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Blind audio source separation based on a new
system model and the Savitzky-Golay filter

Pengfei Xu1 , Yinjie Jia1,2∗ , Mingxin Jiang2

Blind source separation (BSS) is a research hotspot in the field of signal processing. This scheme is widely applied to
separate a group of source signals from a given set of observations or mixed signals. In the present study, the Savitzky-Golay
filter is applied to smooth the mixed signals, adopt a simplified cost function based on the signal to noise ratio (SNR)
and obtain the demixing matrix accordingly. To this end, the generalized eigenvalue problem is solved without conventional
iterative methods. It is founded that the proposed algorithm has a simple structure and can be easily implemented in diverse

problems. The obtained results demonstrate the good performance of the proposed model for separating audio signals in
cases with high signal to noise ratios.

K e y w o r d s: blind source separation, moving average, Savitzky-Golay smoothing, cost function, audio signal

1 Introduction

A pioneering work on the BSS was conducted by Jut-
ten and Herault [1] in 1985. They established the BSS as
a multi-dimensional signal processing method for recover-
ing each component of the source signal. Since then, the
established BSS and the research results have been widely
applied in diverse fields, including the speech recogni-
tion, fault diagnosis, array signal processing [2], signal
de-noising [3], image processing [4], fetal electrocardio-
gram [5], biomedicine and so on.

Currently, several BSS algorithms have been estab-
lished to calculate a demixing matrix so that the source
signal can only be separated (estimated) by the observed
or mixed signals. Compared with other algorithms, the
demixing matrix based on the maximum signal to noise
ratio (SNR) can be obtained with no iterative operation
[6,7]. The main advantage of this algorithm over the BSS
is simplicity. Accordingly, the SNR algorithm is employed
in the present study to calculate the demixing matrix. It
has also been adopted to calculate the demixing matrix
for the peak detection in the spectrum sensing [8]. Studies
show that when the complex-valued maximum pseudo-
signal-to-noise ratio is considered as the target function,
Doppler human gesture signals caused by different mo-
tions can be separated for optimizing the demixing ma-
trix [9].

However, the original algorithm [6] directly uses the
moving average algorithm to predict the source signal,
and the prediction accuracy can be further improved.
Based on such a consideration, the present study intends
to propose a model based on the Savitzky-Golay smooth-
ing filter and simplified cost function for audio signals in
noisy environments. It is expected to improve the sepa-
ration performance.

2 Methodology

2.1 Blind separation of noisy mixtures

The linear model of the basic instantaneous BSS can
be expressed as

xi(t) =

n
∑

1

aij
(

si(t) + v(t)
)

, (1)

where aij is a mixed coefficient. Equation (1) can be
rewritten in the vector form

x(t) = A
(

s(t) + v(t)
)

, (2)

where x(t) = [x1(t), . . . , xn(t)]
⊤ is a vector of mixed or

observed signals. Meanwhile, A is an n × n mixing ma-
trix, s(t) = [s1(t), . . . , sn(t)]

⊤ is a vector of source sig-
nals, and v(t) denotes the additive white Gaussian noise
(AWGN) [10]. In the BSS problem, only the statistical in-
dependence of the mixed signal from the source signal is
known. Moreover, each source can be recovered through
its probability distribution. Assuming that W is an n×n
demixing matrix or separating matrix, the general solu-
tion to the problem is

y(t) = Wx(t) , (3)

where y(t) = [y1(t), . . . , yn(t)]
⊤ is a vector of separated

signals. Generally, the BSS consists of two steps. The
first step is to create a cost function F (W ) with respect
to W . When W maximizes F (W ) function, then the cor-
responding W can be used as a demixing matrix. In the
second step, an effective iterative algorithm is required for
solving the equation ∂F/∂W = 0. The cost function in
the present article is the function of the signal-noise ratio
so that the demixing matrix can be obtained by resolv-
ing the generalized eigenvalue problem with no iterative
operation during the optimization of the cost function.
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Table 1. The proposed algorithm

Input: The mixed signals X . Output: The demixing matrix W and the separated signal Y .

