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McELIECE PKC CALCULATOR

Marek Repka
∗

The original McEliece PKC proposal is interesting thanks to its resistance against all known attacks, even using quantum
cryptanalysis, in an IND-CCA2 secure conversion. Here we present a generic implementation of the original McEliece PKC
proposal, which provides test vectors (for all important intermediate results), and also in which a measurement tool for side-
channel analysis is employed. To our best knowledge, this is the first such an implementation. This Calculator is valuable
in implementation optimization, in further McEliece/Niederreiter like PKCs properties investigations, and also in teaching.
Thanks to that, one can, for example, examine side-channel vulnerability of a certain implementation, or one can find out and
test particular parameters of the cryptosystem in order to make them appropriate for an efficient hardware implementation.
This implementation is available [1] in executable binary format, and as a static C++ library, as well as in form of source
codes, for Linux and Windows operating systems.

K e y w o r d s: post-quantum PKI, McEliece PKC, Niederreiter PKC, Patterson’s algebraic decoding algorithm, binary
irreducible Goppa codes, side-channel analysis

1 INTRODUCTION

A symmetric cryptography is contemporary based on
the integer factorization problem, or the discrete loga-
rithm problem (very often defined over elliptic curves).
An alternative to the common asymmetric cryptography
is needed as the alternative should be based on a dif-
ferent problem that the common asymmetry, since by
breaking those problems, the alternative cryptosystem
will be untouched. The common asymetric cryptography
is very vulnerable to the Shor’s quantum algorithm [2],
and therefore, the different problem must be also resistant
against quantum cryptanalysis.

Fortunately, there is the McEliece PKC [3] (and also
the derived Niederreiter PKC in a particular setup) that
might prove resistant to attacks. The McEliece PKC is
based on different problems like the usual ones. Those
problems are also not affected by the Shor’s algorithm
[2]. It is based on the Coset Weights Decision NP-
complete Problem, and the Subspace Weights Decision
NP-complete Problem [4]. These problemes are from cod-
ing theory, and, thus, this is a code-based cryptograhy.
For a very fresh survey of cryptography based on error
correcting codes consult [5]. Using the McEliece PKC,
or others code-based cryptosystems, one can costruct all
the cryptographic primitives such as encryption, signa-
ture, hash functions, pseudo-random generators and so
forth.

The original McEliece proposal, which uses random in-
stances of binary irreducible Goppa code with the max-
imal length, has been unbroken since 1978, even consid-
ering quantum cryptanalysis (note the IND-CCA2 con-
version importance [6]). There were many attempts to
replace the underlying linear error correcting code but all
attempts failed except the new proposal to use the Mod-
erate Density Parity-Check Codes (MDPC) [7]. Since the

MDPC proposal is very new, no one of the modifications
of the original McEliece proposal is confident in the post-
quantum sense today. Nowadays, there are only few, and
very limited, implementations of the original proposal.
Note also, that many derivatives of the original McEliece
PKC have been published. For instance, the Niederreiter
PKC [8] is equivalent to the McEliece PKC in terms of
security but only if the Binary Irreducible Goppa codes
with the maximal length are used. Other derivation is
the HyMES [9], but the HyMES differs from the original
McEliece PKC proposal in the key-pair and error vector
generation, and thus, also in encryption as well as in de-
cryption. A good implementaion of the HyMES with some
countermeasures implemented and some improvements is
the FLEA [10]. Further, a scheme that uses MDPC can
be found in [11].

Since the derived schemes are young and, we can say,
not sufficiently (quantum) cryptanalysed, no one of the
derived schemes, except for the Niederreiter PKC in the
proper setup, is confident as a post-quantum cryptosys-
tem. This is the reason why we decided to implement the
original McEliece PKC proposal.

