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A non-probability sampling mechanism arising from nonresponse or non-selection is likely to
bias estimates of parameters with respect to a target population of interest. This bias poses a
unique challenge when selection is ‘non-ignorable’, that is, dependent on the unobserved
outcome of interest, since it is then undetectable and thus cannot be ameliorated. We extend a
simulation study by Nishimura et al. (2016) adding two recently published statistics: the
‘standardized measure of unadjusted bias’ (SMUB) and ‘standardized measure of adjusted
bias’ (SMAB), which explicitly quantify the extent of bias (in the case of SMUB) or
nonignorable bias (in the case of SMAB) under the assumption that a specified amount of non-
ignorable selection exists. Our findings suggest that this new sensitivity diagnostic is more
correlated with, and more predictive of, the true, unknown extent of selection bias than other
diagnostics, even when the underlying assumed level of non-ignorability is incorrect.

Key words: Non-ignorable selection bias; survey nonresponse; multiple imputation; pattern
mixture model.

1. Introduction

Classical methods of scientific probability sampling and corresponding design-based

frameworks for making statistical inferences about populations have long been used to

advance scientific knowledge in various fields. The random selection of elements from a

population of interest into a probability sample, where all population elements have a

known non-zero probability of selection, ensures that elements included in the sample

mirror the population in expectation. That is, for all variables of interest, the mechanism of

selection of a subset of elements into the sample is ignorable, following the theoretical

framework for missing-data mechanisms originally introduced by Rubin (1976).

The modern survey research environment poses significant challenges to these “tried

and true” methodologies: it has become increasingly difficult to contact sampled units,

survey response rates continue to decline in all modes of administration (face-to-face,

telephone, and so on; Brick and Williams 2013; Williams and Brick 2018), and the costs of

q Statistics Sweden

1 University of Michigan, Department of Biostatistics, 1415 Washington Heights, Ann Arbor, MI 48109-2029,
Michigan, 48105, U.S.A. Emails: philb@umich.edu, and rlittle@umich.edu
2 University of Michigan, Institute for Social Research, Survey Methodology Program, 426 Thompson Street,
Ann Arbor, Michigan 48106, U.S.A. Email: bwest@umich.edu
3 The Ohio State University, 1841 Neil Avenue, 242 Cunz Hall, Columbus, Ohio 43210, U.S.A. Email: andridge.
1@osu.edu
4 University of Michigan, Survey Methodology Progam, 4134 ISR-Thompson 426 Thompson St Ann Arbor,
Michigan, U.S.A. Email: mleiton@umich.edu
Acknowledgments: This work was supported by an R21 grant from the National Institutes of Health
(1R21HD090366-01A1). The authors thank Dr. Raphael Nishimura for sharing R scripts to calculate the Fraction
of Missing Information and Mr. Chen Chen for his initial work on this simulation study.

Journal of Official Statistics, Vol. 37, No. 3, 2021, pp. 751–769, http://dx.doi.org/10.2478/JOS-2021-0033

http://dx.doi.org/10.2478/JOS-2021-0033


collecting and maintaining scientific probability samples are steadily rising (Presser and

McCulloch 2011). These problems raise the question of whether, and to what extent,

samples can still produce reliable estimates when only a small fraction has responded,

such that the response mechanism may in fact not be ignorable?

Given the difficulties of collecting data from probability samples, researchers are also

turning to non-probability samples, which have the potential to yield large amounts of data

at low cost. These may also be prone to non-ignorable selection bias, as the researcher no

longer has control over the mechanism that ultimately yields the final sample. Given this

trend in research methodology, indicators of the potential non-ignorable selection bias in

non-probability samples and probability samples with low response rates are required.

Nishimura et al. (2016) investigated the suitability of various statistics for use as

diagnostics for selection bias due to nonresponse mechanisms, of both the ‘ignorable’ or

‘non-ignorable’ type (Rubin 1976). They noted that none of the diagnostics they

considered were intended to directly quantify selection bias. Moreover, their simulation

study found that none of them were suitable as potential diagnostics, leaving the door open

for other candidates. A statistic recently proposed in Little et al. (2020) explicitly estimates

this bias based on an assumed level of non-ignorability and therefore is potentially

appropriate for use as a diagnostic. The primary contribution of this article is the inclusion

of this statistic in this comparison of diagnostics. We also extend Nishimura et al. (2016)

by simulating two auxiliary variables that are differentially associated with the survey

variable and selection, which we argue is an important additional factor when evaluating

the diagnostics.

The remainder of this article is organized as follows. Section 2 presents notation and a

brief description of the index of selection bias proposed in Little et al. (2020). Section 3

describes the other diagnostics we consider here, which were also evaluated in Nishimura

et al. (2016). An important contextual difference between this article and that of

Nishimura et al. is that we consider the generic non-selection scenario, of which survey

nonresponse – the scenario of interest in Nishimura et al. – is a special case. The practical

implication of this difference is that those indices that are dependent upon selection

probabilities may not be calculable if they cannot be estimated. Sections 4 and 5 describe

and present the results from the simulation study, respectively. Section 6 concludes with a

discussion of all of the diagnostics considered in light of our results.

2. An Index of Selection Bias

For a target population of size N, with i ¼ 1; : : : ;N; let Si [ {0; 1} indicate the selection

of the ith subject into the sample, Yi be the continuous outcome of interest, and Zi be an

observed auxiliary variable that is relevant due to its association with Yi. The vectors

S ¼ {S1; : : : ; SN} and Z ¼ {Z1; : : : ; ZN} are fully observed, and the vector Y ¼

{Y1; : : : ; YN} is separated into selected (observed) and unselected (missing) sub-vectors,

respectively: Y sel ¼ {Yi : Si ¼ 1} and Yunsel ¼ {Yi : Si ¼ 0}: When needed, we will also

use this same convention to separate Z into selected and unselected subvectors, Zsel and

Zunsel, although in contrast to Y both subvectors of Z are always assumed to be fully

observed. The primary estimand of interest is the average outcome in the target

population: E½Yi� ¼ my.
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Two forms of models for the joint distribution of {Y, Z, S} are often considered.

