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Abstract

Two-dimensional human pose estimation has been widely applied in real-world applica-
tions such as sports analysis, medical fall detection, human-robot interaction, with many
positive results obtained utilizing Convolutional Neural Networks (CNNs). Li et al. at
CVPR 2020 proposed a study in which they achieved high accuracy in estimating 2D
keypoints estimation/2D human pose estimation. However, the study performed estima-
tion only on the cropped human image data. In this research, we propose a method for
automatically detecting and estimating human poses in photos using a combination of
YOLOv5 + CC (Contextual Constraints) and HRNet. Our approach inherits the speed
of the YOLOv5 for detecting humans and the efficiency of the HRNet for estimating 2D
keypoints/2D human pose on the images. We also performed human marking on the im-
ages by bounding boxes of the Human 3.6M dataset (Protocol #1) for human detection
evaluation. Our approach obtained high detection results in the image and the processing
time is 55 FPS on the Human 3.6M dataset (Protocol #1). The mean error distance is
5.14 pixels on the full size of the image (1000×1002). In particular, the average results
of 2D human pose estimation/2D keypoints estimation are 94.8% of PCK and 99.2% of
PDJ@0.4 (head joint). The results are available.
Keywords: YOLOv5, HRNet, 2D key points estimation, 2D human pose estimation.
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1 Introduction

Human pose estimation is defined as the process
of localizing human joints (also known as keypoints
– elbows, wrists, etc) in images or videos. In the
last five years, this task has been gaining a lot of at-
tention. Human pose estimation is applied in many
fields such as sports analysis [56, 61]; medical fall
event detection [55]; identification and analysis in
traditional martial arts [49]; robot interaction, con-
struction of actions and movements of people in the
game [56]. There are two study directions for esti-
mating human pose from image/video: 2D human
pose estimation and 3D human posture estimation.
The 2D human pose estimation is an intermediate
result for the 3D human pose estimation. Based on
the approach of Zhou et al. [63], 3D human pose es-
timation results are highly dependent on 2D human
pose estimation.

Two deep learning-based approaches can be
used to estimate 2D human poses. The first is the
regression methods, which apply a deep neural net-
work to learn a mapping from the input image to
body joints or parameters of human body models
to predict the key points on the human (keypoints-
based). The second is the body part detection meth-
ods to predict the approximate locations of body
parts and joints (bodyparts-based). Deep learning
networks have achieved remarkable results for the
estimation task. However, they still face many chal-
lenges such as heavy occlusion, partially visible hu-
man body, image resolution.

Sudharshan [3] presented some typical studies
[51, 50, 54, 8, 35, 47, 57, 53] on estimating 2D
human posture in images or videos. In Table 2
of [47], the authors have shown the results of the
High-Resolution Network (HRNet) comparing the
above methods for 2D human pose estimation on
the COCO [31] dataset. HRNet is the most accurate
across different configurations. Li et al. [29] used
HRNet as a backbone for 2D human pose estima-
tion on cropped human images of the Human 3.6M
[23] dataset. As the Human 3.6M dataset contains
548,819 images of Protocol #1 for testing, manually
marking the data area of the person in the image will
take a long time. This difficulty is very dependent
on the person conducting the crop and the HRNet’s
estimated data area in the human data region, with-
out regard for other regions in the image. This prob-

lem of detecting people in the image is considered
to be 100% accurate. However, when applied to real
problems, no approach is appropriate.

In this paper, we combine the advantages of
processing speed and a Contextual Constraint (CC)
into a pre-trained YOLO v5 network [25, 24] for
detecting people in a crowd and a pre-trained model
of HRNet for estimating 2D keypoints/ 2D human
pose in the image of Human 3.6M dataset. This
study is a step in the process of estimating the 3D
human pose in the scene/3D point cloud that we will
perform in the next studies. Our proposed method
is called (YOLOv5 + HRNet combined), as shown
in Figure 1.

The main contribution of the paper is as fol-
lows:

– We have manually marked human regions by
bounding boxes on the image with our tool de-
veloped in MATLAB to evaluate human detec-
tion.

– We have proposed some efficient Contextual
Constraints (CC) for human detection in images
or video.

– Evaluating the human detection in the images of
the Human 3.6M dataset with pre-trained mod-
els which trained on widely used CNNs architec-
tures (e.g. YOLOv5, Mask R-CNN, VGG, SSD,
Mobilenet).

– We proposed an efficient matching strategy,
called YOLOv5 + HRNet combined for esti-
mating 2D human pose/2D keypoints from the
Human 3.6M dataset.

– We performed step-by-step detailed evaluations
of human detection results, 2D human pose esti-
mation/2D keypoints in images or videos.