We implemented the most generic original McEliece
PKC proposal in order to make the PKC more available.
The adjective generic has been achieved using the Num-
ber Theory Library (NTL) [12], and the generic CPU
Tick Measurement Library [13]. Our implementation is
called the McEliece PKC Calculator, since no parame-
ter is fixed in this implementation, and test vectors for
all the important intermediate results (for all appropri-
ate m and t in limits of hardware and NTL) can be
provided for any: encryption, decryption, or key gener-
ation. Thanks to the NTL, the Calculator is easy to
understand, use, and modify, since the standard NTL
functions, input, and output, are used. Therefore, if a
key-pair not generated by the Calculator is desired to

∗ Institute of Computer Science and Mathematics, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, Bratislava,
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be used by Calculator, it is not a problem, it must be
just formated accordingly. Moreover, a measurement tool
for side-channel analysis has been employed, which test
vectors can be also recorded for. Using this tool, tim-
ing leakage can be measured, and using the measured
data, it is also possible to simulate power-consumption
and electromagnetic-emanation leakages. The CPU Tick
Library allows to measure CPU Ticks on different families
of processors, and operation systems. To our best knowl-
edge, this is the first such an implementation. Although,
there exist several implementations, like [10, 14–17], of the
original, and derived, schemes on hardware, embedded,
and also on a computer platform. However, parameters
are fixed, no test vectors are provided, or no tool for the
side channel analysis is employed. The Calculator can be
used in the PKC implementation optimization, and fur-
ther McEliece/Niederreiter like PKCs properties investi-
gation, as well as in proper key-pairs generation. The Cal-
culator can be also used in proper parameter choice for a
hardware implementation, and the leakage-measurement
tool can provide information on side-channel vulnerabili-
ties.

Since we have Post-Quantum PKC in the secure cryp-
tosystem property setup [18], the only possibility how to
break this PQ-PKC is via side-channel attacks. Recently,
several side-channel attacks have been published [10, 19,
20, 21, 22]. It is possible to attack key generator, decryp-
tor, and also encryptor. We stressed only the Patterson’s
algebraic decoding algorithm used in the decryption pro-
cess. By the tool, secret error vector, secret permutation,
and secret Goppa polynomial can be guessed, and the
success rate of the guessing can be evaluated.

2 BINARY IRREDUCIBLE GOPPA

CODES FOR THE McELIECE PKC

Goppa codes was invited by Goppa [23]. In the original
McEliece PKC proposal, random instances of a binary ir-
reducible Goppa code with maximal length are employed.
These codes are proposed to be corrected by the Patter-
son’s algebraic decoding algorithm, Fig. 5.

Let F2m = F2[X ]/m(X) be the finite field, where
m(X) is an irreducible polynomial over F2[X ] , and
degm(X) = m .

2.1 Binary Irreducible Goppa Polynomial Defi-

nition

Binary Irreducible Goppa polynomial is a monic bi-
nary irreducible polynomial g(Z) ∈ F2m [Z] , where
deg g(Z) = t .

2.2 Code Support Definition

Code support is a vector Λ ∈ F
n
2m

, Λ = (λi)0≤i≤n−1

consisting of pairwise distinct elements λi ∈ F2m , where
g(λi) 6= 0.

Since the Goppa polynomial g(Z) is irreducible, all

the field elements are in the code support. Hence, the

code length n = 2m .

2.3 The Code Definition

Binary Irreducible Goppa code Γ(Λ, g) is a Linear

Alternant code defined over F2m , wherein the g is a

binary irreducible Goppa polynomial, and the Λ is a

code support. This code has parameters [n = 2m, k =

n−mt, d = 2t+ 1], and it is defined as follows:

Γ(Λ, g) := {c ∈ F
n
2
: S(c, Z) ≡ 0 mod g(Z)} , (1)

where

S(c, Z) =
∑

0≤i≤n−1

ci
Z − λi

(2)

is its syndrome polynomial.

Note, if we have c ∈ Γ(Λ, g), y ∈ F
n
2
, and y = c⊕e ,

where e is an error vector of 0 ≤ HW(e) ≤ t , then

S(e, Z) ≡ S(c, Z) mod g(Z).