Selection models (Little and Rubin 2002) factorize the joint distribution as

½Y; Z; Sja;b� ¼ ½Y ; Zja� Pr ðSjY; Z;bÞ ð1Þ

with parameters {a, b}, where a and/or b may themselves be vectors. A model for

PrðSjY ; Z;bÞ describes the missingness mechanism for Yunsel, since Yi is not observed

when Si ¼ 0: Thus, the strongest possible assumption to make regarding PrðSjY; Z;bÞ is

that S and {Y ; Z} are jointly independent. Modifying the ‘missing completely at random’

terminology of Little and Rubin (2002), we call this ‘selection completely at random’

(SCAR). In this case b corresponds to the average selection rate. A weaker assumption is

‘selection at random’ (SAR), which assumes that S and Y are conditionally independent

given Z. The weakest assumption is ‘selection not at random’ (SNAR), and elements of

both a and b are not identified in this case.

The second decomposition is the class of ‘pattern-mixture models’ (Andridge and Little

2011; Little 1994), which describe outcome models that are specific to the selected and

unselected populations:

½Y ; Z; Sjuunsel; usel;p� ¼ ½Y; ZjS; uunsel; usel� Pr ðSjpÞ

¼ ½Yunsel; Zunseljuunsel�½Y sel; Zseljusel� Pr ðSjpÞ; ð2Þ

with parameters {uunsel; usel;p}, where uunsel and usel may be vectors and p is a scalar equal

to the probability of selection. Both the selection and pattern-mixture decompositions are

statistically valid, and in the special case of a SCAR mechanism, the models coincide,

meaning that uunsel ¼ usel ; u and {u;p} and {a;b} share a 1-1 correspondence (Little

1994). Further, all parameters become identified in this special case. However, Equations

(1) and (2) will not generally coincide under SAR for any distributional choices. Although

the decomposition in Equation (1) is more intuitive by directly capturing the data-

generating mechanism, the usefulness in focusing on Equation (2) is that the non-identified

parameters are isolated to a single submodel: ½Yunsel; Zunseljuunsel�: In the pattern-mixture

framework, the estimand of interest, my, is equal to pE½Yseljusel� þ ð1 2 pÞE½Yunseljuunsel�:

The latter mean, E[Yunseljuunsel], is not identified without making further assumptions.

Specifically, for the factorization in Equation (2), assume that ½Zsel; Yseljusel� and ½Zunsel;

Yunseljuunsel� are both bivariate normal, with usel and uunsel each denoting five parameters

(two means, two variances, and a covariance). Additionally, assume that the marginal

distribution PrðSjpÞ is coherent with some true conditional distribution of S given Z and Y

that takes the form

Pr ðS ¼ 1jY ; Z;fÞ ¼ gðfY þ ð1 2 fÞZÞ; ð3Þ

for some invertible function g(t) having range in the interval ð0; 1Þ but otherwise

unspecified, and for some scalar parameter f [ ½0; 1�: The population mean my becomes

identified under these assumptions (Little 1994) and Andridge and Little (2011) derived a

maximum likelihood estimate (MLE) of my as a function of f, given by

m̂yðfÞ ¼ �ysel þ
fþ ð1 2 fÞrsel

frsel þ ð1 2 fÞ

ffiffiffiffiffiffiffiffi

ŝ2
ysel

ŝ2
zsel

v

u

u

t ð�zsel 2 �zÞ ð4Þ
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(these authors actually used the alternative parameterization c ¼ f/(1 2 f)). Here, �ysel,

�zsel, and �z are the sample means of Ysel, Zsel, and Z, respectively; rsel is the sample Pearson

correlation between Ysel and Zsel; and ŝ2
ysel

and ŝ2
zsel

are the sample variances of Ysel and

Zsel, respectively. For f ¼ 0, i.e., when selection depends on Z alone, this estimator

reduces to the regression estimator obtained from regressing Y on Z for the selected cases

(Andridge and Little 2011).

Remark 1: Little et al. (2020) show that the Estimator (4) remains unbiased for its

estimand under a more general class of functions than that given in Equation (3), namely

Pr ðS ¼ 1jY ; Z;W ;fÞ ¼ gðfY þ ð1 2 fÞZ;WÞ; ð5Þ

where W is uncorrelated with Z. This generalization will be important for explaining a key

result in our simulation study.

This estimate of my in Equation (4) is a function of the parameter f, which in turn

controls the extent to which sampling depends on the outcome Y, with larger values

indicating greater dependence. When f ¼ 0, the selection mechanism is SAR, and the

resulting statistic is closely related to the measure H1 in Särndal and Lundström (2010).

When f . 0, the sampling mechanism is ‘non-ignorable’ (Rubin 1976), meaning that the

sampled population cannot yield unbiased estimates of the target population parameter

without knowledge of the true value of f (Little et al. 2019). However, in any non-

probability sample, f is, by definition, not estimable, and Little et al. propose varying this

parameter in a sensitivity analysis. Subtracting �ysel from both sides of Equation (4) and

scaling by
ffiffiffiffiffiffiffiffi

ŝ2
ysel

q

to standardize the resulting difference, we obtain a direct estimate of the

standardized bias that would arise in using �ysel to estimate my for a particular true value of

f. The resulting expression is the recently proposed Standardized Measure of Unadjusted

Bias (SMUB) (Little et al. 2020):

SMUBðfÞ ;
m̂yðfÞ2 �ysel

ffiffiffiffiffiffiffiffi

ŝ2
ysel

q ¼
fþ ð1 2 fÞrsel

frsel þ ð1 2 fÞ

ð�zsel 2 �zÞ
ffiffiffiffiffiffiffiffi

ŝ2
zsel

q : ð6Þ

This measure quantifies the sensitivity of estimates based upon the selected sample due to

increasing levels of non-ignorability, represented by the value of f. As discussed in Little

et al. (2020), in addition to a small value of the non-ignorability parameter f decreasing

the standardized bias, other characteristics that tend to do so include having an auxiliary

variable that is a strong correlate for the outcome, that is, rsel is close to 1, and/or obtaining

a large sampled fraction, since �zsel 2 �z ¼ ð1 2 pÞð�zsel 2 �zunselÞ, where p is the selection

probability in Equation (2).

