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Sum of the spaces on ordered setting

T. M. Al-shami

Abstract. One of the divergences between topology and ordered topology is that some topological concepts
such as separation axioms and continuous maps are defined using open neighborhoods or neighborhoods
without any difference, however, they are distinct on the ordered topology according to the neighborhoods:
Are they open neighborhoods or not? In this paper, we present the concept of sum of the ordered spaces
using pairwise disjoint topological ordered spaces and study main properties. Then, we introduce the prop-
erties of ordered additive, finitely ordered additive and countably ordered additive which associate topolog-
ical ordered spaces with their sum. We prove that the properties of being Ti-ordered and strong Ti-ordered
spaces are ordered additive, however, the properties of monotonically compact and ordered compact spaces
are finitely ordered additive. Also, we define a mapping between two sums of the ordered spaces using
mappings between the ordered spaces and deduce some results related to some types of continuity and
homeomorphism. We complete this work by determining the conditions under which a topological ordered
space is sum of the ordered spaces.
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1. Introduction

In 1965, Nachbin [28] initiated the concept of topological ordered spaces by adding a par-
tial order relation to the structure of a topological space. Both topology and partial order
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relation are defined as independent each of other. Nachbin [28] proved some results con-
cerning Ti-ordered spaces (i = 2, 4) and compactness, which generalized well-known theo-
rems for topological spaces. Also, he defined convex spaces and completely regular ordered
spaces and studied some of their properties. In 1966, McCartan [24] studied some properties
of subsets of a partially ordered set. In 1968, he (see [25]) introduced Ti-separation axioms
(i = 0, 1, 2, 3, 4) on topological ordered spaces and proved some results concerning Ti-ordered
spaces (i = 2, 3) and local compactness. Burgess and McCartan [13] introduced a concept of
order-connectedness and compared four procedures for defining the order-continuous func-
tions between topological ordered spaces. In 1977, Burgess and Fitzpatrick [12] investigated the
consequences of Ti-ordered spaces under the conditions of convexity, continuity, anticontinuity
and bicontinuity of a topological ordered spaces which given in [26].

It worthily noted that the concepts of Ti-spaces and continuous maps are defined using open
neighborhoods or neighborhoods without any difference, however, the counterparts of these
concepts on the ordered topology are distinct according to the type of neighborhoods: Are
they open neighborhoods or not?

In 1991, Arya and Gupta [11] investigated some new ordered separation axioms, namely
semi T1-ordered and semi T2-ordered spaces. These two concepts were generalized by [23]
in 2002. In another direction of study ordered spaces, Popescu [29] studied separation ax-
ioms by replacing a partial order relation by an arbitrary binary relation. Then, Mendez et
al. [27] studied separation axioms by replacing the identity relation on topological space by
a specific binary relation. In 2002, Kumar [18] studied the concepts of continuous, open,
closed and homeomorphism mappings between topological ordered spaces and studied their
main properties. These concepts were generalized between supra topological ordered spaces
in [1]. In 2004, Das [14] presented some ordered separation axioms in ordered spaces and
highlighted on their properties on supra topological ordered spaces. El-Shafei et al. [15] com-
pleted Das’s work by studying strong separation axioms on supra topological ordered spaces.
Some significant results related to completely regular ordered and strictly completely regular
ordered spaces were investigated in [19, 21]. In 2005, Künzi and Richmond [20] presented an
explicit construction of the T0-ordered reflection of an ordered topological space and charac-
terized ordered topological spaces whose T0-ordered reflection is T1-ordered. In 2014, Lazaar
and Mhemdi [22] investigated some properties of T0-ordered reflection. In 2018, Shanthi and
Rajesh [30] introduced new types of Ti-ordered spaces, namely ωTi-ordered (i = 1, 2) and
ω-regularly ordered spaces.