2.4 Error-Locator Polynomial Definition

The error-locator polynomial σ(e, Z) is defined, in

binary case, as follows:

σ(e, Z) =
n−1
∏

i=0

(Z − λi)
ei . (3)

The polynomial is defined over F2m [Z] , and indexes of its

roots in the code support determine error-bit positions in

a codeword. In our case, roots are not multiple, and its

degree is t .

3 CALCULATOR IMPLEMENTATION DETAILS

As we stated in the Introduction, Calculator im-

plementation is based on the Number Theory Library

(NTL), and the generic CPU Tick Measurement Library.

This provides the Calculator by the features we also

stated in the Introduction. What is important to note

here is that whenever possible, the NTL methods are

used. For instance, the NTL is used for random poly-

nomial generation, addition and multiplication, expo-

nentiation, polynomial evaluation, inversion, extended

euclidean algorithm, gaussian elimination, factorization,

random error and messages vectors generation. Descrip-

tion of the implementation details follows.
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Require: m(X) , code length n , and t = deg g(Z) .

Ensure: Kpub = Gpub , Kpriv =
(

Γ(Λ, g), S, P
)

.

1. Generate uniformly a random g(Z) .
⊲Determines the secret Γ(Λ, g) .

2. Find a generator matrix Gpriv for the random secret Γ(Λ, g)

code. ⊲ Eq. (6), (7), (8)
3. Generate uniformly a random k × k dense invertible binary

matrix S .
4. Generate uniformly a random n × n binary permutation ma-

trix P . ⊲ Alg. in Fig. 2
5. Gpub = SGprivP .
6. Kpub = Gpub .

7. Kpriv =
(

Γ(Λ, g), S, P
)

.

8. return Kpub , and Kpriv .

Fig. 1. McEliece PKC key generation

Require: p , a sequence of elements for permuting.
Ensure: p with randomly permuted elements.
1. for i = 0 ; i < p.length ; i++ do
2. index = rand() mod p.length

3. swap(p[index],p[i])
4. end for
5. return p

Fig. 2. Random permutation of a sequence of elements

3.1 Key-Pairs Generation

Private key Kpriv consist of a random Γ(Λ, g) code,
a random permutation matrix P , and a random dense
non-singular scramble matrix S .

Kpriv = (Γ(Λ, g), S, P ) . (4)

The random Γ(Λ, g) code means that the g is chosen
randomly. The public key Kpub is derived from the Kpriv

using P and S . The key generation algorithm is in Fig. 1.

Kpub = Gpub . (5)

As the first step in the key generation phase, the Cal-
culator picks up randomly (or it is chosen by an user)
an irreducible polynomial m(X) over F2[X ] , according
to that the finite field F2m is created. Then a binary
irreducible Goppa polynomial g(Z) over F2m [Z] is gen-
erated randomly. Probability that a random polynomial
with degree t is irreducible over the F2m [Z] is approxi-
mately 1/t [3].

Now, the code support is initialized. All the elements
of F2m are in the support. If the m(X) polynomial is
primitive, all elements can be generated using its roots.
But it is not the case in general. Therefore, in order to
initialize the code support, a generator (field primitive
element) should be found. The Calculator searches for a
generator using the fact that order of a subgroup divides
order of the group. Order of an element that generates
the field should be n − 1. Let we have all the factors of
the integer n− 1. The generator is found by examination
degrees of all the field elements respectively. If an element
is found that has the desired degree, the search stops,

and the element is used to initialize the code support.

We denote this element as λ1 . The first element λ0 of

the initialized code support is always 0.

Generator matrix Gpriv is found as follows. First, an

initial parity check matrix Hinit is constructed as

Hinit(i, j) = g−1(λj)λ
i
j , (6)

where Hinit(i, j) is the i -th row, and the j -th column of

the Hinit . This matrix is then used in its binary form.

