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Abstract. In this research we lay the concept of log m-convex functions defined on real intervals contain-
ing the origin, some algebraic properties are exhibit, in the same token discrete Jensen type inequalities and
integral inequalities are set and shown.
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1. Introduction

Logarithmically convex (log-convex) functions are of interest in many areas of mathematics and science. They
have been found to play an important role in the theory of special functions and mathematical statistics [10, 12].
In this paper we introduce the concept of log m-convex function as combination of the well known definitions
of m-convex and log-convex functions, some examples are shown. At the same time, we exhibit basic algebraic
properties of this new type of functions same as integral inequalities of Hermite-Hadamard type, we recall them
[4, 11, 12] and references therein.

Definition 1. ([1, 2, 12]) A function f : I → (0,+∞), I an interval, is said to be log-convex or multiplicatively
convex if log f is convex, or, equivalently, if for all x, y ∈ I and t ∈ [0, 1] one has the inequality:

f (tx + (1− t)y) ≤ [ f (x)]t[ f (y)]1−t. (1.1)

When we work on m-convexity, almost always, it is necessary to know the concept of m-convex set.

Definition 2. ([9])A subset D of a real linear space X is said to be m-convex if, for all x, y ∈ D and for all t in the
interval [0, 1], the point tx + m(1− t)y also belongs to D.
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In [9, Theorem 2.6] it was proved that a subset D ⊆ X containing 0 is m-convex if and only if conv
({

0, x, m
m+1 (x + y)

})
−

{0} ⊆ D for all x, y ∈ D, where conv denote the convex hull. From this result, is not hard to prove that if I is an
interval, such that 0 ∈ I, then I is an m-convex set. So, it has sense de following

Definition 3. ([4, 7]) A function f : I → R, I an interval and 0 ∈ I, is called m-convex, 0 ≤ m ≤ 1, if for any
x, y ∈ I and t ∈ [0, 1] we have

f (tx + m(1− t)y) ≤ t f (x) + m(1− t) f (y).

Our definition, and key part of this work, runs as follow.

Definition 4. A function f : I → (0,+∞), I an interval and 0 ∈ I, is called log m-convex, 0 ≤ m ≤ 1, if for all
x, y ∈ I and t ∈ [0, 1] one has

f (tx + m(1− t)y) ≤ [ f (x)]t[ f (y)]m(1−t). (1.2)

If m = 1, we recapture the concept of log-convex function defined on I, given in Definition 1.
Just as it is stated in Definition 1, some authors indifferently use the terms log-convex or multiplicatively

convex to define the functions which verify (1.1). Nevertheless, in our context, we consider the multiplicative
convexity as follows.

Definition 5. A function f : I → (0,+∞), I an interval and 0 ∈ I, is called multiplicatively m-convex, 0 ≤ m ≤ 1,
if for all x, y ∈ I and t ∈ [0, 1] one has

f
(

xt ym(1−t)
)
≤ [ f (x)]t[ f (y)]m(1−t). (1.3)

Remark 6. It is not difficult to verify that the log m-convexity of f is equivalent to the m-convexity of log f .

Remark 7. It is important to point out that (1.2) is equivalent to

f (mtx + (1− t)y) ≤ [ f (x)]mt [ f (y)](1−t) , (1.4)

with x, y and t as before.

From now on I always will be an interval containing zero unless other thing is stated.

Remark 8. The following properties of a log m-convex function f are a direct consequence of (1.2).
(1) f (my) ≤ [ f (y)]m, if t = 0 in (1.2).
(2) f (tx) ≤ [ f (x)]t, if m = 0 in (1.2).
(3) By taking x = y = 0 in (1.2), and m 6= 1, we have f (0) ≤ [ f (0)]t+m(1−t). So, log f (0) ≤ (t+m(1− t)) log f (0),

or log f (0)[1− (t + m(1− t))] ≤ 0. Since 1− (t + m(1− t)) ≥ 0, it follows that log f (0) ≤ 0. Therefore, if f
is log m-convex, necessarily f (0) ≤ 1. This fact, in turn, implies (by taking y = 0 in (1.2)) that f (tx) ≤ [ f (x)]t

holds for any m ∈ [0, 1). This property is the equivalent to be starshaped of the m-convex functions ([8]).

