

Moroccan J. of Pure and Appl. Anal. (MJPAA)

Volume 5(2), 2019, Pages 117–124 ISSN: Online 2351-8227 - Print 2605-6364 DOI 10.2478/mjpaa-2019-0009

Log *m*-Convex Functions

Teodoro Lara 1,a and Edgar Rosales 1,b

ABSTRACT. In this research we lay the concept of log *m*-convex functions defined on real intervals containing the origin, some algebraic properties are exhibit, in the same token discrete Jensen type inequalities and integral inequalities are set and shown.

2010 Mathematics Subject Classification.26A51, 26A36, 54C30.Key words and phrases. log-convex function, log *m*-convex function, *m*-convex set, multiplicatively *m*-convex function, Jensen type inequality.

1. Introduction

Logarithmically convex (log-convex) functions are of interest in many areas of mathematics and science. They have been found to play an important role in the theory of special functions and mathematical statistics [10, 12]. In this paper we introduce the concept of log *m*-convex function as combination of the well known definitions of *m*-convex and log-convex functions, some examples are shown. At the same time, we exhibit basic algebraic properties of this new type of functions same as integral inequalities of Hermite-Hadamard type, we recall them [4, 11, 12] and references therein.

Definition 1. ([1, 2, 12]) A function $f : I \to (0, +\infty)$, *I* an interval, is said to be log-convex or multiplicatively convex if log *f* is convex, or, equivalently, if for all $x, y \in I$ and $t \in [0, 1]$ one has the inequality:

$$f(tx + (1-t)y) \le [f(x)]^t [f(y)]^{1-t}.$$
(1.1)

When we work on *m*-convexity, almost always, it is necessary to know the concept of *m*-convex set.

Definition 2. ([9])A subset *D* of a real linear space *X* is said to be *m*-convex if, for all $x, y \in D$ and for all *t* in the interval [0, 1], the point tx + m(1 - t)y also belongs to *D*.

Received August 19, 2019 - Accepted October 16, 2019.

©The Author(s) 2017. This article is published with open access by Sidi Mohamed Ben Abdallah University.

¹Departamento de Física y Matemáticas, Universidad de los Andes. Trujillo. Venezuela

^b e-mail: edgarr@ula.ve .

^{*a*} *e*-mail: tlara@ula.ve

T. LARA AND E. ROSALES

In [9, Theorem 2.6] it was proved that a subset $D \subseteq X$ containing 0 is *m*-convex if and only if $conv(\{0, x, \frac{m}{m+1}(x+y)\})$ $\{0\} \subseteq D$ for all $x, y \in D$, where *conv* denote the convex hull. From this result, is not hard to prove that if *I* is an interval, such that $0 \in I$, then *I* is an *m*-convex set. So, it has sense de following

Definition 3. ([4, 7]) A function $f : I \to \mathbb{R}$, *I* an interval and $0 \in I$, is called *m*-convex, $0 \le m \le 1$, if for any $x, y \in I$ and $t \in [0, 1]$ we have

$$f(tx + m(1 - t)y) \le tf(x) + m(1 - t)f(y).$$

Our definition, and key part of this work, runs as follow.

Definition 4. A function $f : I \to (0, +\infty)$, *I* an interval and $0 \in I$, is called log *m*-convex, $0 \le m \le 1$, if for all $x, y \in I$ and $t \in [0, 1]$ one has

$$f(tx + m(1-t)y) \le [f(x)]^t [f(y)]^{m(1-t)}.$$
(1.2)

If m = 1, we recapture the concept of log-convex function defined on *I*, given in Definition 1.

Just as it is stated in Definition 1, some authors indifferently use the terms log-convex or multiplicatively convex to define the functions which verify (1.1). Nevertheless, in our context, we consider the multiplicative convexity as follows.

Definition 5. A function $f : I \to (0, +\infty)$, *I* an interval and $0 \in I$, is called multiplicatively *m*-convex, $0 \le m \le 1$, if for all $x, y \in I$ and $t \in [0, 1]$ one has

$$f\left(x^{t} y^{m(1-t)}\right) \leq [f(x)]^{t} [f(y)]^{m(1-t)}.$$
(1.3)

Remark 6. It is not difficult to verify that the log *m*-convexity of *f* is equivalent to the *m*-convexity of log *f*.