The paper is organized as follows. Section 1 in-
troduces human detection, 2D keypoints estimation
and 2D human pose estimation on the image. Sec-
tion 2 discusses related works by the methods, re-
sults of 2D keypoints estimation and 2D human
pose estimation. Section 3 presents a combination
of YOLOv5, context constraints, and HRNet for
2D keypoints estimation/2D human pose estima-
tion. Section 4 introduces and presents the Human
3.6M dataset, evaluation metrics, implementation,
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Figure 1. Proposed combined model of YOLOv5 and HRNet for highly accurate 2D human pose
estimation.

some results, discussions on human detection as 2D
keypoints estimation, and 2D human pose estima-
tion. Section 5 concludes the paper and proposes
some future work.

2 Related Works

Estimating human pose is an important issue
that has been studied by the computer vision com-
munity for the past decade, especially when the ad-
vent of convolutional neural networks has yielded
impressive results when solving this problem. The
process of estimating human posture can be done
based on the results of human detection or per-
formed directly on the image. Here we present
some studies on these two approaches.

Human detection in images or videos is one of
the most important problems in computer vision.
In recent years, most studies and applications have
employed CNNs to detect persons and objects in
general and demonstrated many impressive results.
Girshick et al. [15] proposed a Region-based Con-
volutional Neural Network (R-CNN) for object de-
tection. This network can be applied as a bottom-up
method for localizing and segmenting objects of re-
gion proposals, and it improved classification effi-
ciency by using supervised pre-training for labelled
training data.

He et al. [19] proposed SPPnet (Spatial Pyra-
mid Pooling network) to train the object detection
model. Traditional CNNs include two main com-
ponents: convolutional layers and fully connected
layers. To overcome the fixed-size constraint of the
network, SPPnet adds an SPP layer to the last con-
volutional layer. The fixed-length output features
are generated from the SPP layer pools. SPP is rel-
atively robust to object deformations. The extracted
features of variable scales are pooled by SPP. Karen
et al. [46] based their assumptions on the character-
istics of CNNs that the depth of the CNNs affects
the accuracy. The greater the depth, the greater the
identification detection accuracy. Therefore, the au-
thors have proposed the VGG16 network with the
input 224×224 RGB image to the convolutional
layer. After that, the input image passed a stack
of convolutional layers. The final output size of the
convolutional layer is 3×3. Recently, Xiangyu et
al. [62] improved the VGG model in Fast R-CNN
for object classification and detection; Haque et al.
[17] also applied the VGG model to ResNet to de-
tect objects.

To improve the results of R-CNN and SPPnet,
Girshick et al. [14] proposed Fast R-CNN, which
takes as input the entire image and a set of region
proposals. Fast R-CNN performs two main types
of computational steps: processes several convo-
lutional and max-pooling layers on the whole im-
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age to generate a feature map. Each proposal in-
terest region of the pooling layer then extracts a
fixed-length feature vector from the generated fea-
ture map, and the input of a sequence of fully con-
nected layers is the extracted feature vector. The
SPPnet [19] and Fast R-CNN [14] models work on
region proposals that could be the object, which
reduces the computational burden of these CNNs.
However, the accuracy of these networks has not
been greatly improved. Ren et al. [43] proposed
an RPN (Region Proposal Network) that shares the
full-image convolutional features with the detection
network, which makes nearly cost-free region pro-
posals. The architecture of the Faster R-CNN con-
sists of two parts: a deep, fully convolutional net-
work (RPN) and a Fast R-CNN detector that uses
the proposed regions. Recently, Goon et al. [22]
used the Faster R-CNN for detecting pedestrians
from drone images. The CNNs presented so far (R-
CNN, SPPnet, VGG, Fast R-CNN, Faster R-CNN)
are mainly concerned with high accuracy, but the
computational burden for object detection is high.
Therefore, Redmon et al. [40] proposed a YOLO-
based network with a computation speed of about
67 fps of YOLO version 2 on the VOC 2007 dataset.
The bounding boxes are predicted directly using the
fully connected layers on top of the convolutional
feature extractor. Currently, the YOLO network
has four versions (YOLO version 1 to 4). Lui et
al. [32] proposed the Single Shot Detector (SSD)
network for object detection. The following mech-
anism is employed: the base network is used for
high-quality image classification; fixed-size bound-
ing boxes and scores are generated from a feed-
forward convolutional network, and the final detec-
tions are generated by a non-maximum suppression
step. Jonathan et al. [21] have performed a com-
parative study for object detection, which focuses
on comparing object detection results based on typ-
ical CNNs: Faster R-CNN [43], R-FCN [10], and
SSD [32]. The CNNs used the feature extractors as
VGG or ResNet, calling them “meta-architectures”.
The authors evaluated many configurations of each
CNN and analyzed the effect of configurations and
the image size on the detection results.