Little et al. (2020) also proposed a Standardized Measure of Adjusted Bias (SMAB),

defined as

SMABðfÞ ; SMUBðfÞ2 SMUBð0Þ ¼
fð1 2 rselÞ

2

frsel þ ð1 2 fÞ

ð�zsel 2 �zÞ
ffiffiffiffiffiffiffiffi

ŝ2
zsel

q : ð7Þ

Whereas SMUB measures the summative bias arising from both ignorable and non-

ignorable mechanisms, SMAB measures only the excess bias after adjusting for ignorable

Journal of Official Statistics754



bias. As Little et al. (2020) caution, its utility is predicated on the underlying assumptions

of the normal pattern-mixture model.

The simulation study in Nishimura et al. (2016, 43), prior to the proposal of the

estimator in Equation (6), found that “none of the indicators [evaluated] fully depict the

impact of nonresponse in survey estimates.” We consider here whether the SMUB or

SMAB indices address this deficiency. Note that Equation (6) is based on a normal pattern-

mixture model, and as such is less well suited to non-normal outcomes. Modifications of

Equation (6) for a categorical outcomes are discussed in Andridge and Little (2020) but are

not considered in this article.

3. Other Diagnostics Evaluated

Nishimura et al. (2016) grouped the diagnostics they compared based on whether {S, Z} or

{S, Ysel, Z} are required to calculate them. Except for the sample mean of the selection

indicator, these other diagnostics require at least some individual-level data from the non-

sampled population (or some other means of accurately assessing the selection

propensity). This situation is exceedingly rare in practice and makes these diagnostics

difficult, if not impossible, to compute for non-probability samples. It also provides

motivation for the additional diagnostic measures we evaluate in this article, which do not

have this same requirement. We return to this important limitation in the Discussion

(Section 6).

The simplest diagnostic is �s, that is, the sample mean of the selection indicator, or the

selection rate. Small values of �s increase the upper bound for potential bias due to non-

ignorable sampling since a larger fraction of the data are missing (Nishimura et al. 2016)

but do not necessarily indicate greater selection bias, for example Bootsma-van der Wiel

et al. (2002). Since our focus is on how well measures reflect bias characteristics beyond

the selection rate, we choose to include the selection rate as a design factor in our

simulation study, rather than as a diagnostic for bias. In this section, we provide a brief

rationale for the use of each of these diagnostics in the non-probability sampling setting;

Nishimura et al. provide additional justification for each diagnostic in the special case of

nonresponse conditional on being sampled.

3.1. Diagnostics Using {S, Z}

This category characterizes the associations between the fully observed auxiliary variable

Z and the selection indicator S. The underlying rationale for doing so is that a selection rate

dependent upon Z, which is itself a surrogate for Y, is suggestive of a selection rate

dependent upon Y, that is, selection bias. Nishimura et al. (2016) consider three measures

of this type, which are described below.

Consider first the selection model conditioning on Z alone:

Pr ðS ¼ 1jZ; g0; gzÞ ¼ logit21ðg0 þ gzZÞ. This is fit to the data {S, Z} from both the

selected and unselected populations. Let the fitted probability, or propensity, of selection

for the ith observation be given by

hi ; logit21ðĝ0 þ ĝzZiÞ: ð8Þ
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The R-indicator (Schouten et al. 2009), where R stands for ‘representativity’, is the

following linear transformation of the sample standard deviation of hi across both the

selected and un-selected samples:

R̂ ¼ 1 2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N 2 1

X

N

i¼1

hi 2
X

N

j¼1

hj=N

 !2

:

v

u

u

t

Schouten proposed the R-indicator in the context of response propensities, and thus it is

computed across all elements in the population and requires data sufficient to estimate the

response/selection propensities hi.

R̂ theoretically ranges from 0 to 1, where smaller values correspond to greater

variability in the selection propensities and, consequently, greater potential for selection

bias. However, the smallest possible value of R̂ ¼ 0, that is, when the sample standard

deviation of the hi’s is 0.5, occurs only under two strong conditions. First, the average

fitted selection propensity,
PN

j¼1hj=N, must be 0.5. Second, each individual propensity

must either be hi ¼ 1 or hi ¼ 0, that is, S can be completely separated by Z, in the sense of

Albert and Anderson (1984). In practice, R̂ generally ranges between 0.5 and 1.

The coefficient of variation of the selection propensities is the ratio of the same standard

deviation used in the R-indicator and the mean selection propensity:

CVS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N 2 1

XN

i¼1
hi 2

XN

j¼1
hj=N

� �2
r

XN

j¼1
hj=N

:

The theoretical range of CVS is the set of non-negative numbers. The rationale for using the

coefficient of variation is that both variability in selection probabilities (the numerator) and

smaller selection rates (the denominator) contribute to the potential for selection bias. As

with the other indices, however, the challenge is that this relationship does not always hold,

nor is the converse true: selection bias may exist even in the presence of a “small” CVS.

Highly variable non-selection weights may also indicate greater potential for selection

bias, depending on the extent to which the variables used to create the non-selection

weights are associated with the outcome of interest. Thus, the variability in non-selection

weights focuses on the inverse of the estimated selection probabilities, 1/hi. Nishimura

et al. (2016) consider the sample variance of 1/hi evaluated in the selected sample:

Varðh21Þ ¼
1

ðN�sÞ2 1 i:Si¼1

X

1=hi 2
j:Sj¼1

X

1=hj

2

4

3

5=½N�s�

0

@

1

A

2

:

Two other approaches limited to these same data assess the overall performance of the

selection model Pr ðS ¼ 1jZ; g0;gzÞ ¼ logit21ðg0 þ gzZÞ in distinguishing between

selected and non-selected observations. One is the ‘Area Under the receiver-operating

characteristic Curve’ (AUC), an assessment of discriminatory ability. The corresponding

estimate counts the proportion of all possible selected-unselected pairs, the selection
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propensities of which are correctly ordered:

AÛC ¼

XX

i;j:si¼1;sj¼01½hi.hj�
XX

i;j:si¼1;sj¼0

:

The pseudo-R 2 seeks to generalize the linear model’s R 2 metric, or proportion of variation

explained, to a logistic framework (Nagelkerke et al. 1991). It is given by

psR2 ¼

1 2
�s ðN�sÞ½1 2 �s�ðN½12�s�Þ

XN

i¼1
hSi

i ½1 2 hi�
12Si

0

@

1

A

2=N

1 2 �s ðN�sÞ½1 2 �s�ðN½12�s�Þ
� �2=N

:

Both AÛC and psR 2 quantify the strength of the model used to create the selection

propensities. A better (stronger) relationship between auxiliary variables and selection

could indicate a higher risk for selection bias, depending on the strength of the relationship

between the auxiliary variables and the outcome of interest.