Therefore, each cell (element of the finite filed F2m ) is

represented as the column of sequence m binary digits.

Thus, the matrix in the binary form consists of mt rows

and n columns. Only the binary form of the parity check

matrix is considered hereafter.

The parity check matrix is brought into the reduced

row-echelon form using the Gaussian elimination. If the

resulted matrix is not in the systematic form, the system-

atic form is obtained by swapping appropriate columns.

Now we have

Hinit = [I|R] . (7)

The parity coordinates generator matrix R⊤ has (n −

mt) rows and mt columns. Using R⊤ , the Gpriv is then

defined as

Gpriv := [R⊤|I] . (8)

In order to be able to construct the secret code sup-

port Λ for the code generated by the secret Gpriv , the

permutation of elements of the initial code support must

be corrected according the swaps performed in order to

make (7) held. For that purpose, only vector of the in-

verse swaps is important. The vector will be denoted as

b hereafter. Note, the initial parity check matrix Hinit is

not a parity check matrix for the Γ(Λ, g) code generated

by Gpriv , since the code support correction.

The dense non-singular matrix S is generated ran-

domly and uniformly by NTL. A random square matrix is

invertible with probability approximately 1/3. One pos-

sibility how to determine whether a square matrix is in-

vertible is to examine its determinant but this would be

time consuming. A better approach is to test the actual

diagonal element for zero during the elimination when

bringing the square matrix into an upper echelon form.

If the element is zero the matrix is not invertible. For

further optimization, inner instruction parallelism can be

used [24].

The permutation matrix P is generated randomly and

uniformly using the algorithm shown in Fig. 2. This al-

gorithm assume a vector p which is somehow initialized.

Hereafter, we consider p as vector of randomly and with-

out replacement generated integers (a random permuta-

tion) that represents the secret permutation matrix P .
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Require: Kpub = Gpub , end message a ∈ Fk
2
, where k = 2m −mt

(the number of rows of Gpub ).

Ensure: A ciphertext y ∈ Fn
2
. ⊲ n = 2m .

1. Generate uniformly a random binary vector ex ∈ Fn
2

with

HW(ex) = t . ⊲ HW is Hamming weight.
2. x = aGpub .
3. y = x ⊕ ex .
4. return y .

Fig. 3. McEliece PKC encryption

Require: Kpriv =
(

Γ(Λ, g), S, P
)

, and a ciphertext y ∈ Fn
2
.

Ensure: Message a ∈ Fk
2
.

1. u = yP−1 . ⊲ u = aSGpriv+exP
−1 , the vector p is used

instead of P .
2. e = Patterson

(

u,Γ(Λ, g)
)

. ⊲ e = exP
−1 , Fig. 5.

3. v = u+ e . ⊲ v = aSGpriv .

4. w = GetInformationCoordinates(v ). ⊲ w = aS , the last
n− k coordinates of v .

5. a = wS−1 .
6. return a .

Fig. 4. McEliece PKC decryption

Require: u ∈ Fn
2

(a private code word with t errors), Γ(Λ, g) .

Ensure: Error vector e such that v = u + e , where v ∈ Γ(Λ, g)
is the code word.
1. S(e, Z) ≡ S(u, Z) mod g(Z) . ⊲Eq. 9

2. T (e, Z) ≡ S−1(e, Z) + Z mod g(Z) . ⊲EEA

3. τ(e, Z) ≡
√

T (e, Z) mod g(Z) . ⊲Eq. 13

4. Find α(e, Z) and β(e, Z) such that
β(e, Z)τ(e, Z) ≡ α(e, Z) mod g(Z) . ⊲EEA

5. σ(e, Z) = α2(e, Z) + Zβ2(e, Z) . ⊲Squaring
6. Find roots of σ(e, Z) . ⊲Evaluation over the Λ
7. Determine indexes of the roots in the support Λ .
8. Set 1 in the determined indexes in error vector e .
9. return e .