Example 1. The function f : I → (0,+∞), given as f (x) = ex, is log m-convex, but for m 6= 1, f is not an m-convex
function (since f (0) � 0, [6]). This fact shows a difference between log m-convexity and the usual log-convexity,
since log-convexity implies convexity ([12]), while the converse is not always true as this function indicates.

2. Basic Properties and Examples

It is well known that the sum of log-convex functions is also log-convex ([12]). However, the sum of log
m-convex functions is not necessarily log m-convex, as the next example shows.

Example 2. If f (x) = ex, then ( f + f )(x) = 2ex, and ( f + f )(0) = 2. Thus, by Remark 8, f + f is not a log
m-convex function.

Proposition 9. If f : I → (0,+∞) is a log m-convex function, and 0 ≤ α ≤ 1, then α f is log m-convex function as well.
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Proof. Let x, y ∈ I, and t, α ∈ [0, 1], and by the log m-convexity of f ,

(α f )(tx + m(1− t)y) ≤ α
(
[ f (x)]t[ f (y)]m(1−t)

)
.

On the other hand 0 ≤ α ≤ 1 and t + m(1− t) ≤ 1, hence αt+m(1−t) ≥ α. Indeed,

(α f )(tx + m(1− t)y) ≤ αt+m(1−t)
(
[ f (x)]t[ f (y)]m(1−t)

)
≤ [(α f )(x)]t[(α f )(y)]m(1−t).

Remark 10. If α > 1 in Proposition 9, the result is not true. Again, we consider the function f (x) = ex; then for α > 1,
(α f )(x) = αex > ex and consequently (α f )(0) > 1, so α f can not be a log m-convex function by Remark 8.

Proposition 11. If f , g : I → (0,+∞) are two log m-convex functions, so is the product function f g.

Proof. Let x, y ∈ I, and t ∈ [0, 1]. Then,

( f g)(tx + m(1− t)y) = f (tx + m(1− t)y) g(tx + m(1− t)y)

≤ [ f (x)]t[ f (y)]m(1−t)[g(x)]t[g(y)]m(1−t)

= [( f g)(x)]t[( f g)(y)]m(1−t).

Example 3. Once again, the exponential function, together with Remark 8, allow us to notice certain aspects
regarding the basic operations of log m-convex functions. This time to check that the composition of log m-
convex functions is not necessarily log m-convex. In fact, if f (x) = ex then ( f ◦ f )(0) = e > 1; hence f ◦ f is not
log m-convex. Nonetheless, we have the following result.

Proposition 12. Let f : I → (0,+∞) be a log m-convex function, and let g : J → (0,+∞) be a nondecreasing multiplica-
tively m-convex function, such that range( f ) ⊆ J, then g ◦ f : I → (0,+∞) is log m-convex too.

Proof. Let x, y ∈ I, and t ∈ [0, 1], then

g [ f (tx + m(1− t)y)] ≤ g
(
[ f (x)]t[ f (y)]m(1−t)

)
≤ [g( f (x))]t[g( f (y))]m(1−t).

Proposition 13. Let f : I → (0,+∞) be a function. Then
(1) If f is log m-convex, so is ( f )α for all α > 0.
(2) If ( f )α is an m-convex function for all α > 0, then f is a log m-convex.

Proof. (1) Follows directly from the m-convexity of log f and [4, Proposition 4].
(2) It is not difficult to show that if a real function g is m-convex, so is g− 1. In fact, for all x, y ∈ I and t ∈ [0, 1],

g(tx + m(1− t)y)− 1 ≤ tg(x) + m(1− t)g(y)− 1

= t(g(x)− 1) + m(1− t)(g(y)− 1)− (1− t)(1−m)

≤ t(g(x)− 1) + m(1− t)(g(y)− 1).

Thus, if for all α > 0, f α is m-convex, so is the function ( f )1/n − 1 for all n ∈ N. We have then the sequence
{n[( f )1/n − 1]} of m-convex functions, which converges pointwise to the function log f ; and from [5, Proposition
2.2], log f is m-convex function.

By picking m = 1 in Proposition 13, we have the following.

Corollary 14. Let f : I → (0,+∞). Then, ( f )α is convex for all α > 0 if and only if f is log-convex.
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We close this section with a couple of discrete Jensen type inequalities for log m-convex functions.