3.2. Diagnostics Using {S, Ysel, Z}

The two diagnostics in this section make use of all available data and are therefore

potentially more sensitive to detecting selection bias. The first is the Pearson correlation

between the outcome Y and the inverse of the selection propensity h:

CorðY sel;h
21Þ ¼

X

i:Si¼1 1=hi 2
X

j:Sj¼11=hj

h i

=½N�s�
� �

Yi 2
X

j:Sj¼1Yi

h i

=½N�s�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i:Si¼1 1=hi 2
X

j:Sj¼11=hj

h i

=½N�s�
� �2X

i:Si¼1 Yi 2
X

j:Sj¼1
Yi

h i

=½N�s�
� �2

r :

This correlation serves as a measure of the association between the survey variable and the

set of auxiliary variables used to create the selection propensities. The stronger this

relationship, the more potential there is to adjust for selection bias.

The second diagnostic is called the ‘Fraction of Missing Information’ (FMI), a statistic

borrowed from the literature on multiple imputation (Rubin 2004). Given a posited model

for the conditional distribution of the outcome Y given the auxiliary variable Z fit to the

observed data {Ysel, Zsel}, M sets of unselected outcomes, denoted by Y ðmÞunsel are imputed.

Each of the M completed data sets, {Y sel; Y
ðmÞ
unsel} are used to construct estimates of my, say,

m̂ðmÞy , m ¼ 1, : : : , M. After some simplification, the FMI statistic can be written as

FMIðmyÞ ¼
M þ 1

M 2 1

� �

XM

m21
m̂ðmÞy 2

1

M

XM

m 0¼1
m̂ðm

0Þ
y

� �2

XM

m¼1
Var m̂ðmÞy

� �

þ
XM

m¼1
m̂ðmÞy 2

1

M

XM

m 0¼1
m̂ðm

0Þ
y

� �2

0

B

B

B

@

1

C

C

C

A

:
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There are three contributing elements to this expression. The first element,
PM

m¼1 m̂ðmÞy 2 1
M

PM
m 0¼1m̂

ðm 0Þ
y

� �2

, appears in both the numerator and denominator and is

the sum of the squared deviations between each imputation-specific estimate and the

overall mean. It is proportional to the “between-imputation variance”, capturing

uncertainty in the estimate across replications of the imputation procedure. The second

element,
PM

m¼1Var m̂ðmÞy

� �

, is only in the denominator and is the sum of each imputation-

specific variance estimate of m̂ðmÞy . This is proportional to the “within-imputation

variance”, and the sum of the between- and within-imputation variances is thus the total

variance. The third element, (M þ 1)/(M 2 1) . 1, multiplicatively inflates the between-

over-total fraction and captures the loss of information due to taking a finite number of

imputations. It approaches 1 from above as M is increased. Ranging between 0 and 1,

larger values of FMI indicates greater uncertainty about the imputed values (larger

between-imputation variance), which could indicate a greater potential for selection bias.

4. Simulation Study: Description

The purpose of this simulation study is to characterize the association between the true

bias in a sampled data set (only observable in a simulation framework) and each of the

aforementioned candidate diagnostics, including the new SMUB and SMAB diagnostics

from Little et al. (2020). The data were generated according to the ‘selection model’

decomposition described in Equation (1). However, recognizing that, in practice, there

may be more than one auxiliary variable having different associations with selection and

the survey variable, we used two auxiliary variables, X1 and X2, in place of Z. In truth, S

and X1 are conditionally independent given X2 and Y, and, similarly, Y and X2 are

conditionally independent given X1.

Remark 2: Nishimura et al. (2016) also use two auxiliary variables but for different

purposes. One of their auxiliary variables is latent and used only to control the extent of

response/selection not-at-random, whereas we are simulating non-response directly (see

Remark 3 below). These approaches are distributionally equivalent. Nishimura’s other

variable is an observed explanatory variable that is assumed to correlate with both the

response/selection indicator and the outcome and thus serves the role of our two joint

auxiliary variables, X1 and X2.

In more detail, at each iteration, a finite population of size N ¼ 104 was simulated,

wherein each observation consisted of the random vector {Y ;X1;X2; S} drawn from the

true models in the second column in Table 1. X1 and X2 are bivariate normal with mean 0,

variance 1, and correlation k. When X1 and X2 are not identically equal, that is, k , 1, both

Table 1. Description of generating models used in the simulation study in Section 4. Five

parameters fully specify the generating distribution of the data: k, r, b0, bx, and by.

Variable Generating model

Auxiliary ½X1;X2jk� ¼ N2

0

0

 !

;
1 k

k 1

 ! !

Outcome ½YijX1; r� ¼ N rX1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 r2
p

� �

Selection Pr S ¼ 1jY;X2;b0;by;bx

� �

¼ logit21 b0 þ byY þ bxX2

� �
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X1 and X2 are conditioned on in fitting the outcome and selection models, to emulate what

would be done in practice. The scalar parameter r is the Pearson correlation between Y and

X1, that is, ½YjX1; r� ¼ N rX1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 r2
p

� �

; Y and X2 are conditionally independent given

X1. Finally, the selection probability is controlled by parameters b0, bx, and by in a logistic

framework, with Pr S ¼ 1jY ;X2;b0;by;bx

� �

¼ logit21 b0 þ byY þ bxX2

� �

. In total, there

are five parameters governing this distribution: k, r, b0, bx, and by.

Remark 3: An equivalent model for inducing correlation between S and Y would be

achieved by the introduction of a latent variable into the generating distribution of each, as

in Heckman (1979), where S ¼ 1 if the latent variable crosses some threshold.

