (Nsh = 0), (b) damaged stator winding (Nsh = 3) for TL = var and fs = fsN = 100 Hz. CWT, 
continuous wavelet transform.

Fig. 5. CWT scalograms of i2: (a) undamaged stator winding (Nsh = 0), (b) damaged stator winding (Nsh= 3) for TL = var and fs = fsN = 100 Hz. CWT, 
continuous wavelet transform.
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Lilly and Olhede, 2009, 2012). Figure 9 shows the comparison of |CWTi2(fs,t)| for the same conditions as presented 
in Figure 7, but for different types of wavelet. The greatest sensitivity of the |CWTi2(fs,t)| value to the ITSC is obtained 
for the Morse wavelet. Therefore, this type of wavelet will be used in the next part of the research.

The experiments were carried out for various TL levels and power supply voltage frequencies fs (rotation speeds). 
The effect of the stator winding fault severity (Nsh) and TL level on the increase in the |CWTi2(fs,t)| value is shown 
in Figure 10a. The effect of the fs value is shown in Figure 10b. These charts show the increase in the |CWTi2(fs,t)| 
value caused by the ITSC is significant over the entire range of TL and fs analysed. Nevertheless, as the value of fs 
decreases, the damage sensitivity is slightly lower.

4.3.  ML-based automation of the PMSM stator winding fault classification
The fault classifier models are trained based on the information obtained in the previous stage of the research, 
namely the extraction of symptoms of this type of damage. It is proven that in the CWT scalogram of the i1 coefficients 
associated with the fs component, |CWTi1(fs,t)| contains information about the TL level, while the frequency component 
fs in the i2 CWT scalogram is a very good indicator of ITSCs. Therefore, these values are included in the input vector 
of the models under study. The third and last component of the input vector is the fs value.

Fig. 7.  (a) i2 CWT scalogram and (b) value changes of the |CWTi2(fs,t)| for the short-circuiting of 1 to 5 turns and TL = var, fs = fsN = 100 Hz. CWT, 
continuous wavelet transform.

Fig. 6.  (a) i1 CWT scalogram and (b) value changes of the |CWTi1(fs,t)| for the short-circuiting of 1–5 turns and TL = var, fs = fsN = 100 Hz. CWT, 
continuous wavelet transform.
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4.3.1.  Training and off-line verification of the ML-based models

The dataset collected through experimental research consists of 5,400 vectors of the following form: X = [|CWTi1(fs,t)|, 
|CWTi2(fs,t)|, fs]. For each of the load torques TL =  {0; 0.2TN; 0.4TN; 0.6TN; 0.8TN; TN}, number of shorted turns 
Nsh = {0; 1; 2; 3; 4; 5} and power supply frequencies fs = {80 Hz; 90 Hz;100 Hz}), there are 50 vectors included in 

Fig. 8.  (a) i2 CWT scalogram and (b) value changes of the |CWTi2(fs,t)| for the short-circuiting of 1 to 5 turns (TL = TN, fs = var). CWT, continuous 
wavelet transform.

Fig. 9. Value changes of |CWTi2(fs,t)| for the short-circuiting of 1 to 5 turns and different types of wavelet (TL = var, fs = fsN = 100 Hz). CWT, continuous 
wavelet transform.

Fig. 10. Effect of Nsh and (a) TL (fs = fsN = 100 Hz). (b) fs (TL = TN) on the value of the |CWTi2(fs,t)| coefficient. CWT, continuous wavelet transform.
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the dataset (50 × 6 × 6 × 3 = 5,400). The dataset was randomly divided into 70% for the training and 30% for the 
offline tests.

4.3.1.1.  KNN model
The key parameters of the KNN algorithm include the number of nearest neighbours and distance metric. To 
select the model parameters that will provide the best accuracy, different hyperparameter values are analysed. 
The accuracy of the model is the number of correctly classified states of the stator winding ncorrect to the number of 
vectors included in the training dataset N:

	
correctAccuracy 100% .n
N

= ⋅ 	 (17)

The accuracies of the KNN ITSC classifier model for different hyperparameters are grouped in Table 2. 
According to the results, the lowest accuracy is achieved by the KNN model with the correlation distance. 
The highest accuracy of 99.9% is achieved by KNN models for K = 5 and the Euclidean, Minkowski and 
Mahalanobis distance. Training times of these models are 0.691  s, 0.781  s and 1.790  s, respectively. 
Therefore, taking into account these times, the KNN model with the Euclidean distance metric is chosen for 
further analysis.

The achieved classification effectiveness CEFF (the ratio of the correctly classified stator winding conditions to the 
sum of the testing vectors) is as high as 99.75%. The confusion matrix for the model responses to the test vectors 
is presented in Figure 11a. Few misclassifications are visible only in the case of one shorted turns in the stator 
winding.

Fig. 11. Confusion matrix for the responses to the test vectors of (a) KNN, (b) SVM and (c) MLP models. KNN, k-nearest neighbour; MLP, multilayer 
perceptron.

K [-] Symbol

Euclidean (%) Minkowski (%) Mahalanobis (%) Correlation (%)

1 99.6 99.6 99.7 84.3

2 99.7 99.7 99.7 84.5

3 99.7 99.7 99.8 85.5

4 99.7 99.7 99.8 85.7

5 99.9 99.9 99.9 86.2

10 99.8 99.8 99.8 86.0

25 99.8 99.8 99.8 85.8

50 99.8 99.8 99.8 84.8

100 78.5 75.7 79.6 60.0

KNN, k-nearest neighbour.

Table 2.  Results (accuracy) of the KNN model for different values of hyperparameters.
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4.3.1.2.  SVM
The preparation of an SVM-based fault classifier model involves the selection of a kernel function that will ensure 
the highest accuracy of the model. The model accuracies of the SVM classifier for different kernel functions are 
grouped in Table 3.