Theorem 15. Let t1, . . . , tn > 0 and Tn =
n

∑
i=1

ti. If f : [0,+∞) → (0,+∞) is a log m-convex function, with m ∈ (0, 1],

then

f

(
1

Tn

n

∑
i=1

tixi

)
≤

n

∏
i=1

[
f
( xi

mn−i

)]mn−i ti
Tn , for all x1, . . . , xn ∈ [0,+∞).

Proof. Because the function log f : [0,+∞) → R is m-convex (Remark 6), it follows from [5, Theorem 3.1], that
for all x1, . . . , xn∈ [0,+∞),

log f

(
1

Tn

n

∑
i=1

tixi

)
≤ 1

Tn

n

∑
i=1

mn−iti log f
( xi

mn−i

)
=

1
Tn

n

∑
i=1

log
[

f
( xi

mn−i

)]mn−iti

= log

 n

∏
i=1

[
f
( xi

mn−i

)]mn−i ti
Tn

 .

It only remains to apply the exponential function.

Theorem 16. If f : I → (0,+∞) is a log m-convex function, then for all t1, . . . , tn ≥ 0 with
n

∑
i=1

ti ∈ (0, 1] and all

x1, . . . , xn ∈ I, we have

f

(
n

∑
i=1

m1−δi1 tixi

)
≤

n

∏
i=1

[ f (xi)]
m1−δi1 ti , (2.1)

where δij is the well-known Delta of Kronecker function.

Proof. For m = 1, the result follows by applying the classical discrete Jensen’s inequality to the convex function
log f . For m 6= 1, the proof goes by induction on n. So, if n = 1, we have f (t1x1) ≤ [ f (x1)]

t1 which is true by
Remark 8.

Let us assume that the result holds for n.

Now, let x1, . . . , xn+1 ∈ I, and t1, . . . , tn+1 ≥ 0 with
n+1

∑
i=1

ti ∈ (0, 1]. First of all, if tn+1 = 1, then t1, . . . , tn = 0 and

hence,

f

(
n+1

∑
i=1

m1−δi1 tixi

)
= f (mxn+1)

≤ [ f (xn+1)]
m (by Remark 8)

=
n+1

∏
i=1

[ f (xi)]
m1−δi1 ti .

We assume that tn+1 6= 1, and we put

f

(
n+1

∑
i=1

m1−δi1 tixi

)
= f

(
(1− tn+1)

n

∑
i=1

m1−δi1 t′ixi + mtn+1xn+1

)
,

where t′i =
ti

1− tn+1
.
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Because I is m-convex and
n

∑
i=1

t′i ∈ (0, 1], it follows, from [9, Lemma 3.3], that
n

∑
i=1

m1−δi1 t′ixi ∈ I. Thus, by log

m-convexity of f , and in accordance with Remark 7, we have

f

(
(1− tn+1)

n

∑
i=1

m1−δi1 t′ixi + mtn+1xn+1

)
≤
[

f

(
n

∑
i=1

m1−δi1 t′ixi

)]1−tn+1

[ f (xn+1)]
mtn+1 .

Therefore, by inductive hypothesis,

f

(
n+1

∑
i=1

m1−δi1 tixi

)
≤
[

n

∏
i=1

[ f (xi)]
m1−δi1 t′i

]1−tn+1

[ f (xn+1)]
mtn+1

=
n

∏
i=1

[ f (xi)]
m1−δi1 ti [ f (xn+1)]

mtn+1

=
n+1

∏
i=1

[ f (xi)]
m1−δi1 ti .

3. Integral Inequalities

This last section is devoted to set and prove some integral inequalities, which together with the previous
results, show the importance of this topic laid in our research; that is, log m-convex functions defined on intervals
containing zero.

Proposition 17. Let f : I → (0,+∞) be a log m-convex function, 0 < m ≤ 1 and a, b ∈ I, 0 < a < b, then

1
a−mb

∫ a

mb
f (x)dx ≤ f (a)− [ f (b)]m

log f (a)− log[ f (b)]m
.

Proof.

1
a−mb

∫ a

mb
f (x)dx =

∫ 1

0
f (ta + m(1− t)b)dt

≤
∫ 1

0
[ f (a)]t[ f (b)]m(1−t)dt

= [ f (b)]m
∫ 1

0

[
f (a)

[ f (b)]m

]t
dt,

the conclusion is obtained by performing the above integral.