Fig. 5. Patterson’s algebraic decoding algorithm.

3.2 Key-Pairs Storing

In the Calculator implementation, almost nothing is
fixed, even polynomial m(X) is chosen randomly, or can
be chosen by user. For the private key Kpriv reconstruc-
tion: the m(X), finite field generator element λ1 , vector
of inverse swaps b , permutation vector p , matrix S , and,
finally, g(Z), are stored. In case of m = 11, t = 50, it is
4 510 452 bytes.

In order to reconstruct the corresponding public key
Kpub = Gpub , only the Gpub is stored. For m = 11,
t = 50, it is 6 138 820 bytes. We recommend to use any
compression method in order to safe the size needed for
key-pairs storing. Another possibility is to order permuta-
tions in the way that each permutation can be represented
by an unique integer [25].

3.3 Encryption

The encryption algorithm is very fast and simple,
Fig. 3. It can be implemented as several XOR additions

in an optimized implementation. In order to generate uni-
formly a random secret error vector of hamming weight
t and length n , the Calculator implementation uses the
algorithm listed in Fig. 2. From the outcome of the al-
gorithm, only the last t indexes are considered. These
indexes determines positions of ones in the error vector.

3.4 Decryption

The decryption algorithm is more time consuming
than the encryption one. The most time consuming is
the Step 2.

The Patterson algebraic decoding algorithm (Fig. 5)
is used in order to correct a code word with t errors in
the private Γ(Λ, g) code. For that purpose, we assume

an input binary vector u = yP−1 that is a codeword
in the private code with exactly t errors. Note, t is the
maximum number of errors that can be corrected in a
Γ(Λ, g) code, and also that the algorithm in Fig. 5 is
capable to correct.

As the first step of the Fig. 5, the syndrome of the er-
ror vector is computed. One can compute the syndrome
evaluating the syndrome polynomial (2), but such an eval-
uation would be the most time consuming step in the de-
coding algorithm. On the other hand, such an evaluation
is very useful on a memory constraint devices. In order
to speed up the syndrome evaluation, following look-up
table is precomputed ∀ 0 ≤ i < n

preSynTab[i] = (Z − λi)
−1 mod g(Z) . (9)

Next possibility how to compute the syndrome is to com-
pute the product uH⊤

priv , wherein the Hpriv is a parity-

check matrix of the secret Γ(Λ, g) code, and obtain the
syndrome in this way.

The syndrome polynomial S(e, Z) satisifies

S(e, Z) ≡
σ′(e, Z)

σ(e, Z)
mod g(Z) . (10)

Since the error of a word is being determined, the first
derivative of the error-locator polynomial consists only of
all the even terms, ie the error-locator polynomial can be
split into squares and non-squares

σ(e, Z) = α2(e, Z) + Zβ2(e, Z) , (11)

where β2(e, Z) = σ′(e, Z). After few modifications, the
Key Equation can be obtained as

β(e, Z)
√

S−1(e, Z) + Z ≡ α(e, Z) mod g(Z) . (12)

Therefore, in the Step 3 of Fig. 5, the square-root modulo
g(Z) is computed. Let us denote the term S−1(e, Z)+Z
as T (e, Z). The Calculator implementation uses the fact
of the perfect square, and thus

τ(e, Z) =
√

T (e, Z) ≡ T 2
tm−1

(e, Z) mod g(Z) . (13)
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Such an approach can be very useful on memory con-
straint devices, but on the other hand it is very time con-
suming operation. Another possibility how to compute
that square-root is to use precomputed look-up table,
which consist of τi(Z) such that τ2i (Z) ≡ Zi mod g(Z)
for 0 ≤ i < t .

Subsequently, the key equation is solved using the
Extended Euclidean Algorithm (EEA) that stops when
degαj(Z) ≤ ⌊(t+ 1)/2 − 1⌋ ≤ t/2, where j is the EEA
iteration number.