Remark 7. It is important to point out that (1.2) is equivalent to

$$f(mtx + (1-t)y) \le [f(x)]^{mt} [f(y)]^{(1-t)},$$
(1.4)

with x, y and t as before.

From now on *I* always will be an interval containing zero unless other thing is stated.

Remark 8. The following properties of a log m-convex function f are a direct consequence of (1.2).

- (1) $f(my) \leq [f(y)]^m$, if t = 0 in (1.2).
- (2) $f(tx) \leq [f(x)]^t$, if m = 0 in (1.2).
- (3) By taking x = y = 0 in (1.2), and $m \neq 1$, we have $f(0) \leq [f(0)]^{t+m(1-t)}$. So, $\log f(0) \leq (t+m(1-t)) \log f(0)$, or $\log f(0)[1-(t+m(1-t))] \leq 0$. Since $1-(t+m(1-t)) \geq 0$, it follows that $\log f(0) \leq 0$. Therefore, if f is log m-convex, necessarily $f(0) \leq 1$. This fact, in turn, implies (by taking y = 0 in (1.2)) that $f(tx) \leq [f(x)]^t$ holds for any $m \in [0, 1)$. This property is the equivalent to be starshaped of the m-convex functions ([8]).

Example 1. The function $f : I \to (0, +\infty)$, given as $f(x) = e^x$, is log *m*-convex, but for $m \neq 1$, *f* is not an *m*-convex function (since $f(0) \leq 0$, [6]). This fact shows a difference between log *m*-convexity and the usual log-convexity, since log-convexity implies convexity ([12]), while the converse is not always true as this function indicates.

2. Basic Properties and Examples

It is well known that the sum of log-convex functions is also log-convex ([12]). However, the sum of log *m*-convex functions is not necessarily log *m*-convex, as the next example shows.

Example 2. If $f(x) = e^x$, then $(f + f)(x) = 2e^x$, and (f + f)(0) = 2. Thus, by Remark 8, f + f is not a log *m*-convex function.

Proposition 9. If $f: I \to (0, +\infty)$ is a log *m*-convex function, and $0 \le \alpha \le 1$, then αf is log *m*-convex function as well.

Proof. Let $x, y \in I$, and $t, \alpha \in [0, 1]$, and by the log *m*-convexity of *f*,

$$(\alpha f)(tx+m(1-t)y) \leq \alpha \left([f(x)]^t [f(y)]^{m(1-t)} \right).$$

On the other hand $0 \le \alpha \le 1$ and $t + m(1 - t) \le 1$, hence $\alpha^{t+m(1-t)} \ge \alpha$. Indeed,

$$\begin{aligned} (\alpha f)(tx+m(1-t)y) &\leq \alpha^{t+m(1-t)} \left([f(x)]^t [f(y)]^{m(1-t)} \right) \\ &\leq [(\alpha f)(x)]^t [(\alpha f)(y)]^{m(1-t)}. \end{aligned}$$

Remark 10. If $\alpha > 1$ in Proposition 9, the result is not true. Again, we consider the function $f(x) = e^x$; then for $\alpha > 1$, $(\alpha f)(x) = \alpha e^x > e^x$ and consequently $(\alpha f)(0) > 1$, so αf can not be a log m-convex function by Remark 8.

Proposition 11. If $f, g : I \to (0, +\infty)$ are two log *m*-convex functions, so is the product function *f g*. *Proof.* Let $x, y \in I$, and $t \in [0, 1]$. Then,

$$(fg)(tx + m(1-t)y) = f(tx + m(1-t)y) g(tx + m(1-t)y)$$

$$\leq [f(x)]^t [f(y)]^{m(1-t)} [g(x)]^t [g(y)]^{m(1-t)}$$

$$= [(fg)(x)]^t [(fg)(y)]^{m(1-t)}.$$

Example 3. Once again, the exponential function, together with Remark 8, allow us to notice certain aspects regarding the basic operations of log *m*-convex functions. This time to check that the composition of log *m*-convex functions is not necessarily log *m*-convex. In fact, if $f(x) = e^x$ then $(f \circ f)(0) = e > 1$; hence $f \circ f$ is not log *m*-convex. Nonetheless, we have the following result.

Proposition 12. Let $f : I \to (0, +\infty)$ be a log *m*-convex function, and let $g : J \to (0, +\infty)$ be a nondecreasing multiplicatively *m*-convex function, such that $range(f) \subseteq J$, then $g \circ f : I \to (0, +\infty)$ is log *m*-convex too.