To study topological spaces on ordered setting, I and my co-authors defined the concepts
of soft topological ordered in [6] and supra soft topological ordered spaces in [3]. In these
two works, we introduced the concept of increasing and decreasing soft sets and utilized it to
explored some types of soft separation axioms. Then we [4, 7, 8, 9, 16] initiated some types of
ordered maps and probed their main properties. Recently, we [5] have established two types
of ordered soft separation axioms and compared between them with the help of examples.

This paper was organized as follows: In Section 2, we recall some definitions and results of
topological ordered spaces and sum of the spaces that will help us to understand this work.
In Section 3, we introduce the concept of sum of the ordered spaces using pairwise disjoint
topological ordered spaces. Also, we define ordered additive, finitely ordered additive and
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countably ordered additive properties, and give some examples of these properties such as Ti-
ordered and monotonically compact spaces. Section 4 concludes the paper and future works.

2. Preliminaries

This section presents the definitions and properties related to partial order relations, topo-
logical ordered spaces and sum of the spaces that will be needed in the sequels.

Definition 2.1. ([17]). A binary relation R on a nonempty set Y is called:
(i): reflexive if (y, y) ∈ R for each y ∈ Y,
(ii): anti-symmetric if (y, z), (z, y) ∈ R implies that y = z,
(iii): transitive if (y, z), (z, x) ∈ R implies that (y, x) ∈ R,
(iv): a partial order relation if it is reflexive, anti-symmetric and transitive.

The diagonal relation on any non-empty set Y, which given by {(y, y) : y ∈ Y} shall be
shortly denoted by 4.

Throughout this paper, we denote a partial order relation by � or ≤.

Definition 2.2. ([28]). Let X be a subset of a partially ordered set (Y,�) and y ∈ Y . Then:
(i): i(y) = {a ∈ Y : y � a} and d(y) = {a ∈ Y : a � y}.
(ii): i(X) =

⋃{i(a) : a ∈ X} and d(X) =
⋃{d(a) : a ∈ X}.

(iii): A set X is called increasing (resp. decreasing) if X = i(X)(resp. X = d(X)).

Definition 2.3. ([2]). A subset A of (Y,�) is called monotonic if A is increasing or decreasing. In
other words, A = i(A) or A = d(A).

Definition 2.4. ([28]). A triple (Y, τ,�) is said to be a topological ordered space, where (Y,�) is a
partially ordered set and (Y, τ) is a topological space.

Henceforth, (Y, τ,�) and (Z, θ,≤) denote topological ordered spaces.

Definition 2.5. ([25]). Let A be a subset of (Y, τ,�). We define a topological ordered subspace
(A, τA,�A) of (Y, τ,�) as follows τA = {A

⋂
G : for each G ∈ τ} and �A=�

⋂
A× A.

Definition 2.6. A subset A of (Y, τ,�) is called:
(i): a neighborhood of y ∈ Y if there exists an open set U such that y ∈ U ⊆ A.
(ii): an open neighborhood of y ∈ Y if it is an open set containing y.
(iii): an increasing neighborhood of y ∈ Y if it is a neighborhood of y ∈ Y and i(A) = A.
(iv): a decreasing neighborhood of y ∈ Y if it is a neighborhood of y ∈ Y and d(A) = A.

Definition 2.7. ([25]). (Y, τ,�) is said to be:
(i): lower T1-ordered if for each x 6� y ∈ Y, there is an increasing neighborhood U of x such that y 6∈ U.
(ii): upper T1-ordered if for each x 6� y ∈ Y, there is a decreasing neighborhood U of y such that x 6∈ U.
(iii): T0-ordered if it is lower T1-ordered or upper T1-ordered.
(iv): T1-ordered if it is lower T1-ordered and upper T1-ordered.
(v): T2-ordered if for each x 6� y ∈ Y, there are disjoint neighborhoods U and V of x and y, respectively,

such that U is increasing and V is decreasing.
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(vi): regular ordered if for every increasing (resp. decreasing) closed set F and y ∈ Y such that y 6∈ F,
there are disjoint increasing (resp. decreasing) neighborhood U and decreasing (resp. increasing)
neighborhood V such that F ⊆ U and y ∈ V.