At the time the error-locator polynomial σ(e, Z) is
computed, roots of the error-locator polynomial shall be
found. The Calculator implementation simply evaluate
the σ(e, Z) over the secret code support Λ . Therefore,
Steps 6, 7, 8 are conducted in one loop. This method is
also time consuming, and, as an alternative, any other fac-
torization method can be employed. Thus, the decoding
algorithm yields the error vector e in the private code.

When the secret error vector e is removed Step 3 in
Fig. 4, only information coordinates are addressed, and
the scrambling matrix is removed. Finally, the decrypted
message is obtained.

4 BASIC USE CASES

Next we list basic use cases in order to provide exam-
ples of Calculator usage.

4.1 Regular Cryptosystem

The Calculator can be used as a basic cryptosystem,
for key-pairs generation, encryption, as well as for de-
cryption. It is very important to note that the origi-
nal McEliece PKC is vulnerable to (adaptive) chosen-
ciphertext attacks. Therefore, the Calculator can be used
for encryption and decryption only if it is plugged into
an IND-CCA2-Secure conversion, like the γ conversion
defined in [26].

For key-pairs generation, encryption, and decryption,
the following commands can be used respectively:

keygen m t privateKeyFileName publicKeyFilename

enc publicKeyFilename inFileName outFileName

dec privateKeyFilename inFileName outFileName

4.2 PKC Implementation Optimization, and

Properties Investigation

Essentially, the first main purpose of the Calculator
development was the PKC implementation optimization
for an FPGA. Test vectors have been used in order to
chose particular PKC parameters that we have fixed for
the implementation in FPGA. Afterwards, test vectors
have been used for the FPGA implementation validation.

Further, test vectors can be used in the further McEliece
like PKCs properties investigation because all important

intermediate results are recorded. The intermediated re-
sults can be used in order to verify stated hypotheses, or
jut to trace behavior. For the PKC properties investiga-
tion, also the information recorded by the side-channel-
leakage measurement tool can be used.

The test vectors recording can be turned-on appending
any command by a file name for the test vectors file. Test
vectors are formatted using the standard NTL output.

4.3 Side-Channel Vulnerability Examination

The side-channel-leakagemeasurement tool records In-
dicators, Tab. 2, measured in order to preform an at-
tack, and information about secret, Tabs. 3 and 4, used
to compute success rate of an attack. Secret error vec-
tor, secret permutation, and secret Goppa polynomial,
respectively can be guessed using the measured data. Also
power-consumption and electromagnetic-emanation leak-
ages can be simulated. Using this tool, particular keys,
and proposed countermeasures can be tested. Thanks to
the NTL, source codes are easy to read, and it is possi-
ble to replace a measured operation for a designer’s one.
Not only computation time is measured by the tool. Also
Degrees and Hamming Weights of polynomials processed
are recored.

measure--key measurementCode publicKeyFilename

privateKeyFilename nTests min hw e

max hw e measurementFileName

measure--rnd--keys measurementCode m t nRandKeyPairs

nTests publicKeyFilename min hw e max hw e

measurementFileName is storeKeys

5 THE SIDE–CHANNEL–LEAKAGE

MEASUREMENT TOOL

This measurement tool is employed in the Patterson’s
algebraic decoding algorithm, Fig. 5. As we mentioned
above, using the tool, secret error vector, secret permuta-
tion, and also the secret Goppa polynomial, can be pos-
sible to guess. Moreover, power consumption and electro-
magnetic emanation leakages can be simulated using the
measured data provided by this tool.