Proof. Let $x, y \in I$, and $t \in [0, 1]$, then

$$g[f(tx + m(1-t)y)] \le g([f(x)]^t[f(y)]^{m(1-t)})$$

$$\le [g(f(x))]^t[g(f(y))]^{m(1-t)}.$$

Proposition 13. Let $f : I \to (0, +\infty)$ be a function. Then

(1) If f is log m-convex, so is $(f)^{\alpha}$ for all $\alpha > 0$.

(2) If $(f)^{\alpha}$ is an m-convex function for all $\alpha > 0$, then f is a log m-convex.

Proof. (1) Follows directly from the *m*-convexity of log *f* and [4, Proposition 4]. (2) It is not difficult to show that if a real function *g* is *m*-convex, so is g - 1. In fact, for all $x, y \in I$ and $t \in [0, 1]$,

$$g(tx + m(1 - t)y) - 1 \le tg(x) + m(1 - t)g(y) - 1$$

= $t(g(x) - 1) + m(1 - t)(g(y) - 1) - (1 - t)(1 - m)$
 $\le t(g(x) - 1) + m(1 - t)(g(y) - 1).$

Thus, if for all $\alpha > 0$, f^{α} is *m*-convex, so is the function $(f)^{1/n} - 1$ for all $n \in \mathbb{N}$. We have then the sequence $\{n[(f)^{1/n} - 1]\}$ of *m*-convex functions, which converges pointwise to the function log *f*; and from [5, Proposition 2.2], log *f* is *m*-convex function.

By picking m = 1 in Proposition 13, we have the following.

Corollary 14. Let $f: I \to (0, +\infty)$. Then, $(f)^{\alpha}$ is convex for all $\alpha > 0$ if and only if f is log-convex.

T. LARA AND E. ROSALES

We close this section with a couple of discrete Jensen type inequalities for log *m*-convex functions.

Theorem 15. Let $t_1, \ldots, t_n > 0$ and $T_n = \sum_{i=1}^n t_i$. If $f : [0, +\infty) \to (0, +\infty)$ is a log *m*-convex function, with $m \in (0, 1]$, then

$$f\left(\frac{1}{T_n}\sum_{i=1}^n t_i x_i\right) \leq \prod_{i=1}^n \left[f\left(\frac{x_i}{m^{n-i}}\right)\right]^{\frac{m^{n-i}t_i}{T_n}}, \text{ for all } x_1,\ldots,x_n \in [0,+\infty).$$

Proof. Because the function $\log f : [0, +\infty) \to \mathbb{R}$ is *m*-convex (Remark 6), it follows from [5, Theorem 3.1], that for all $x_1, \ldots, x_n \in [0, +\infty)$,

$$\log f\left(\frac{1}{T_n}\sum_{i=1}^n t_i x_i\right) \leq \frac{1}{T_n}\sum_{i=1}^n m^{n-i}t_i\log f\left(\frac{x_i}{m^{n-i}}\right)$$
$$= \frac{1}{T_n}\sum_{i=1}^n \log\left[f\left(\frac{x_i}{m^{n-i}}\right)\right]^{m^{n-i}t_i}$$
$$= \log\left(\prod_{i=1}^n \left[f\left(\frac{x_i}{m^{n-i}}\right)\right]^{\frac{m^{n-i}t_i}{T_n}}\right).$$

It only remains to apply the exponential function.

Theorem 16. If $f : I \to (0, +\infty)$ is a log *m*-convex function, then for all $t_1, \ldots, t_n \ge 0$ with $\sum_{i=1}^n t_i \in (0, 1]$ and all $x_1, \ldots, x_n \in I$, we have

$$f\left(\sum_{i=1}^{n} m^{1-\delta_{i1}} t_i x_i\right) \le \prod_{i=1}^{n} [f(x_i)]^{m^{1-\delta_{i1}} t_i},$$
(2.1)

where δ_{ij} is the well-known Delta of Kronecker function.

Proof. For m = 1, the result follows by applying the classical discrete Jensen's inequality to the convex function log f. For $m \neq 1$, the proof goes by induction on n. So, if n = 1, we have $f(t_1x_1) \leq [f(x_1)]^{t_1}$ which is true by Remark 8.

Let us assume that the result holds for n.