We considered k [ {0; 0:5; 1};with the last scenario corresponding to X1 ; X2 ; Z; in

which case we are in the ‘single auxiliary variable’ scenario, and one would not condition

on both X1 and X2. The correlation between the outcome Y and its best predictor X1 was

r [ {0:10; 0:25; 0:75}: Values of bx and by, the log-odds ratios for selection, were taken

from one of the scenarios listed in Table 2. The first row, for which bx ¼ by ¼ 0;

corresponds to a SCAR mechanism. The second row, for which bx [ {0:1; 0:2; 0:3; 0:4;

0:5} and by ¼ 0; corresponds to five different SAR mechanisms. The remaining rows in

the table, for which by – 0 and jbxj þ jbyj ; c [ {0:1; 0:2; 0:3; 0:4; 0:5}; all correspond

to different SNAR mechanisms, ranging from mild non-ignorability (third row:

{bx;by} ¼ {3c=4; c=4}Þ to extreme non-ignorability (sixth row: {bx;by} ¼ {0; c}Þ in

which selection depends entirely on Y. In total, Table 2 gives 31 unique sets of bx and by.

Under this generating model, the assumption in Equation (5) holds for any k [ ½0; 1�: To

see this, express X2 as X2 ¼ kX1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 k21
p

, where 1 , Nð0; 1Þ is independent of X1 and Y.

Substituting this result into the selection model, we rewrite the selection probability as

Pr ðS ¼ 1jY ;X2Þ ¼ Pr ðS ¼ 1jY ;X1; 1Þ

¼ logit21 b0 þ byY þ bx kX1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 k2
p

1
h i� �

¼ logit21 b0 þ byY þ kbxX1 þ bx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 k2
p

1
� �

:

Table 2. Values of ftrue for the pair of log-odds ratios in the true selection mechanism of

the simulation study grouped by the relative relationship of bX to by, where, except for the

first row, jbxj þ jbyj ; c [ {0:1; 0:2; 0:3; 0:4; 0:5}: The implied true value of the non-

ignorability parameter f is calculated by the expression ftrue ¼ by=ðkbx þ byÞ:

Label fbx;byg ftrue

k ¼ 1 k ¼ 0.5 k ¼ 0

SCAR {0, 0} 0* 0* 0*
SAR {c, 0} 0 0 0
3X2 þ Y {3c/4, c/4} 0.25 0.4 1
X2 þ Y {c/2, c/2} 0.5 0.66 1
X2 þ 3Y {c/4, 3c/4} 0.75 0.86 1
Y {0, c} 1 1 1
X2–Y {c/2, 2 c/2} –† –† 1
*Mathematically, ftrue is undefined when bx ¼ by ¼ 0; but we use 0 here to indicate that

this is an ignorable sampling mechanism. †There is no value of ftrue [ ½0; 1� satisfying the

assumptions required for the SMUB indices when bx or by are negative and k . 0:
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Now, letting (i) gðt1; t2Þ ¼ logit21ðb0 þ ½kbx þ by�t1 þ t2Þ, (ii) f ¼ by=ðkbx þ byÞ,

(iii) Z ¼ X1; and (iv) W ¼ bx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 k21
p

=ðkbx þ byÞ, the relaxed assumption (5) is

satisfied for any k [ ½0; 1�: In contrast, the more restrictive assumption (3) is only satisfied

for k ¼ 1; that is, W ; 0: Under k ¼ 1, the third column in Table 2 gives the implied true

value of f, which is common to all {bx, by} pairs in each row and which we denote as ftrue

to distinguish it from the closely related tuning parameter f used by SMUB. The last two

columns give the value of ftrue for k ¼ 0.5 and k ¼ 0, respectively. In the last row of

Table 2, for which bx . 0 and by , 0, there is no value of ftrue [ [0,1] satisfying

Equation (5) except for the case that k ¼ 0, and this is noted as such in the table.

With regard to the intercept b0, we did not directly set its value but rather fixed a desired

overall selection probability Pr(S ¼ 1) ¼ 0.05 (marginally over all other random

variables), which, when set equal to EY ;X2
½logit21ðb0 þ bxX2 þ byYÞ�, can then be

numerically solved for b0. Our choice of a 5% selection rate is a fairly large selection rate

for non-probability samples.

Two of the diagnostics have input values that the user must select. For SMUB, we

inspected three choices of the non-ignorability tuning parameter in Equation (6): f [

{0; 0:5; 1:0}: When f is close to the unknown ftrue, the SMUB statistic will estimate well

the unadjusted bias, as defined below. For SMAB, we used f [ {0:5; 1:0}; since

SMAB(f ¼ 0) is always equal to 0. As with SMUB, when f is close to the unknown ftrue,

the SMAB statistic will be close to its estimand, namely adjusted bias. For FMI, we

estimate my by imputing M ¼ 30 vectors of the unselected outcomes Yunsel conditional on

the auxiliary variables X1 and X2 within a Bayesian linear regression model framework.

For each of the 3 £ 3 £ 31 ¼ 279 combinations of r, k, and {bx;by} pairs taken from

Table 2, we simulated 2,000 independent populations of size 104 and, from each, sampled

a data set according to the corresponding parameters. The available data were always

{S;X1;X2;Y sel}; although not all diagnostics make use of all data, as noted in the previous

sections. For those diagnostics depending on the sampling probability h, we regressed S

against the auxiliary covariates X1 and X2 in the entire population data.

To assess performance, we calculated for each data set the ‘standardized error measure’

(SEM) in using �ysel to estimate my, which is given by

SEM ¼
�ysel 2 my

sy

: ð9Þ

In words, this is the difference between the empiric mean of the outcome in the selected

observations and the target population mean, divided by the true standard deviation of the

outcome. We plot the median value of SEM against the median value of each diagnostic to

visualize the systematic relationship between these two quantities. A diagnostic that is

sensitive to selection bias should be associated with SEM, and both the qualitative and

quantitative nature of this association should be similar for all types of selection mechanisms,

that is, values offtrue. Also important is the pairwise relationship due to sampling variability,

or “chance bias”. To that end, we also calculate the Spearman correlation between the value

of SEM and each diagnostic across all 2,000 data sets from each scenario.