Generally, immediate estimation of a human
pose in images or videos using CNN can be di-
vided into two families [12]: regression methods
and body part detection methods.

Regression methods use CNNs to learn a map-
ping from the input image to predict the key points.
Toshev et al. [52] proposed a Deep Neural Net-
work based on a cascade technique for regressing
the location of body joints. The proposed CNN in-
cludes seven layers, the input image size of CNN is
resized to 220× 220 pixels. The cascade of pose
regressor technique is applied to train the multi-
layer prediction model. In the first stage, the cas-
cade starts with the initial position predicted over
the entire input image. In the next stage, Deep
Neural Network regressors are trained to predict a
displacement of the joint locations with the correct
locations in the previous stage. Thus, each subse-
quent stage can be thought of as a refinement of
the currently predicted pose. Liang et al. [30] pro-
posed a strategy of a compositional pose regression
based on the ResNet50 [20]. The authors used a re-
parameterized and bone-based representation that
contains human body information and pose struc-
ture but did not use joint-based representation. The
loss function is calculated based on each part of
the human body, the joints are defined with respect
to a constant origin point in the image coordinate
system J0. Each bone has a directed vector point-
ing from it to its parent. Luvizon et al. [34] pro-
posed an end-to-end regression based on two Soft-
argmax functions (Block-A and Block-B) for 2D
human pose estimation from images, Block-A pro-
vides refined features and Block-B provides body-
part and contextual activation maps. Two blocks are
used to build one prediction block. Block-A used a
residual separable convolution, the Block-B is used
to transform input feature maps into part-based de-
tection maps and context maps. As for the body
part detection, body part detection methods train a
body part detector to predict the positions of body
joints. Newell et al. [36] proposed the stacked hour-
glass architecture for training model to predict the
positions of body joints on the heatmap in which
the heatmap is generated by a 2D Gaussian cen-
tered at the 2D ground truth annotation. The stacked
hourglass repeats the bottom-up and top-down pro-
cessing with intermediate supervision with the eight
hourglasses. This CNN used the convolutional and
max-pooling layers at a very low resolution and
used then the top-down sequence of upsampling
(the nearest neighbor upsampling of the lower reso-
lution) and a combination of features across scales.
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With the body part detection methods, Cao et
al. [6] proposed a two-branch CNN to jointly pre-
dict heatmaps for body part detection that generate
the ground truth confidence maps from the anno-
tated 2D keypoints. The first branch predicts confi-
dence maps and the second branch predicts the part
affinity fields based on a novel feature representa-
tion called part affinity fields that preserves both lo-
cation and orientation information across the region
of support of the limb.

3 YOLOv5 + HRNet models com-
bined for 2D Human pose estima-
tion and 2D keypoint estimation

3.1 Human detection

Detecting humans in images using CNNs has
been studied extensively and has achieved impres-
sive results. Especially, CNNs such as R-FCN [11]
Faster R-CNN [44], SSD [33], YOLO [39, 41, 42,
4] obtain good results as compared and presented
by Jonathan [26]. The Faster R-CNN [44] is an im-
provement to the Fast R-CNN [14], it also integrates
the region recommendation algorithm into the CNN
model. The Faster R-CNN is based on two main
ideas: building a single model consisting of a re-
gion proposal network (RPN) and the Fast R-CNN
with a shared CNN. The Faster R-CNN works with
several steps:

1. Using a pre-trained CNN such as VGG or
ResNet (backbone) to classify images.

2. Fine-tune RPN (region proposal network) for
the region proposal task, initialized by the pre-
trained image classifier model (backbone). Pos-
itive examples are recommended regions when
IoU > 0.7 by sliding a small window of size
n× n over the entire CNN feature of the image.
At the center of each window, multiple regions
with different scales and ratios at the same time
are predicted. Anchor is a combination of slid-
ing window center, scale, and ratio.

3. Training the Fast R-CNN model using region
proposals generated from the current RPN.

4. Using the Fast R-CNN network to initialize RPN
training. While keeping the convolution layers
shared, just fine-tune the specific RPN layers.

At this stage, RPN and detection networks have
shared convolution layers.

5. Finally, fine-tuning separate layers of the Fast R-
CNN.

Then came the introduction of the Mask R-CNN
based on the Faster R-CNN as the backbone for de-
tecting and segmenting people in images.