Now, let $x_1, \ldots, x_{n+1} \in I$, and $t_1, \ldots, t_{n+1} \ge 0$ with $\sum_{i=1}^{n+1} t_i \in (0, 1]$. First of all, if $t_{n+1} = 1$, then $t_1, \ldots, t_n = 0$ and hence,

$$f\left(\sum_{i=1}^{n+1} m^{1-\delta_{i1}} t_i x_i\right) = f(m x_{n+1})$$

$$\leq [f(x_{n+1})]^m \text{ (by Remark 8)}$$

$$= \prod_{i=1}^{n+1} [f(x_i)]^{m^{1-\delta_{i1}} t_i}.$$

We assume that $t_{n+1} \neq 1$, and we put

$$f\left(\sum_{i=1}^{n+1} m^{1-\delta_{i1}} t_i x_i\right) = f\left((1-t_{n+1})\sum_{i=1}^n m^{1-\delta_{i1}} t_i' x_i + m t_{n+1} x_{n+1}\right),$$

where $t'_i = \frac{t_i}{1 - t_{n+1}}$.

Because *I* is *m*-convex and $\sum_{i=1}^{n} t'_i \in (0,1]$, it follows, from [9, Lemma 3.3], that $\sum_{i=1}^{n} m^{1-\delta_{i1}}t'_i x_i \in I$. Thus, by log *m*-convexity of *f*, and in accordance with Remark 7, we have

$$f\left((1-t_{n+1})\sum_{i=1}^{n}m^{1-\delta_{i1}}t_{i}'x_{i}+mt_{n+1}x_{n+1}\right) \leq \left[f\left(\sum_{i=1}^{n}m^{1-\delta_{i1}}t_{i}'x_{i}\right)\right]^{1-t_{n+1}}[f(x_{n+1})]^{mt_{n+1}}$$

Therefore, by inductive hypothesis,

$$f\left(\sum_{i=1}^{n+1} m^{1-\delta_{i1}} t_i x_i\right) \leq \left[\prod_{i=1}^n [f(x_i)]^{m^{1-\delta_{i1}} t_i'}\right]^{1-t_{n+1}} [f(x_{n+1})]^{mt_{n+1}}$$
$$= \prod_{i=1}^n [f(x_i)]^{m^{1-\delta_{i1}} t_i} [f(x_{n+1})]^{mt_{n+1}}$$
$$= \prod_{i=1}^{n+1} [f(x_i)]^{m^{1-\delta_{i1}} t_i}.$$

3. Integral Inequalities

This last section is devoted to set and prove some integral inequalities, which together with the previous results, show the importance of this topic laid in our research; that is, log *m*-convex functions defined on intervals containing zero.

Proposition 17. Let $f : I \to (0, +\infty)$ be a log *m*-convex function, $0 < m \le 1$ and $a, b \in I, 0 < a < b$, then

$$\frac{1}{a-mb}\int_{mb}^{a}f(x)dx \leq \frac{f(a)-[f(b)]^{m}}{\log f(a)-\log[f(b)]^{m}}$$

Proof.

$$\begin{aligned} \frac{1}{a - mb} \int_{mb}^{a} f(x) dx &= \int_{0}^{1} f(ta + m(1 - t)b) dt \\ &\leq \int_{0}^{1} [f(a)]^{t} [f(b)]^{m(1 - t)} dt \\ &= [f(b)]^{m} \int_{0}^{1} \left[\frac{f(a)}{[f(b)]^{m}} \right]^{t} dt, \end{aligned}$$

the conclusion is obtained by performing the above integral.

Proposition 18. Let $f, g : I \to (0, +\infty)$ be log *m*-convex functions, $a, b \in (0, +\infty)$, a < b then

$$\frac{1}{a-mb}\int_{mb}^{a}f(x)g(x)dx\leq\frac{fg(a)-[fg(b)]^{m}}{\log(fg(a))-m\log(fg(b))}.$$

Proof.

$$\begin{aligned} \frac{1}{a - mb} \int_{mb}^{a} f(x)g(x)dx &= \int_{0}^{1} f\left(ta + m(1 - t)b\right)g\left(ta + m(1 - t)b\right)dt \\ &\leq \int_{0}^{1} [fg(a)]^{t} [fg(b)]^{m(1 - t)}dt \ (\log m \text{-convexity}) \\ &= \frac{[fg(b)]^{m}}{\log(fg(a)) - m\log(fg(b))} \left[\frac{fg(a) - [fg(b)]^{m}}{[fg(b)]^{m}}\right] \end{aligned}$$

and inequality follows.