(vii): normal ordered if for every two disjoint closed sets F and H such that F is increasing and H
is decreasing, there are two disjoint increasing neighborhood U and decreasing neighborhood V
such that F ⊆ U and H ⊆ V.

(viii): T3-ordered (resp. T4-ordered) if it is both T1-ordered and regular ordered (resp. normal ordered).

McCartan [25] also introduced the concepts of strong Ti-ordered spaces by replacing the
word neighborhood by open set in the above definition.

Definition 2.8. ([2]). The collection {Gj : j ∈ J} of open subsets of (Y, τ,�) is called a monotonically
open cover of Y provided that Y =

⋃
j∈J Gj and all Gj are monotonic.

Definition 2.9. ([2]). (Y, τ,�) is said to be:
(1) monotonically compact provided that every monotonically open cover of Y has a finite subcover.
(2) ordered compact if every soft open cover of Y has a finitely monotonic subcover.

Proposition 2.1. [2] Every monotonically closed (resp. closed) subset of a monotonically compact (resp.
an ordered compact) space (Y, τ,�) is monotonically compact (resp. ordered compact).

Definition 2.10. ([13]). (Y, τ,�) is said to be:
(1) order-separated if there are disjoint closed sets A, B in X such that A is increasing, B is decreas-

ing and A
⋃

B = Y.
(2) order-connected if and only if it is not order-separated.

Definition 2.11. ([18]). fφ : (Y, τ,�)→ (Z, θ,≤) is called:
(i): I (resp. D, B) -continuous if and only if the inverse image of each open set is increasing (resp.

decreasing, balancing) open.
(ii): soft I (resp. D, B) -open if the image of every open is increasing (resp. decreasing, balancing) open.
(iii): soft I (resp. D, B) -closed if the image of every closed is increasing (resp. decreasing, balancing)

closed.

Definition 2.12. ([18]). A bijective soft map g : (Y, τ,�) → (Z, θ,≤) is called I (resp. D, B) -
homeomorphism if it is I-continuous and I-open (resp. D-continuous and D-open, B-continuous and
B-open).

Definition 2.13. ([17]). Let {(Yi, τi) : i ∈ I} be a family of pairwise disjoint topological spaces and
Y =

⋃
i∈I Yi. Then the collection

τ = {G ⊆ X : G
⋂

Yi is an open set in (Yi, τi) for every i ∈ I}
defines a topology on Y.

This topological space is called sum of the spaces and denoted by (⊕i∈IYi, τ).

Recently, the concept of sum of the spaces has been introduced and studied on soft setting
by [10].

Proposition 2.2. ([17]). All sets Yi are clopen subsets of (⊕i∈IYi, τ).
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3. Sum of topological ordered spaces

In this section, we present the concept of sum of topological spaces on ordered setting and
then we define ordered additive, finitely ordered additive and countably ordered additive
properties. We discuss some concepts in terms of these properties with the help of illustrative
examples.

Proposition 3.1. Let {(Yi, τi,�i) : i ∈ I} be a family of pairwise disjoint topological ordered spaces.
Then (Y, τ,�) is a topological ordered space, where

(1) Y =
⋃

i∈I Yi;
(2) τ = {U over

⋃
i∈I Yi : U

⋂
Yi ∈ τi for every i ∈ I} and

(3) �= ⋃
i∈I �i.

Proof. It follows from Proposition 2.13 that (Yi, τi, A) is a topological space. It remains to prove
that � is a partial order relation on Y. It is clear that � is reflexive on Y. Since �i is anti-
symmetric and transitive for each i and �i

⋂ �j= ∅ for each i 6= j, then � is anti-symmetric
and transitive on Y. Thus, � is a partial order relation on Y. Hence, (Y, τ,�) is a topological
ordered space.