5.1 Measurement Type 1

This measurement type records average computation
time, standard deviation of the computation time, and
if applicable, average values and standard deviations of
Hamming Weights and degrees of polynomials processed,
and steps performed, during Patterson’s algebraic decod-
ing algorithm defined in Fig. 5. The purpose is to mea-
sure these Indicators (Tab. 2) dependency on HW(e),
see Tab. 1. Hence, output file of this measurement type
is composed as follows. As the first column there is the
HW(e) growth according to that Indicators are recorded.
Since there is a possibility to make such record for many
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Table 1. Information recorded about secret error vector in order
to measure success rate of an attack

Item/Column number The secret value

1 HW(e)

Table 2. Indicators measured in order to be able to perform side-
channel attacks, and determine where the leakages occur

Item/Column Fig. 5 Indicators:
Object

number step avg(·), atd(·)

1, . . . ,6 1.
computation time

S(Z)deg , HW

7, . . . ,12 2.
computation time

T (Z)deg , HW

13, . . . ,18 3.
computation time

τ(Z)deg , HW
19, 20 4. computation time EEA

21, . . . ,24 4. deg , HW α(Z)

25, . . . ,30 5.
computation time

σ(Z)deg , HW
31, 32 6.,7.,8. computation time e construction

Table 3. One measurement file header for measurement setup.

Value Description

m F2m

t deg g(Z)

nRandKeyPairs Number of randomly generated key-pairs

nTests Number of random messages

per key-pair and HW(e)

min(HW(e)) Start HW(e)

max(HW(e)) End HW(e)

Table 4. Information recorded about secret Goppa polynomial in
order to measure success rate of an attack

Item/Column number The secret value

1, . . . , (t+ 1) g0, . . . , gt

(t+ 2), . . . , (2t+ 3) HW(g0), . . . ,HW(gt)

(2t+ 4) HW(g(Z))

random key-pairs, for the next key-pair there is the next

such record separated by empty row. As the last data

in the measurement file, summarization over all the key-

pairs is placed. At the beginning of measurement file the

measurement setup as stated in Tab. 3 is placed.

The average values and the standard deviations are

computed from nTests encryptions. The measurement file

contains nRandKeyPairs measurement records, each for

one random private key. Optionally, also the test vectors

can be stored in the disk as a text file.

5.2 Measurement Type 2

This second measurement type is designated to mea-

sure Indicators (Tab. 2) dependency on secret Goppa

polynomial (Tab. 4). Corresponding to each information

about Goppa polynomial, Indicators are measured. If

moreover dependency on secret permutation is desired to

measure, then the flag is storeKeys must be set to 1.

Output file of a measurement of this type is composed as

follows.

At the beginning of the file, the measurement setup is

presented. The measurement setup is arranged in Tab. 3.

Regarding the measurement setup, afterwards, informa-

tion about Goppa polynomials (Tab. 4), HW(e) (Tab. 1),

and the measured Indicators (Tab. 2) are stored form left

to right respectively. Thus, for each Goppa polynomial

there is a row, which displays also step-by-step HW(e)

and indicators for each i ∈ [min(HW(e)),max(HW(e))]

according the measurement setup.

Such as in the measurement type 1, the average val-

ues and the standard deviations are computed from nTests

encryptions. The measurement file contains nRandKeyPairs

measurement rows, each for one random private key. Op-

tionally, also the test vectors can be stored in the disk as

a text file.

6 CONCLUSIONS

We implemented a Calculator that allows to choice all

parameters for the original McEliece PKC. It can pro-

vide test vectors and information about a side-channel

vulnerably. IND-CCA2 security is not addressed in this

work, however the Calculator can be taken and the IND-

CCA2 secure conversion can be made without any im-

plementation modification. Although this PKC is be-

lieved to be unbreakable even using quantum crypt-

analysis, it must also be implemented into a real de-

vice. Thus, post-quantum McEliece PKC, or Niederre-

iter PKC, are not an exception in terms of Side-Channel

Attacks. Moreover, attacks employing SCAs considering

the new method to solve Multiple right-hand side equa-

tion systems [27] (Algebraic SCAs) are indeed a serious

threat in post-quantum cryptography. Designed counter-

measures against SCA can be evaluated, when add to the

code of Calculator.
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