Proposition 19. For $f : [0, +\infty) \to (0, +\infty)$ being a log *m*-convex function with $a, b \in I, 0 < a < b$, the following inequality holds

$$\begin{aligned} \frac{1}{b-a} \int_{a}^{b} f(x) f(a+b-x) dx &\leq \frac{1}{4 \log \left(\frac{f(a)}{f^{m}\left(\frac{b}{m}\right)}\right)} \left[f^{2}(a) - f^{2m}\left(\frac{b}{m}\right) \right] \\ &+ \frac{1}{4 \log \left(\frac{f(b)}{f^{m}\left(\frac{a}{m}\right)}\right)} \left[f^{2}(b) - f^{2m}\left(\frac{a}{m}\right) \right]. \end{aligned}$$

Proof.

as desired.

Proposition 20. If $G(x,y) = \sqrt{xy}$ with x and y positive and f, a, b as in foregoing result and 0 < m < 1 then

$$\int_0^1 G\left(f(ta+m(1-t)b), f(m(1-t)a+tb)\right) dt \le \frac{G(f^m(a), f^m(b))}{(1-m)\log G(f(a), f(b)))} \times [G(f^{1-m}(a), f^{1-m}(b)) - 1].$$

Proof. Because of the log *m*-convexity of *f* and for any $t \in [0, 1]$,

$$f(ta + m(1-t)b)f(m(1-t)a + tb) \le [f(a)]^{t+m(1-t)}[f(b)]^{t+m(1-t)},$$

hence

$$G(f(ta+m(1-t)b), f(m(1-t)a+tb)) \le G([f(a)]^{t+m(1-t)}, [f(b)]^{t+m(1-t)}).$$

Let us name $A = \int_0^1 G(f(ta + m(1-t)b), f(m(1-t)a + tb)) dt$, now by integrating in both sides of the late inequality we have

$$A \leq [f(a)f(b)]^{\frac{m}{2}} \int_{0}^{1} [f(a)f(b)]^{\frac{1-m}{2}t} dt$$

= $\frac{[f(a)f(b)]^{\frac{m}{2}}}{(1-m)\log(f(a)f(b))^{\frac{1}{2}}} [(f(a)f(b))^{\frac{1-m}{2}} - 1]$
= $\frac{G(f^{m}(a), f^{m}(b))}{(1-m)\log G(f(a), f(b)))} [G(f^{1-m}(a), f^{1-m}(b)) - 1].$

We need the following result from [3],

Lemma 21. Let $f : I \to (0, +\infty)$ be a differentiable function on the interior of I; $a, b \in I$ and a < b. If $f' \in L^1[a, b]$, then the following equality takes place

$$(x-a)f(a) + (b-x)f(b) - \int_{a}^{b} f(u)du = (x-a)^{2} \int_{0}^{1} (t-1)f'(tx+(1-t)a)dt + (b-x)^{2} \int_{0}^{1} (1-t)f'(tx+(1-t)b)dt.$$

Forthcoming result is inspired on one given in [6].

Theorem 22. If $f : I \to (0, +\infty)$, $0 \in I$, is a differentiable function in the interior of I, $a, b \in I$, a < b, f' integrable on [a, b] and |f'| is log *m*-convex function, the following inequality holds

$$(x-a)f(a) + (b-x)f(b) - \int_{a}^{b} f(u)du$$

$$\leq |f'(x)| \left[\frac{(x-a)^{2}}{A\log^{2}(A)} (A - \log(A) - 1) + \frac{(b-x)^{2}}{B\log^{2}(B)} (B - \log(B) - 1) \right],$$

where $A = \frac{|f'(x)|}{\left| f'\left(\frac{a}{m}\right) \right|^{m}}$, $B = \frac{|f'(x)|}{\left| f'\left(\frac{b}{m}\right) \right|^{m}}$ and any $x \in [a, b]$.