Because calibration is often used in practice to adjust for the potential selection bias in

non-probability samples, we also calculated a secondary error measure using a calibrated

estimator of the average outcome. Specifically, we separately categorized X1 and X2 into
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groups defined by the marginal quartiles in the population data, yielding 16 bivariate

categories, and then weighted each observation in the sampled data by the ratio of its

corresponding category’s relative frequency in the population data versus its relative

frequency in the sampled data. The calibrated estimator is the weighted mean of the

outcome in the sampled data, denoted by �ycal
sel . Then, the ‘standardized adjusted error

measure (SAEM)’ is defined as

SAEM ¼
�ycal

sel 2 my

sy

: ð10Þ

Results corresponding to SEM are given in the main text, and those corresponding to

SAEM are in the Online Supplemental Material. All analyses were conducted in the R

statistical environment (R Core Team 2018; Van Buuren and Groothuis-Oudshoorn 2011;

Wickham 2017). Code for the simulation study is available here: https://github.com/

bradytwest/IndicesOfNISB/tree/master/SelectionBiasDiagnostics.

5. Simulation Study: Results

Figures 1, 2, and 3 plot the relationship between the median value of SEM across 2,000

simulated data sets from a given scenario against the median of each diagnostic, separately

for k ¼ 1, 0.5, and 0, respectively. Figures S1, S2, and S3 in the Online Supplemental

Material give these analogous results using the alternative metric SAEM.

Points in which the underlying selection mechanism share their row in Table 2 in

common are connected. Generally speaking, a diagnostic is good at detecting bias if its

value (on the x-axis) changes at a similar rate with the observed bias (on the y-axis) across

all of the different selection mechanisms, that is, each plotted segment has a similar sized

slope. It is useful for estimating bias if its value changes at the same rate as the observed

bias across the selection mechanisms, that is, each plotted segment is close to the line

y ¼ x (which is given by a solid black line but is not visible in all panels due to the scale of

each diagnostic). There is no information in the data to determine the extent to which

selection depends on Y, as represented by the different lines in the figures. If, for a single

value of a diagnostic on the x-axis, there are many different values of SEM on the y-axis

across different selection mechanisms, this is evidence against it being a good diagnostic.

The set of candidate diagnostics are separated into two groups in each figure, with the set

of six in the top three rows (one row each for r ¼ 0.75, r ¼ 0.25, and r ¼ 0.10) roughly

corresponding to the best performing diagnostics, and the set in the bottom three rows

corresponding to the worst performing diagnostics.

Considering first the diagnostics in the bottom rows of Figure 1, CorðY sel;h
21Þ and

FMI(my) are not notably sensitive to changes in SEM, as indicated by the steep vertical

segments. The Varðh21Þ diagnostic changes with SEM, but the range of its x-axis is very

wide, potentially limiting interpretability as to what constitutes an extreme value. The R̂,

AÛC, and psR 2 diagnostics are also sensitive to SEM and have a narrower range along the

x-axis than Varðh21Þ: Considering the better-performing diagnostics in the top pair of

rows in Figure 1, they are all visually similar to one another. Interestingly, the behavior of

CV(h) very closely resembles SMUB(0.5) and relatively closely aligns with the value of

SEM, as exhibited by the segments’ close proximity to the y ¼ x line. The SMUB indices
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generally increase with SEM in the r ¼ 0.75 scenarios and, furthermore, are often nearly

in 1-1 correspondence with SEM.

The extent to which this last statement is true depends upon the proximity between f

and ftrue, as the development of these estimators would suggest. The SMAB indices,

which estimate the excess bias after adjusting for ignorable bias, vary little when r ¼ 0.75,

since in this case X1 is actually a relatively good surrogate for Y, and are therefore less

sensitive to SEM. When r ¼ 0.10, most of the bias is non-ignorable, and so the SMUB and

SMAB indices nearly correspond. For the third and sixth rows of Figure 1, the auxiliary
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Fig. 1. Median standardized error measure (SEM, y-axes) against value of diagnostic (x-axes) for twelve

candidate diagnostics (columns), three values of r ¼ Cor(X1,Y) (rows) using the median of 2000 simulated data

sets. k ; CorðXl;X2Þ is fixed at 1 (Figures 2 and 3 give the same results for k ¼ 0.5 and k ¼ 0, respectively) For

reference, the y ¼ x line is plotted in black. Shape and grayscale indicate different true selection mechanisms

from Table 2, and connected segments represent different values of {bx, by} corresponding to the same selection

mechanism.
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variable is an especially poor predictor of the survey outcome (r ¼ 0.10). In this setting,

all the diagnostics show a wide scatter of values across the different selection mechanisms,

suggesting that none of them are of much use in predicting the bias. This finding supports

the statement in Little et al. (2019) that having an auxiliary variable that is a good predictor

of the survey outcome is a key requirement for detecting bias.

Figures 2 and 3 illustrate how these diagnostics change when k , 1; that is, when the

auxiliary variable for the outcome and the auxiliary variable for selection differ. As expected,

diagnostics that are based solely on the propensity, that is, CVðhÞ; AÛC, R̂, Varðh�1Þ; and
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Fig. 2. Median standardized error measure (SEM, y-axes) against value of diagnostic (x-axes) for ten candidate

diagnostics (columns), two values of r ¼ CorðX1;YÞ (rows) using the median of 2000 simulated data sets.

k ¼ CorðX1;X2Þ is fixed at 0.5 (Figures 1 and 3 give the same results for k ¼ 1 and k ¼ 0, respectively). For

reference, the y ¼ x line is plotted in black. Shape and grayscale indicate different true selection mechanisms

from Table 2, and connected segments represent different values of {bx;by} corresponding to the same selection

mechanism.

Boonstra et al.: Diagnostics for Selection Bias 763



psR 2, tend to falsely “detect” bias in these scenarios. False detection here means that

segments are flat, varying in the x-value without any accompanying variation in the y-value.

As noted in Table 2, smaller values of k will increase the value of ftrue towards 1 when

by ¼ 0, causing SMUB(0) to underestimate SEM more so relative to the corresponding

results in Figure 1. In the extreme case of k ¼ 0, which is given in Figure 3, the SMUB and

SMAB indices are all nearly collinear. SMUB(1) looks most reasonable in this scenario

because all selection mechanisms either have ftrue ¼ 1 (when by – 0) or ftrue ¼ 0 (when

by ¼ 0). In this latter case, all results fall on the origin, and there is no bias to detect.