The results show that the SVM model with the linear kernel function is characterised by the lowest 
model accuracy equal to 97.8%. The SVM model with cubic kernel achieved the highest accuracy of 99.8%, 
as well as with the Gaussian kernel function with widths of 0.4 and 0.5. For further tests, the SVM with 
Gaussian kernel function with s  =  0.4 is selected due to its shortest training time (1.821  s) compared to the 
other SVMs, which also achieved an accuracy of 99.8%. After analysing the model accuracy for different 
kernel functions, the results of the selected models for the test vectors are verified. The confusion matrix for 
these responses is shown in Figure 11b. As can be seen, there are only isolated cases of misclassification. 
The classification effectiveness achieved is equal to 99.57%. Compared to KNN, there are misclassifications 
not only between the undamaged winding and one shorted turn but also between 3 and 4 shorted  
turns.

4.3.1.3.  MLP
In the case of the MLPs, the most important is the selection of an appropriate structure of the network: the number 
of hidden layers and neurons in each layer. One of the most common methods to select the most suitable neural 
network structure for the selected application is the constructivist approach. In the scope of this research, the 
Levenberg–Marquardt gradient algorithm is used. The maximum number of epochs is set to 1,000. The accuracy 
of the MLP model for different neural network structures is grouped in Table 4. The MLP with the least complex 
network structure—only one hidden layer with five neurons—achieved the lowest accuracy (99.1%). An accuracy of 
99.9% was achieved by MLPs with two structures: one hidden layer with 15 neurons and two hidden layers with 7 
and 11 neurons. To choose a less complex structure, the MLP model with one hidden layer {3-15-1} is adopted for 
further tests. The CEFF achieved by this model is equal to 99.75%. The confusion matrix for the responses for the 
test vectors is presented in Figure 11c.

Kernel function s [-] Accuracy (%)

Linear - 97.8

Quadratic 98.9

Cubic 99.8

Gaussian

0.1 99.6

0.2 99.6

0.3 99.7

0.4 99.8

0.5 99.8

Table 3.  Results (accuracy) of the SVM model for different values of hyperparameters.

Neural network structure Accuracy (%)

{3-5-1} 99.1

{3-7-1} 99.4

{3-9-1} 99.7

{3-13-1} 99.7

{3-15-1} 99.9

{3-5-9-1} 99.7

{3-7-11-1} 99.9

MLP, multilayer perceptron.

Table 4.  Results (accuracy) of the MLP model for different network structures.
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Fig. 13. Detailed flow diagram representing the proposed PMSM stator winding condition classification schemes proposed in this work. CWT, 
continuous wavelet transform; PMSM, permanent magnet synchronous motor.

4.3.2.  �General workflow and verification of the proposed PMSM stator winding condition monitoring system during 
online operation

The combination of the proposed ITSC symptom extraction method (CWT) and the developed ML-based models 
(KNN, SVM, MLP) make it possible to prepare an automatic condition monitoring system for PMSM stator windings. 
The structure of the developed system is presented in Figure 12. The following key elements of this methodology 
can be distinguished: (1) the SPCSCs signal measurement and calculation of its symmetrical components, (2) CWT 
analysis of the SPCSCs and (3) automatic ML-based stator winding condition classification. A more detailed flow 
diagram depicting the concept proposed in this work is shown in Figure 13.

Fig. 12. General workflow of the proposed condition monitoring system. CWT, continuous wavelet transform.
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The proposed condition monitoring system was tested during the online operation of the PMSM drive. During 
this test, 1–5 turns were sequentially sorted for 1–2s, gradually increasing (1) the TL level and (2) the fs value. 
The actual conditions of the PMSM stator winding and the outputs of the KNN model developed are presented in 
Figures 14a,d for tests (1) and (2), respectively. The CEFF for these tests is equal to 98.13% and 95.63%. The SVM 
model responses for these test scenarios are presented in Figures 14b,e. The result shows that the CEFF = 96.88% 
for test (1) and 93.97% for test (2). The results of the verification of the MLP model are presented in Figures 14c,f. 
This model achieved CEFF = 96.46% and CEFF = 93.97%.

In the case of ITSC fault, due to its destructive nature, it is necessary to detect it in the shortest possible time. 
For this reason, the times of the responses of the developed classifies are also analysed. Based on the analysis of 
the comparison for 10,000 trials, it is proven that the response time of the KNN model is considerably shorter than 
that of the other analysed models. The average response time is equal to 1.8 ms for KNN, 6.0 ms for SVM and 
6.3 ms for the MLP model. It is a notable advantage of the simple KNN algorithm.

5.	 Conclusions
This study provides a solution to the problem of automatic diagnosis of the PMSM stator winding fault at its incipient 
state. The CWT analysis of the SPCSC symmetrical components and ML models are proposed to solve this problem.

The experimental results confirmed the high effectiveness of the application of the CWT analysis of the SPCSC 
in the extraction of the symptoms of ITSCs in the PMSM stator winding at a very early stage of the fault. After 
tuning the parameters of the ML-based models analysed, the proposed classifiers achieved very high accuracies 
and classification effectiveness under various test scenarios. The tested models are also robust against operating 
condition changes of the PMSM drive system, thanks to the proper selection of elements (features) of the input 
vector. It should be marked that the highest classification effectiveness is achieved for the KNN-based fault classifier 

Fig. 14. Real conditions of the PMSM stator winding and fault classifier responses during the online operation of the drive system, (a), (d) KNN, (b), 
(e) SVM, (c), (f) MLP. KNN, k-nearest neighbour; MLP, multilayer perceptron; PMSM, permanent magnet synchronous motor.
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