Definition 3.1. The topological ordered space (Y, τ,�) given in the above proposition is said to be the
sum of topological ordered spaces and is denoted by (⊕i∈IYi, τ,�).
Proposition 3.2. If U is a monotonic subset of (⊕i∈IYi,�), then U

⋂
Yi is a monotonic subset of

(Yi,�i) for every i ∈ I.

Proof. Necessity: Let U be a monotonically subset of (⊕i∈IYi,�). Say, it is increasing. Suppose
that there exists i ∈ I such that U

⋂
Yi is not an increasing subset of (Yi,�i). Then there exists

y ∈ Yi such that y 6∈ U
⋂

Yi and x �i y for some x ∈ U
⋂

Yi. Since Yi
⋂

Yj = ∅ for each i 6= j,
then U is not increasing. We obtain a contradiction.

The converse of the above proposition is not always true as it is illustrated in the following
example.

Example 3.1. Let �1= 4
⋃{(x2, x1)} and �2= 4

⋃{(y1, y2)} be two partial order relations on
X = {x1, x2} and Y = {y1, y2}, respectively. Now, U = {x1, y1} is neither decreasing nor increasing
subset of (X

⋃
Y,�). Therefore it is not monotonic. However, U

⋂
X = {x1} is an increasing subset

of (X,�1) and U
⋂

Y = {y1} is a decreasing subset of (Y,�2).

Proposition 3.3. A subset U of (⊕i∈IYi,�) is increasing (resp. deceasing) if and only if all sets U
⋂

Yi
are increasing (resp. deceasing) in (Yi,�i).

Proof. The necessary condition follows from Proposition 3.2.
To prove the sufficient condition, let U

⋂
Yi be an increasing (resp. a deceasing) subset of

(Yi,�i) for every i ∈ I. Since Yi
⋂

Yj = ∅ for each i 6= j and �= ⋃
i∈I �i, then U is an increasing

(resp. a deceasing) subset of (⊕i∈IYi,�).
Proposition 3.4. All sets Yi are monotonically clopen in (⊕i∈IYi, τ,�).
Proof. It follows from Proposition 2.2 and Proposition 3.3.
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Corollary 3.1. Every sum of topological ordered spaces is order-separated.

Proposition 3.5. If {(Yi, τi,�i) : i ∈ I} is a class of pairwise disjoint topological ordered spaces and
Xi is a subspace of Yi for every i ∈ I, then the ordered topology of the sum of subspaces {(Xi, τXi ,�Xi
) : i ∈ I} and the topological ordered subspace on

⋃
i∈I Xi of the sum topology (⊕i∈IYi, τ,�) coincide.

Proof. Straightforward.

Definition 3.2. A property P is said to be:
(1) ordered additive if for any family of topological ordered spaces {(Yi, τi,�i) : i ∈ I} with

the property P , the sum of this family also has property P .
(2) finitely ordered additive (resp., countably ordered additive) if for any finite (resp., countable)

family topological ordered spaces with the property P , the sum of this family also has
property P .

Lemma 3.1. U ∩ Yi is increasing (resp. deceasing) neighborhood of an element in (Yi, τi,�i) iff it is
increasing (resp. deceasing) neighborhood of this element in (⊕i∈IYi, τ,�).
Proof. Necessity: Let U ∩ Yi be a neighborhood of y ∈ Yi. Then there is an open subset G of
(Yi, τi,�i) such that y ∈ G ⊆ U ∩ Yi. By Definition 3.1, we obtain G ∈ τ. Then U ∩ Yi is a
neighborhood of y in (⊕i∈IYi, τ,�). Since U ∩ Yi is increasing (resp. deceasing) in (Yi, τi,�i),
then it follows from Proposition 3.3 that U ∩Yi is increasing (resp. deceasing) in (⊕i∈IYi, τ,�).
This finishes the proof the necessary condition.

Sufficiency: It can be proved by following similar arguments given in the proof of the neces-
sary part.

Theorem 3.1. The property of being a Ti-ordered space is an ordered additive property for i = 0, 1, 2, 3, 4.