Figures S1–S3 (Online Supplemental Material) give the analogous results using the

alternative bias measure SAEM. Because SAEM is adjusted for ignorable bias, SMUB
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Fig. 3. Median standardized error measure (SEM, y-axes) against value of diagnostic (x-axes) for ten candidate

diagnostics (columns), two values of r ; Cor(X1,Y) (rows) using the median of 2000 simulated data sets. k ;
CorðX1;X2Þ is fixed at 0 (Figures 1 and 2 give the same results fork ¼ 1 andk ¼ 0.5, respectively). For reference, the

y ¼ x line is plotted in black. Shape and grayscale indicate different true selection mechanisms from Table 2, and

connected segments represent different values of {bx,by} corresponding to the same selection mechanism.
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now tends to overestimate bias and SMAB is the better-performing estimator. None of the

other diagnostics considered perform qualitatively differently.

Figures 1–3 characterize the systematic relationship between SEM and each diagnostic,

but there is also sampling variability that occurs within each data set. That is, does the

realized value of a diagnostic in a given data set correspondingly change when the realized

value of SEM is higher or lower than its mean? Table 3 reports the Spearman correlation

(multiplied by 100) between each candidate diagnostic and the SEM value under seven

selected sets of {bx;by} taken from Table 2 and three values of k under r ¼ 0.75. Those

correlations that are within 5% of the largest magnitude correlation (the row-wise

maximum absolute value) are in boldface. From Table 3, all of the metrics except

CorðYsel;h
�1Þ and FMI(my) exhibit strong positive or negative correlation with SEM, that

is, less than -0.6 or greater than 0.6, when k ¼ 1 and when the selection mechanism is not

SCAR. However, as k decreases, the Spearman correlations decrease or even change signs

when the signs of bx and by are in opposite directions. This even holds for CV(h), which

Figures 1–3 showed to be most sensitive to SEM on a systematic basis from among the

existing diagnostics. For example, in the bottom-most three rows of Table 3, CV(h) has a

Spearman correlation with SEM of about 0.70 when k ¼ 1, but this decreases to -0.46

when k ¼ 0. Insofar as one does not know the true value of k and thus whether to expect a

positive or negative correlation with the error, this is problematic. The realized values of

the SMUB measures do not exhibit this undesirable behavior, but rather exhibit a

consistently high Spearman correlation with the realized values of the SEM.

Tables S1 and S2 in the Online Supplemental Material gives the analogous results under

r ¼ 0.25 and r ¼ 0.10, respectively. When r is small, as in Table S2, none of the diagnostics,

including SMUB or SMAB, have high correlation with SEM, highlighting the importance of

obtaining auxiliary variables that correlate well with the outcome.

6. Discussion

Nishimura et al. (2016) found that none of their candidate diagnostics for detecting

selection bias due to non-ignorable selection mechanisms were suitable for use. Our

simulation study showed that the SMUB and SMAB family of measures proposed by Little

et al. (2020) outperformed other diagnostics, both in terms of detecting the presence of

bias as well as directly estimating its value, and both systematically (Figure 1–3) as well

as on the basis of sampling variability (Table 3). The extent of non-ignorable selection is

by definition inestimable, but the SMUB family is indexed by a tuning parameter f, which

allows the analyst to directly estimate the amount of selection bias by assuming that a

specific degree of non-ignorable sampling had occurred. Our simulation study showed that

the middle value of f ¼ 0.5, which minimizes the maximum possible distance from ftrue

and which Little et al. (2020) heuristically suggested for default use, resulted in a

diagnostic that most consistently estimated the true amount of selection bias.

A number of additional qualities recommend the SMUB/SMAB family of statistics for

the task of diagnosing and estimating selection bias. First, it correlates moderately well

with the true measure of selection bias as evidenced in Table 3. Second, our simulation

study demonstrates that the difference between the median values of the SMUB statistic

and SEM was zero when the tuning parameter f matched the unknown value ftrue. This
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result is consistent with the theoretical derivation of the SMUB. Third, the SMUB

calculation does not require individual-level data from the non-sampled data but rather

only summary statistics of the auxiliary variables, which makes it especially useful for

non-probability samples and which stands in contrast to the other diagnostics evaluated.

Fourth and finally, SMUB is specific to an estimand of interest, meaning that it will enable

an analyst to order estimates computed from a non-probability sample in terms of their

potential selection bias. Among those statistics considered in Nishimura et al. (2016), only

the FMI(my) and CorðY sel;h
�1Þ statistic have this characteristic. In contrast, the values of

all other potential diagnostics considered do not actually vary with the estimand. This fact

alone arguably precludes from consideration any of the aforementioned diagnostics,

insofar as it is impossible to expect a single statistic to serve as a universal diagnostic for

bias with respect to an arbitrary estimand. Moreover, the FMI statistic focuses on variance

rather than bias, and the simulation study clearly points to its deficiency as a diagnostic for

bias.

Because the actual selection mechanism is unknown in practice, it is not sufficient to

have a candidate diagnostic that correlates well with SEM under each selection

mechanism. Rather, it must be correlated with SEM in the same way across many different

selection mechanisms, since by definition of a non-probability sample, one does not know

the true selection mechanism. Furthermore, high correlation between a diagnostic for

selection bias and true selection bias is only useful if there is knowledge about the

distribution of the diagnostic, or even just its support. For example, although psR 2 was

consistently correlated with SEM, the values that we observed in the simulation study

were typically limited to a very small interval close to zero, such that it would be difficult

to know in practice whether one has encountered an extreme-enough value that would be

suggestive of selection bias. The Varðh�1Þ diagnostic is similarly limited: its range is

arguably so extreme as to make it impractical for general use.

With regard to the other candidate diagnostics, our results were largely consistent with

those reported in Nishimura et al. (2016). Because the only code from that paper that we

used here was the function for calculating FMI(my), our work largely represents an

independent validation of their findings. Ironically, we found that the two statistics that

make use of the greatest amount of data, CorðY sel;h
�1Þ and FMI(my), were actually among

the least effective at detecting selection bias. We found that CV(h) generally had a high

correlation with the true amount of selection bias, even under non-ignorable settings.

Concerning, however, is its variation due to sampling variability, as demonstrated in

Table 3.