Proposition 18. Let f , g : I → (0,+∞) be log m-convex functions, a, b ∈ (0,+∞), a < b then

1
a−mb

∫ a

mb
f (x)g(x)dx ≤ f g(a)− [ f g(b)]m

log( f g(a))−m log( f g(b))
.

Proof.

1
a−mb

∫ a

mb
f (x)g(x)dx =

∫ 1

0
f (ta + m(1− t)b) g (ta + m(1− t)b) dt

≤
∫ 1

0
[ f g(a)]t[ f g(b)]m(1−t)dt (log m-convexity)

=
[ f g(b)]m

log( f g(a))−m log( f g(b))

[
f g(a)− [ f g(b)]m

[ f g(b)]m

]
and inequality follows.
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Proposition 19. For f : [0,+∞) → (0,+∞) being a log m-convex function with a, b ∈ I, 0 < a < b, the following
inequality holds

1
b− a

∫ b

a
f (x) f (a + b− x)dx ≤ 1

4 log

 f (a)

f m
(

b
m

)

[

f 2(a)− f 2m
(

b
m

)]

+
1

4 log

 f (b)

f m
( a

m

)

[

f 2(b)− f 2m
( a

m

)]
.

Proof.

1
b− a

∫ b

a
f (x) f (a + b− x)dx =

∫ 1

0
f (ta + (1− t)b) f ((1− t)a + tb) dt

=
∫ 1

0

[
f 2
(

ta + m(1− t)
(

b
m

))
× f 2

(
m(1− t)

( a
m

)
+ tb

)] 1
2 dt

≤ 1
2

∫ 1

0
f 2
(

ta + m(1− t)
(

b
m

))
dt

+
1
2

∫ 1

0
f 2
(

m(1− t)
( a

m

)
+ tb

)
dt

=

f 2m
(

b
m

)
2

∫ 1

0

 f (a)

f m
(

b
m

)


2t

dt

+
f 2m

( a
m

)
2

∫ 1

0

 f (b)

f m
( a

m

)
2t

dt

=
1

4 log

 f (a)

f m
(

b
m

)

[

f 2(a)− f 2m
(

b
m

)]

+
1

4 log

 f (b)

f m
( a

m

)

[

f 2(b)− f 2m
( a

m

)]

as desired.

Proposition 20. If G(x, y) =
√

xy with x and y positive and f , a, b as in foregoing result and 0 < m < 1 then∫ 1

0
G ( f (ta + m(1− t)b), f (m(1− t)a + tb)) dt ≤ G( f m(a), f m(b))

(1−m) log G( f (a), f (b)))

×[G( f 1−m(a), f 1−m(b))− 1].
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Proof. Because of the log m-convexity of f and for any t ∈ [0, 1],

f (ta + m(1− t)b) f (m(1− t)a + tb) ≤ [ f (a)]t+m(1−t)[ f (b)]t+m(1−t),

hence
G ( f (ta + m(1− t)b), f (m(1− t)a + tb)) ≤ G

(
[ f (a)]t+m(1−t), [ f (b)]t+m(1−t)

)
.

Let us name A =
∫ 1

0 G ( f (ta + m(1− t)b), f (m(1− t)a + tb)) dt, now by integrating in both sides of the late
inequality we have

A ≤ [ f (a) f (b)]
m
2

∫ 1

0
[ f (a) f (b)]

1−m
2 tdt

=
[ f (a) f (b)]

m
2

(1−m) log( f (a) f (b))
1
2
[( f (a) f (b))

1−m
2 − 1]

=
G( f m(a), f m(b))

(1−m) log G( f (a), f (b)))
[G( f 1−m(a), f 1−m(b))− 1].

We need the following result from [3],

Lemma 21. Let f : I → (0,+∞) be a differentiable function on the interior of I; a, b ∈ I and a < b. If f ′ ∈ L1[a, b], then
the following equality takes place

(x− a) f (a) + (b− x) f (b)−
∫ b

a
f (u)du = (x− a)2

∫ 1

0
(t− 1) f ′(tx + (1− t)a)dt

+ (b− x)2
∫ 1

0
(1− t) f ′(tx + (1− t)b)dt.

Forthcoming result is inspired on one given in [6].