1: XS = smoothdata( X ,’sgolay’); % Smooth X using a Savitzky-Golay filter.

2: ( W,d )=eig(cov( X −XS ),cov( X )); % Demixing matrix W is obtained from (4).

3: Y =( X ∗W )’; % Separated signal Y .
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Fig. 1. Block diagram of the simplified cost function

2.2 Inversion problem

As shown in Fig. 1, the simplified cost function can be

defined as

FSNR=
s s⊤

e e⊤
=

s s⊤

(s− y)(s− y)⊤
=

Wxx⊤W⊤

W (x− x)(x − x)⊤W⊤
,

(4)

where, x(n) = 1

L

∑L

j=0
xj(n − j), 0, 1, . . . , L − 1, repre-

sents the moving average of the mixed signal x(n). By cal-

culating the partial differential equation ∂FSNR(W )/∂W =

0 with respect to W [7], the demixing matrix can be ob-

tained by resolving the generalized eigenvalue problem

with no iterative operation [11].

When the proposed scheme is applied to mixed sig-

nals containing white Gaussian noise described in equa-

tion (2), the moving average is replaced with Savitzky-

Golay (S-G) smoothing filter [12, 13]. It is worth noting

that the main purpose of applying the S-G smoothing

filter is to obtain a smooth signal. Accordingly, the S-G

filter is applied to a series of digital data points to im-

prove the signal-to-noise ratio without deforming the sig-

nal. Then the linear least square method is applied to fit a

subset of consecutive data points with a low order poly-

nomial and obtain the convolution of polynomials [14].

Moreover, when the data points are arranged at fixed

and uniform intervals along the selected abscissa, this fil-

ter can be applied to any consecutive data. It should be

indicated that curves formed by drawing the points must

be continuous and almost smooth [15].

Now, x(n) in (4) is the smoothed data generated by

the Savitzky-Golay smoothing filter. In order to show the

superiority of the Savitzky-Golaymethod over the moving

average smoothing, the correlation coefficient is utilized

to express the similarity between the original signal and

the two smoothed signals for different window lengths

and its calculation expression is shown in (6). This is

presented in Fig. 2.

Correlation coefficient

3 95 Window length1

0.4

0.6

0.8

1.0

Moving average smoothing

Savitzky-Golay smoothing

Fig. 2. Correlation coefficients between the original signal and the
two smooth estimated signals for different window lengths

In Fig. 2, the abscissa and the ordinate represent the
window length ranging from 1 to 10 and the correlation
coefficients of the original signal and the smooth data, re-
spectively. The lines represent the similarity (correlation
coefficient) between the original signal and the Savitzky-
Golay smooth signal and the correlation coefficient be-
tween the original signal and the smooth signal by moving
average, respectively. Figure 2 indicates that:

(1) For different window lengths, the lower the window
length, the better the similarity.

(2) When the window length increases, the similarity
deteriorates.

(3) The similarity of the Savitzky-Golay method is
always higher than that of the moving average method
with the same window length.

Therefore, the Savitzky-Golay filter is applied in the
proposed algorithm to smoothen the noisy signal x(n).
As a result, the estimated signal is closer to the original
signal and a more reasonable source signal can be sepa-
rated. Table 1 presents the proposed algorithm with three
lines of the MATLAB code.
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Fig. 3. Block diagram of the proposed BSS model

Figure 3 presents the block diagram of the proposed
BSS model based on the foregoing algorithm. The dashed
box indicate represents the mixed signals X . Note that
the sequence numbers, 1, 2 and 3 denote the three steps
accordingly, Tab. 1.

By constructing the cost function and estimating the
demixed matrix, the closed-form solution can be found
directly with no need for an iterative optimization pro-
cess by the generalized eigenvalue decomposition. In other
words, the original signal S can be estimated or separated
only through mixed signals X without any prior knowl-
edge. The proposed algorithm is a matrix eigenvalue de-
composition method. Moreover, it has a simple structure
and it is an appropriate scheme for being implemented in
the FPGA hardware and real-time processing.