Proof. We prove the theorem in the case of i = 2. Let y 6� z ∈ ⊕i∈IYi. Then we have the
following two cases:

1. There exists i0 ∈ I such that y, z ∈ Yi0 .
Since (Yi0 , τi0 ,�i0) is T2-ordered, then there exist disjoint increasing neighborhood U of y

and decreasing neighborhood V of z in (Yi0 , τi0 ,�i0). It follows from the above lemma that U
is increasing neighborhood of y and V is decreasing neighborhood of z in (⊕i∈IYi, τ,�) such
that U

⋂
V = ∅.

2. There exist i0 6= j0 ∈ I such that y ∈ Yi0 and z ∈ Yj0 .
Now, Yi0 is an increasing neighborhood of y and Yj0 is a decreasing neighborhood of z.

Obviously, Yi0 and Yj0 are disjoint.
It follows from the two cases above that (⊕i∈IYi, τ,�) is a T2-ordered space.
The theorem can be proved similarly in the cases of i = 0, 1.
To prove the theorem in the cases of i = 3 and i = 4, it suffices to prove the regularity

ordered and normality ordered, respectively.
First, we prove the regularity ordered property. Let F be an increasing closed subset of

(⊕i∈IYi, τ,�) such that y 6∈ F. It follows from Proposition 3.2, that F
⋂

Yi is increasing closed
in (Yi, τi,�i) for each i ∈ I. y ∈ ⊕i∈IYi implies that there is only i0 ∈ I such that y ∈ Yi0 .
Therefore there are disjoint neighborhoods U of F

⋂
Yi0 and V of y in (Yi0 , τi0 ,�i0) such that

U is increasing and V is decreasing. Now, U
⋃

i 6=i0
Yi is an increasing neighborhood of F in



SUM OF THE SPACES ON ORDERED SETTING 261

(⊕i∈IYi, τ,�). The disjointness between U
⋃

i 6=i0 Yi and V ends the proof that (⊕i∈IYi, τ,�) is
a regular ordered space.

Second, we prove the normality ordered property. Let F and H be two disjoint closed subsets
of (⊕i∈IYi, τ,�) such that F is increasing and H is decreasing. It follows from Proposition 3.3,
that F

⋂
Yi and H

⋂
Yi are closed in (Yi, τi,�i) for each i ∈ I such that F

⋂
Yi is increasing and

H
⋂

Yi is decreasing. Since (Yi, τi,�i) is normal ordered for each i ∈ I, then there exist disjoint
neighborhoods Ui of F

⋂
Yi and Vi of H

⋂
Yi such that Ui is increasing and Vi is decreasing in

(Yi, τi,�i). Therefore F ⊆ ⋃
i∈I

Ui, H ⊆ ⋃
i∈I

Vi and [
⋃
i∈I

Ui]
⋂
[
⋃
i∈I

Vi] = ∅. Hence, (⊕i∈IYi, τ,�) is

normal ordered space.

Theorem 3.2. The property of being a strong Ti-ordered space is an ordered additive property for
i = 0, 1, 2, 3, 4.

Proof. The proof is similar to that of Theorem 3.1.

Proposition 3.6. The property of being a monotonically compact space is a finitely ordered additive
property.

Proof. Let {(Yk, τk,�k) : k ∈ {1, 2, ..., n}} be a finite family of pairwise disjoint monotonically
compact spaces and let (⊕n

k=1Yk, τ,�) be the sum of this family. Suppose that {Ui : i ∈ I}

is an open cover of Y =
n⋃

k=1
Yk. Then Yk =

⋃
i∈I

[Ui
⋂

Yk] for every k ≤ n. Since (Yk, τk,�k)

is monotonically compact for every k ≤ n, then there exist finite subsets M1, M2, ..., Mn of I
such that Y1 =

⋃
i∈M1

[Ui
⋂

Y1] and all Ui
⋂

Y1 are monotonic, Y2 =
⋃

i∈M2

[Ui
⋂

Y2] and all Ui
⋂

Y2

are monotonic, ..., Yn =
⋃

i∈Mn

[Ui
⋂

Yn] and all Ui
⋂

Yn are monotonic. Letting M =
n⋃

k=1
Mk.