Theorem 22. If f : I → (0,+∞), 0 ∈ I, is a differentiable function in the interior of I, a, b ∈ I, a < b, f ′ integrable on
[a, b] and | f ′| is log m-convex function, the following inequality holds

(x− a) f (a) + (b− x) f (b)−
∫ b

a
f (u)du

≤ | f ′(x)|
[

(x− a)2

A log2(A)
(A− log(A)− 1) +

(b− x)2

B log2(B)
(B− log(B)− 1)

]
,

where A =
| f ′(x)|∣∣∣ f ′ ( a

m

)∣∣∣m , B =
| f ′(x)|∣∣∣∣ f ′ ( b

m

)∣∣∣∣m and any x ∈ [a, b].

Proof. By mean of Lemma 21 (taking the modulus) and since | f ′| is log m-convex function,

(x− a) f (a) + (b− x) f (b)−
∫ b

a
f (u)du

≤ (x− a)2
∫ 1

0
(1− t)| f ′(tx + (1− t)a)|dt + (b− x)2

∫ 1

0
(1− t)| f ′(tx + (1− t)b)|dt

≤ (x− a)2
∫ 1

0
(1− t)| f ′(x)|t

∣∣∣ f ′ ( a
m

)∣∣∣m(1−t)
dt

+ (b− x)2
∫ 1

0
(1− t)| f ′(x)|t

∣∣∣∣ f ′ ( b
m

)∣∣∣∣m(1−t)
dt
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=
(x− a)2

∣∣∣ f ′ ( a
m

)∣∣∣m
log2

 | f ′(x)|∣∣∣ f ′ ( a
m

)∣∣∣m

 | f ′(x)|∣∣∣ f ′ ( a

m

)∣∣∣m − log

 | f ′(x)|∣∣∣ f ′ ( a
m

)∣∣∣m
− 1



+

(b− x)2
∣∣∣∣ f ′ ( b

m

)∣∣∣∣m

log2

 | f ′(x)|∣∣∣∣ f ′ ( b
m

)∣∣∣∣m


 | f ′(x)|∣∣∣∣ f ′ ( b
m

)∣∣∣∣m − log

 | f ′(x)|∣∣∣∣ f ′ ( b
m

)∣∣∣∣m
− 1

 ,

proof concludes by noticing that
∣∣∣ f ′ ( a

m

)∣∣∣m =
| f ′(x)|

A
and

∣∣∣∣ f ′ ( b
m

)∣∣∣∣m =
| f ′(x)|

B
.
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[3] H. Kavurmaci, M. Avci and M. E. Özdemir, New inequalities of Hermite- Hadamards type for convex functions
with applications, J. of Ineq. and App., (2011) 3–16.

[4] T. Lara, E. Rosales and J. Sánchez, New Properties of m-Convex Functions, International Journal of Mathematical
Analysis, vol. 9 15 (2015) 735–742.

[5] T. Lara, N. Merentes, R. Quintero and E. Rosales, On strongly m-convex functions, Mathematica Aeterna, Vol.
5 3 (2015), 521-535.

[6] T. Lara, N. Merentes, R. Quintero and E. Rosales, On inequalities of Fejér and Hermite-Hadamard types for
strongly m-convex functions, Mathematica Aeterna, vol. 5 5 (2015) 777–793.

[7] T. Lara, R. Quintero and E. Rosales, m-Convexity and Functional Equations, Moroccan J. of Pure and Appl.
Anal. (MJPAA), DOI 10.1515/mjpaa-2017-0005, Volume 3(1), 2017, Pages 56-62 ISSN: 2351-8227.

[8] T. Lara, N. Merentes, R. Quintero and E. Rosales, On the characterization of Jensen m-convex polynomials, Mo-
roccan J. of Pure and Appl. Anal. (MJPAA) Volume 3(2), 2017, Pages 140-148 ISSN: Online 2351-8227 - Print
2605-6364 DOI 10.1515/mjpaa-2017-0012.

[9] T. Lara, N. Merentes, Z. Páles, R. Quintero and E. Rosales, On m-Convexity on Real Linear Spaces, UPI Journal
of Mathematics and Biostatistics 1(2), (2018), JMB8.

[10] J. Park, Some Hermite-Hadamard-like type inequalities for logarithmically convex functions, Int. Journal of Math.
Analysis, vol. 7 45 (2013) 2217–2233.

[11] M. Z. Sarikaya, H. Yaldiz, On Hermite Hadamard-type inequalities for strongly log-convex functions, International
Journal of Modern Mathematical Sciences, vol. 6 1 (2013) 1–8.
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