Proof. By mean of Lemma 21 (taking the modulus) and since |f'| is log *m*-convex function,

$$\begin{aligned} (x-a)f(a) + (b-x)f(b) &- \int_{a}^{b} f(u)du \\ &\leq (x-a)^{2} \int_{0}^{1} (1-t)|f'(tx+(1-t)a)|dt + (b-x)^{2} \int_{0}^{1} (1-t)|f'(tx+(1-t)b)|dt \\ &\leq (x-a)^{2} \int_{0}^{1} (1-t)|f'(x)|^{t} \left|f'\left(\frac{a}{m}\right)\right|^{m(1-t)} dt \\ &+ (b-x)^{2} \int_{0}^{1} (1-t)|f'(x)|^{t} \left|f'\left(\frac{b}{m}\right)\right|^{m(1-t)} dt \end{aligned}$$

$$= \frac{(x-a)^{2} \left| f'\left(\frac{a}{m}\right) \right|^{m}}{\log^{2} \left(\frac{|f'(x)|}{\left| f'\left(\frac{a}{m}\right) \right|^{m}} \right)} \left[\frac{|f'(x)|}{\left| f'\left(\frac{a}{m}\right) \right|^{m}} - \log \left(\frac{|f'(x)|}{\left| f'\left(\frac{a}{m}\right) \right|^{m}} \right) - 1 \right] \\ + \frac{(b-x)^{2} \left| f'\left(\frac{b}{m}\right) \right|^{m}}{\log^{2} \left(\frac{|f'(x)|}{\left| f'\left(\frac{b}{m}\right) \right|^{m}} \right)} \left[\frac{|f'(x)|}{\left| f'\left(\frac{b}{m}\right) \right|^{m}} - \log \left(\frac{|f'(x)|}{\left| f'\left(\frac{b}{m}\right) \right|^{m}} \right) - 1 \right],$$

proof concludes by noticing that $\left|f'\left(\frac{a}{m}\right)\right|^m = \frac{|f'(x)|}{A}$ and $\left|f'\left(\frac{b}{m}\right)\right|^m = \frac{|f'(x)|}{B}$.

References

- S. S. Dragomir, New inequalities of Hermite-Hadamard type for log-convex functions, Khayyam J. Math., vol. 3 2 (2017) 98–115.
- [2] S. S. Dragomir and B. Mond, Integral inequalities of Hermite-Hadamard type for log-convex functions, Demonstratio Mathematica, vol. XXXI 2 (1998) 355–364.
- [3] H. Kavurmaci, M. Avci and M. E. Özdemir, New inequalities of Hermite- Hadamards type for convex functions with applications, J. of Ineq. and App., (2011) 3–16.
- [4] T. Lara, E. Rosales and J. Sánchez, New Properties of m-Convex Functions, International Journal of Mathematical Analysis, vol. 9 15 (2015) 735–742.
- [5] T. Lara, N. Merentes, R. Quintero and E. Rosales, On strongly m-convex functions, Mathematica Aeterna, Vol. 5 3 (2015), 521-535.
- [6] T. Lara, N. Merentes, R. Quintero and E. Rosales, On inequalities of Fejér and Hermite-Hadamard types for strongly m-convex functions, Mathematica Aeterna, vol. 5 5 (2015) 777–793.
- [7] T. Lara, R. Quintero and E. Rosales, *m-Convexity and Functional Equations*, Moroccan J. of Pure and Appl. Anal. (MJPAA), DOI 10.1515/mjpaa-2017-0005, Volume 3(1), 2017, Pages 56-62 ISSN: 2351-8227.
- [8] T. Lara, N. Merentes, R. Quintero and E. Rosales, On the characterization of Jensen m-convex polynomials, Moroccan J. of Pure and Appl. Anal. (MJPAA) Volume 3(2), 2017, Pages 140-148 ISSN: Online 2351-8227 - Print 2605-6364 DOI 10.1515/mjpaa-2017-0012.
- [9] T. Lara, N. Merentes, Z. Páles, R. Quintero and E. Rosales, On m-Convexity on Real Linear Spaces, UPI Journal of Mathematics and Biostatistics 1(2), (2018), JMB8.
- [10] J. Park, Some Hermite-Hadamard-like type inequalities for logarithmically convex functions, Int. Journal of Math. Analysis, vol. 7 45 (2013) 2217–2233.
- [11] M. Z. Sarikaya, H. Yaldiz, On Hermite Hadamard-type inequalities for strongly log-convex functions, International Journal of Modern Mathematical Sciences, vol. 6 1 (2013) 1–8.
- [12] M. Tunç Some integral inequalities for logarithmically convex functions, Journal of the Egyptian Mathematical Society. 22,(2014), 177-181.