Now, Y =
⋃

i∈M
[Ui

⋂
Yk] for every k ≤ n. Since M is finite and all Ui

⋂
Yk are monotonic, then

(⊕n
k=1Ys, τ,�) is monotonically compact.

Proposition 3.7. The property of being an ordered compact space is a finitely ordered additive property.

Proof. The proof is similar to that of Proposition 3.6.

The following example shows that the properties of monotonically compactness and ordered
compactness are not ordered additive.

Example 3.2. Let Xn = {2n− 1, 2n}, where n belongs to the set of natural numbers N. Consider τn
is the discrete topology and �n is the equality relation on Xn for each n. Now, {(Xn, τn,�n) : n ∈ N}
is a family of pairwise disjoint monotonically compact and ordered compact spaces. Obviously, � is the
equality relation on X and the sum of these spaces (⊕n∈NYn, τ,�) is discrete. Then (⊕n∈N , τ,�) is
neither monotonically compactness neither ordered compactness. Hence, the properties of monotonically
compactness and ordered compactness are not ordered additive.

Proposition 3.8. If the sum of topological ordered spaces (⊕i∈IYi, τ,�) is monotonically compact (resp.
ordered compact), then the following two assertions are true:

(1) all (Yi, τi,�i) are monotonically compact (resp. ordered compact).
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(2) the index set I is finite.

Proof. 1. It follows from Corollary 3.4, (Yi, τi,�i) is a monotonically closed subspace of (⊕i∈IYi, τ,�
) for each i ∈ I. It follows from Proposition 2.1 that (Yi, τi,�i) is monotonically compact (or-
dered compact) for each i ∈ I.

2. Let (⊕i∈IYi, τ,�) be the sum of topological ordered spaces. Then Λ = {Yi : i ∈ I} is a
(monotonically) open cover of Y =

⋃
i∈I

Yi. It is clear that Λ does not have a finite subcover if

I is infinite. This contradicts the fact that (⊕i∈IYi, τ,�) is ordered (monotonically) compact.
Hence, it must be that I is finite.

Similarly to the proof of Proposition 3.6, one can prove the following result.

Proposition 3.9. The property of being a monotonically Lindelöf (ordered Lindelöf) space is a countably
additive property.

Definition 3.3. Let { fi : (Yi, τi,�i)→ (Zi, θi,≤i) : i ∈ I} be a family of mappings. Then we define a
mapping f : (⊕i∈IYi, τ,�) → (⊕i∈IZi, θ,≤) as follows: For each subsets A and B of (⊕i∈IYi, τ,�)
and (⊕i∈IZi, θ,≤), respectively, we have:

(1) f (A) =
⋃
i∈I

fi(A
⋂

Yi); and

(2) f−1(B) =
⋃
i∈I

f−1
i (B

⋂
Zi)

Theorem 3.3. A mapping f : (⊕i∈IYi, τ,�) → (⊕i∈IZi, θ,≤) is I (resp. D, B) -continuous if and
only if every mappings fi : (Yi, τi,�i)→ (Zi, θi, B,≤i) is I (resp. D, B) -continuous.

Proof. We prove the theorem in the case of I-continuity and one can prove the cases between
parentheses similarly.

Necessity: Suppose that a mapping f : (⊕i∈IYi, τ,�)→ (⊕i∈IZi, θ,≤) is I-continuous. Taking
an arbitrary map f j : (Yj, τj,�j) → (Zj, θj,≤j), where j ∈ I. Let G be an open subset of
(Zj, θj,≤i). Then G is an open subset of (⊕i∈IZi, θ,≤). By assumption, f−1(G) is an increasing
open subset of (⊕i∈IYi, τ,�). Since G

⋂
Zi = ∅ for each i 6= j, then f−1(G) = f−1

j (G).