3 Simulations and results

C(s, y) =
cov(x, y)

√

cov(s, s)
√

cov(y, y)
, (5)

where s and y denote the source signal and the separated
signal, respectively. C(s, y) = 0 indicates that s is inde-
pendent of y , while s and y are fully correlated when
C(s, y) = 1. The higher the value of C is, the better the
separation performance of the proposed algorithm is and
vice versa.

In addition to the correlation coefficient, it is intended
to utilize another common metric in this simulation,
named the signal-distortion-ratio (SDR), to evaluate the
separation effect.

SDR = 10 log
10

‖st‖
2

‖ei + en + ea‖2
, (6)

where, st is a modified version of s [16], ei , en and ea
denote the interferences, noise and artifacts error terms,
respectively. It should be indicated that SDR is evaluated
by computing energy ratios expressed in decibels (dB).
The higher the value of SDR is, the better the separation
performance of the proposed algorithm is and vice versa.

In the first simulation, the sources are three music
tunes, including guitar.wav (Source signal-1), piano.wav
(Source signal-2) and trumpet.wav (Source signal-3). For
each source signal, the number of samples is N = 400000.
The AWGN channel model is the most basic noise and in-
terference model, which is used in the signal transmission
channel. Moreover, the amplitude distribution is Gaus-
sian and the power spectral density distribution is uni-
form. It is worth noting that the SNR in the AWGN
channel is set to 50 dB. The mixing matrix A is ran-
domly generated. Figure 4 shows the separation results
obtained by the proposed algorithm.

Figure 4 shows that the proposed algorithm can effec-
tively separate the source signals from the three mixed
signals.
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Fig. 4. Signals of the three different sources (1, 2, 3), in left to right columns: first row (a),(b),(c) – source signals, second row (d), (e),
(f) - mixed signals, and third row (g), (h), (i) - separated signals
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In the second simulation, in order to investigate the ad-
vantages of the proposed algorithm, the widely adopted
Fast-ICA (gauss and tanh) algorithm is selected to com-
pare with the proposed algorithm under different signal-
noise ratios, from 40 to 50 dB. Since the source signals are
super-Gaussian signals (kurtosis (S1)=4.9107, kurtosis

(S2)=6.5883, kurtosis (S3)=4.5102), so, g(u) = ue−u2/2
and g(u) = tanh(2t) are selected as two non-linear func-
tions in the Fast-ICA algorithm, respectively.

The simulation based on the same mixed signal can
make the comparison between the three algorithms as fair
as possible. It is worth noting that the SNR is increased
from 40 dB to 50 dB on the basis of the abovementioned
simulation, while other conditions remain unchanged.

It should be indicated that repeated tests can reduce
the randomness and improve the reliability of results.
Therefore, the simulation runs repeatedly to check its
stability and obtain the average correlation coefficients,
average signal distortion ratio and average runtime. To-
tal number of iterations in this simulation is set to 100.
Figure 5 shows a comparison between the results of the
average correlation coefficient.

The comparison results of the average signal distortion
ratio are shown in Fig. 6. Moreover, Fig. 7 illustrates

obtained results of the average runtime from different
algorithms.

Figures 5-7 demonstrate that the proposed algorithm
outperforms the conventional schemes from the separa-
tion performance (separation accuracy) and computa-
tional speed viewpoints.

4 Conclusions

In the present study, a novel model is proposed to cal-
culate the demixed matrix from the mixed signals without
any prior condition. The proposed algorithm is assisted
by the Savitzky-Golay smoothing filter and simplified cost
function. The simulation results demonstrate the reason-
able separation performance of the new scheme for audio
signals. It should be indicated that due to the simple and
clear principle of the proposed algorithm, the BSS model
based on it may be applied in other applications of digital
signal processing.
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