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Today, the first thing that comes to mind when
someone mentions bioimpedance might be body
composition estimation, and when someone mentions AI,
we might immediately think of chatbots. The progression
of AI over the preceding decades has witnessed a
transition from attempting to artificially replicate neural
communication in the human brain during the 1950s
to contemporary emphasis on ethical considerations
associated with the responsible utilization of AI in the
2020s.

The bandwagon of AI has influenced many fields
of science. Given that electrical bioimpedance is
often a multi-variable measurement for the prediction
of a physiological state, the developments in AI-based
solutions are certainly relevant to our field as well. An
integration of electrical bioimpedance and AI could be
important in the development of future health monitoring
devices, driven by a shift from reactive treatment (after
symptom onset) to preventive self-care. From simple
neural networks to deep learning (DL), machine learning
(ML) has already been used for over a decade in the
development of prediction models based on bioimpedance
data. More recently it has been used to improve
several applications of electrical bioimpedance such as
cuffless blood pressure [1, 2, 3], body composition
analysis [4], non-invasive blood glucose measurement
[5], classification of spectroscopic data (i.e., electrical
impedance spectroscopy (EIS)) [6, 7] and electrical
impedance tomography (EIT) [8, 9, 10].

Consider the non-invasive imaging technique EIT as
an example, it reconstructs the spatial distribution of
the passive electrical properties of the sensing area,
relying on data processing and reconstruction algorithms.
Recent substantial progress in leveraging DL techniques
for AI-based medical imaging has prompted considerable

interest and attention in applying DL to EIT-based
image reconstruction. The comprehensive overview of
such advancements made in this direction spans three
key avenues: single network reconstruction, synergistic
integration of DL with traditional algorithmic EIT
reconstruction, and the fusion of multiple networks for
hybrid reconstruction [9, 10, 11]. Further, as the field of
AI progresses rapidly, the recently introduced deep image
prior, a variant of convolutional neural network, can be
employed to improve a given EIT image without requiring
any pre-existing training data. This technique may surpass
the state-of-the-art EIT reconstruction methodologies
[12].

Although AI-based tools offer great possibilities for
improving the performance of bioimpedance technology,
there are some challenges that are more or less specific to
our field. In general, effective training of robust AI-based
applications necessitates a substantial volume of data,
a process inherently time-consuming and labor-intensive.
This challenge is particularly pronounced in medical
applications, where the acquisition of human-centric data
is notably challenging.

As AI training requires large volumes of data, and
bioimpedance data is often limited in size, one solution
can be to collect and combine data from different studies
and laboratories. However, several factors can prevent
researchers from doing so. Specifically for bioimpedance,
factors such as electrode type, size, placement and
impedance analyzers used could influence the measured
impedance largely. One way to tackle this problem is to
have both open-source databases as well as open-source
tools for electrical impedance data where it is possible
to integrate data from for example different instruments
and electrodes [13]. Another way to increase data
volume and assist in AI training is by generating synthetic
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data, an approach that holds several potential benefits.
Synthetically generating bioimpedance data would give
us the possibility to evaluate AI ideas at an early
stage, without being influenced by the bias introduced
by experimental and instrumental variations. Several
works in other medical fields have proposed the use of
the generative adversarial network (GAN) to generate
synthetic data, both to enlarge the database for AI
models in a controlled way and to reduce the use of
animals for experiments [14, 15, 16]. New possibilities
in the generation of synthetic 3D medical images may
translate to easier access to digital human phantoms for
bioimpedance research in the future [17, 18].

With increasing complexity of ML models, the
interpretability of the models poses growing challenges.
In addressing this issue, there has been a rise in the
adoption of explainable artificial intelligence (XAI) in
recent years. One precondition to be able to employ
AI-based models in real-life applications is to be able
to use them responsibly, which involves the ability to
trust the model’s output. This trust, in turn, demands
a significant level of interpretability. Nevertheless,
having explainable models does not always make the
models understandable. Compared to other types of
variables in prediction models, such as blood lipids or
ECG features, electrical bioimpedance is generally not
a measurement technique that patients or clinicians are
familiar with. Therefore, it may be difficult to understand
the predictions even when XAI is used. Consequently,
XAI may not always provide full interpretability for users
unless additional explanation is provided.

Applications of AI in electrical bioimpedance are
not only limited to data analysis and prediction, but
may also improve the measurement. Artifacts are not
uncommon in electrical bioimpedance measurements,
particularly in scenarios like ambulatory monitoring over
time, where AI-based solutions may help to identify
and remove artifacts before further data analysis [19].
Another example is the optimization of electrode
positions in 2D EIT with the aid of a deep learning
approach [20]. Further, EIT image reconstruction owes
to inherent nonlinearity and ill-posedness, presenting
challenges for classical regularization techniques. Deep
generative models such as variational autoencoder
networks, normalizing flow, and score-based diffusion
models have been shown to play a crucial role in learning
implicit regularizers and prior knowledge for EIT-based
reconstruction tasks [21].

In the future, we will likely see new ways AI can assist
theoretical, experimental and applied areas of electrical
bioimpedance that are currently unforeseen.
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