Therefore f−1
j (G) is an increasing open subset of (Yj, τj,�j), as required.

Sufficiency: Suppose that fi : (Yi, τi,�i) → (Zi, θi,≤i) is I-continuous for every i ∈ I and
let H be an open subset of (⊕i∈IZi, θ,≤). Now, H

⋂
Zi is an open subset of (Zi, θi,≤i) for

every i ∈ I. By assumption, f−1
i (H

⋂
Zi) is an increasing open subset of (Yi, θi,�i) for every

i ∈ I. Therefore
⋃
i∈I

f−1
i (H

⋂
Zi) is an increasing open subset of (⊕i∈IYi, τ,�). Since f−1(H) =⋃

i∈I
f−1
i [(H

⋂
Zi), then f−1(H) is an increasing open subset of (⊕i∈IYi, τ,�), as required.

In a similar way, one can prove the following three results.

Theorem 3.4. A mapping f : (⊕i∈IYi, τ,�) → (⊕i∈IZi, θ,≤) is I (resp. D, B) -open if and only if
every mappings fi : (Yi, τi,�i)→ (Zi, θi,≤i) is I (resp. D, B) -open.

Theorem 3.5. A mapping f : (⊕i∈IYi, τ,�) → (⊕i∈IZi, θ,≤) is I (resp. D, B) -closed if and only if
every mappings fi : (Yi, τi,�i)→ (Zi, θi,≤i) is I (resp. D, B) -closed.
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Corollary 3.2. A mapping f : (⊕i∈IYi, τ,�) → (⊕i∈IZi, θ,≤) is I (resp. D, B) -homeomorphism if
and only if every mappings fi : (Yi, τi,�i)→ (Zi, θi,≤i) is I (resp. D, B) -homeomorphism.

The other path of this study is the answer of the following two questions:
(1) Under what conditions a topological ordered space represents the sum of topological

ordered spaces?
(2) If a topological ordered space represents the sum of topological ordered spaces, what

is the maximum number of these topological ordered spaces?
The following results answer these questions.

Theorem 3.6. If (Y, τ,�) is order-separated, then it represents the sum of two topological ordered
spaces.

Proof. Since (Y, τ,�) is order-separated, then it contains at least a proper monotonically clopen
set X. Therefore the two subspaces (X, τX,�X) and (Xc, τXc ,�Xc) are topological ordered
spaces such that (Y, τ,�) is their sum.

Theorem 3.7. If Y =
⋃
i∈I

Yi such that all Yi are monotonically clopen subset of (Y, τ,�). Then the

maximum partition of {Yi : i ∈ I} for Y represents the maximum number of topological ordered spaces
such that (Y, τ,�) is their sum.

Proof. Straightforward.

4. Conclusion

Topological ordered space combines of two mathematical structures: topology and partial
order relation on the universal set such that topology and partial order relation are defined
as independent each of other. However, the interaction between them occurs in the case of
defining some concepts using some characteristics of topology and partial order relation such
as monotonic open (closed) sets and the smallest or largest element of some Ti-ordered spaces.
It can be observed on classical topology that there exists an open set containing an element if
and only if there exists a neighborhood of this element. This leads to the equivalence of using
open sets or neighborhoods of defining some topological concepts such as Ti-spaces. On the
other hand, it can be noted on ordered topology that a monotonic neighborhood need not be
a monotonically open neighborhood. Therefore we obtain Ti-ordered spaces using monotonic
open sets different than their counterparts using monotonic neighborhoods.

In this article, we have introduced and studied sum of the ordered spaces using pairwise dis-
joint topological ordered spaces. We have defined ordered additive, finitely ordered additive
and countably ordered additive properties and then investigated some concepts with respect
to these properties. If we consider a partial order relation is the equality relation we note that
the properties and findings concerning sum of the spaces given in [17] are special cases of the
properties and findings obtained in this work.

We plan in an upcoming paper to introduce and explore the concept of sum of the spaces
on soft ordered setting.
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