Finally, a lack of a globally optimal value of the tuning parameter f points to one

possible and novel extension of the SMUB statistic. Although the ftrue is, by definition of a

non-probability sample, inestimable, the sampling probabilities could be learned about, for

example, with the collection of a small, auxiliary probability sample or via non-response

follow-up with a small sample of non-selected cases, the non-ignorable bias could

potentially be estimated and accounted for. Or, one might propose a shrinkage-type SMUB

statistic that is an adaptive combination of estimates from the large, non-probability

sample (high bias/low variance) and the small, probability sample (low bias/high

variance), akin to the Empirical Bayes estimator of Mukherjee and Chatterjee (2008).

Boonstra et al.: Diagnostics for Selection Bias 767



7. References

Albert, A., and J. Anderson. 1984. “On the existence of maximum likelihood estimates

in logistic regression models.” Biometrika 71: 1–10. DOI: https://doi.org/10.2307/

2336390.

Andridge, R.R., and R.J. Little. 2011. “Proxy pattern-mixture analysis for survey

nonresponse.” Journal of Official Statistics 27: 153–180. Available at: https://www.

scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/proxy-pattern-mixture-anal-

ysis-for-survey-nonresponse.pdf (accessed May 2021).

Andridge, R.R., and R.J. Little. 2020. “Proxy pattern-mixture analysis for a binary variable

subject to nonresponse.” Journal of Official Statistics. DOI: https://doi.org/10.2478/jos-

2020-0035.

Bootsma-van der Wiel, A.V., E. Van Exel, A. De Craen, J. Gussekloo, A. Lagaay, D.

Knook, and R. Westendorp. 2002. “A high response is not essential to prevent selection

bias: results from the leiden 85-plus study.” Journal of Clinical Epidemiology 55:

1119–1125. DOI: https://doi.org/10.1016/s0895-4356(02)00505-x.

Brick, J.M., and D. Williams. 2013. “Explaining rising nonresponse rates in cross-

sectional surveys.” The Annals of the American Academy of Political and Social Science

645: 36–59. DOI: https://doi.org/10.1177%2F0002716212456834.

Heckman, J.J. 1979. “Sample selection bias as a specification error.” Econometrica 47:

153–161. DOI: https://doi.org/10.2307/1912352.

Little, R.J. 1994. “A class of pattern-mixture models for normal incomplete data.”

Biometrika 81: 471–483. DOI: https://doi.org/10.2307/2337120.

Little, R.J., and D.B. Rubin. 2002. Statistical Analysis with Missing Data. John Wiley &

Sons, Hoboken, NJ, 2nd edition.

Little, R.J., B.T. West, P. Boonstra, and J. Hu. 2020. “Measures of the degree of departure

from ignorable sample selection.” Journal of Survey Statistics and Methodology 8:

932–964. DOI:https://doi.org/10.1093/jssam/smz023.

Mukherjee, B., and N. Chatterjee. 2008. “Exploiting gene-environment independence for

analysis of case-control studies: An empirical bayes-type shrinkage estimator to trade-

off between bias and efficiency.” Biometrics 64: 685–694. DOI: https://doi.org/10.1111/

j.1541-0420.2007.00953.x.

Nagelkerke, N.J. 1991. “A note on a general definition of the coefficient of determination.”

Biometrika 78: 691–692. DOI: https://doi.org/10.1093/biomet/78.3.691.

Nishimura, R., J. Wagner, and M. Elliott. 2016. “Alternative indicators for the risk of non-

response bias: a simulation study.” International Statistical Review 84: 43–62. DOI:

https://doi.org/10.1111/insr.12100.

Presser, S., and S. McCulloch. 2011. “The growth of survey research in the United States:

Government-sponsored surveys, 1984 – 2004.” Social Science Research 40:

1019–1024. DOI: https://doi.org/10.1016/j.ssresearch.2011.04.004.

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing.

Rubin, D.B. 1976. “Inference and missing data.” Biometrika 63: 581–592. DOI: https://

doi.org/10.2307/2335739.

Journal of Official Statistics768

https://doi.org/10.2307/2336390
https://doi.org/10.2307/2336390
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/proxy-pattern-mixture-analysis-for-survey-nonresponse.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/proxy-pattern-mixture-analysis-for-survey-nonresponse.pdf
https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/proxy-pattern-mixture-analysis-for-survey-nonresponse.pdf
https://doi.org/10.2478/jos-2020-0035
https://doi.org/10.2478/jos-2020-0035
https://doi.org/10.1016/s0895-4356(02)00505-x
https://doi.org/10.1177%2F0002716212456834
https://doi.org/10.2307/1912352
https://doi.org/10.2307/2337120
https://doi.org/10.1093/jssam/smz023
https://doi.org/10.1111/j.1541-0420.2007.00953.x
https://doi.org/10.1111/j.1541-0420.2007.00953.x
https://doi.org/10.1093/biomet/78.3.691
https://doi.org/10.1111/insr.12100
https://doi.org/10.1016/j.ssresearch.2011.04.004
https://doi.org/10.2307/2335739
https://doi.org/10.2307/2335739


Rubin, D.B. 2004. Multiple imputation for nonresponse in surveys, volume 81. John Wiley

& Sons.

Särndal, C.-E., and S. Lundström. 2010. “Design for estimation: Identifying auxiliary

vectors to reduce nonresponse bias.” Survey Methodology 36: 131–144.

Schouten, B., F. Cobben, J. Bethlehem, et al. 2009. “Indicators for the representativeness

of survey response.” Survey Methodology 35: 101–113.

Van Buuren, S., and K. Groothuis-Oudshoorn. 2011. “mice: Multivariate imputation by

chained equations in R.” Journal of Statistical Software 45: 1–67.

Wickham, H. 2017. tidyverse: Easily install and load the ‘tidyverse’. R package version

1.2.1

Williams, D., and J.M. Brick. 2018. “Trends in US face-to-face household survey

nonresponse and level of effort.” Journal of Survey Statistics and Methodology 6:

186–211. DOI: https://doi.org/10.1093/jssam/smx019.

Received July 2019

Revised June 2020

Accepted November 2020

Boonstra et al.: Diagnostics for Selection Bias 769

https://doi.org/10.1093/jssam/smx019