Especially, YOLO is a CNN network with av-
erage accuracy, very fast processing speed, up to
91 fps. Since the input is the input image, YOLO
uses some simple steps of a network of convolution,
pooling, and fully connected layers to get the out-
put. This architecture can be optimized to run on the
GPU with a single forward pass, and thus achieve
very high speeds. The main idea of YOLOv1 [39] is
to divide the image into a grid cell with size (7×7).
For each grid cell, the model will make predictions
for a bounding box (B) of humans. Each box B
includes 5 parameters (the coordinates of the cen-
ter of human (x,y), width (w) of human, the height
of human (h), and confidence (co fh) of the hu-
man prediction. Given the grid cells in the other
(7×7) grid, the model also predicts the probability
into each class human, the YOLOv1 architecture is
shown in Figure 2. (co fh) is defined as Equation 1.

co fh = P(h)∗ IOU prediction
groud−truth (1)

where P(h) is the probability that there is a human
in the cell, IOU prediction

groud−truth is the intersection over a
union of the prediction region and the ground truth.

YOLOv1 [39] imposes spatial constraints on
bounding boxes, each grid cell can predict only very
few bounding boxes and only one class. During
training, the loss function does not have a separate
evaluation between the error of the small bounding
box versus the error of the large bounding box. To
improve the disadvantages of YOLOv2, YOLOv2,
and YOLO 9000 have come up with some strate-
gies.

– Batch Normalization: Batch Normalization is
added after all convolution layers of YOLOv2
[41].

– High-resolution classifier: YOLO is trained with
2 phases. The first phase will train a classifier
network with a small input image size (224×
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Figure 2. YOLO architecture [39] for object detection in the image.

224) and the second phase will remove the fully
connected layer and use this classifier network
as the backbone to train the detection network.
In the YOLOv2, fine-tune the backbone network
under the larger input image is (448×448).

– Using anchor box architecture to make predic-
tions: In YOLOv2 remove the fully connected
layer in the middle of the network and use an-
chor box architecture to predict bounding boxes.
It is much easier to predict offsets relative to the
anchor box than to predict the bounding box co-
ordinates.

– K-mean clustering for anchor selection: In-
stead of having to manually select anchor boxes,
YOLOv2 uses a k-means algorithm to make the
best anchor box choices for the network.

– Direct location prediction: YOLOv1 has no lim-
itations in predicting the position of the bound-
ing box. When the weights are initialized ran-
domly, the bounding box can be predicted any-
where in the image. This makes the model un-
stable in the early stages of training. The posi-
tion of the bounding box can be very far from the
position of the grid cell. YOLOv2 uses the sig-
moid (σ) function to restrict the value between
0 and 1, thereby limiting the bounding box pre-
dictions around the grid cell, thereby making the
model more stable during training.

– Add fine-grained features: Faster R-CNN and
SSD make predictions at different layers of the
network to take advantage of feature maps of
different sizes. YOLOv2 also combines features
at different levels to make predictions, specifi-
cally YOLOv2’s original architecture combines
a 26x26 feature map taken from the near end
with a 13× 13 feature map at the end to make

predictions. Specifically, these feature maps will
be merged together to form a block used for pre-
diction.

– Multi-Scale Training: After adding the anchor
box technique to YOLOv2, the input image size
changed to 416 × 416 instead of 448 × 448.
However, YOLOv2 is designed with only con-
volution and pooling layers, so it can adapt to
much different input image sizes.

– Light-weight backbone: In YOLOv2 use
Darknet-19. This network includes 19 layers of
convolution and 5 layers of max-pooling which
makes it faster than previous YOLO version.

YOLOv3 [42] has a similar architecture to
YOLOv2, but it also brings some improvements.

– Using logistic regression to predict the confi-
dence of the bounding box.

– YOLOv3 uses logistic classifiers instead of soft-
max for object classification. This works bet-
ter if the labels are not “mutually exclusive”, i.e.
there can be objects belonging to two or more
different classes.

– YOLOv3 uses Darknet-53 as backbone.

– YOLOv3 uses the Feature Pyramid Networks
(FPN) architecture to make predictions from
various scales of feature maps. This helps
YOLOv3 take advantage of feature maps with
different coarseness — fineness for prediction.

– YOLOv3 also adds associations between pre-
diction classes. Model upsample the prediction
classes at the later layers and then concatenate
with the prediction classes in the earlier layers.
This method helps to increase accuracy when
predicting small objects.
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Figure 2. YOLO architecture [39] for object detection in the image.

224) and the second phase will remove the fully
connected layer and use this classifier network
as the backbone to train the detection network.
In the YOLOv2, fine-tune the backbone network
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ordinates.

– K-mean clustering for anchor selection: In-
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YOLOv2 uses a k-means algorithm to make the
best anchor box choices for the network.

– Direct location prediction: YOLOv1 has no lim-
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dictions around the grid cell, thereby making the
model more stable during training.

– Add fine-grained features: Faster R-CNN and
SSD make predictions at different layers of the
network to take advantage of feature maps of
different sizes. YOLOv2 also combines features
at different levels to make predictions, specifi-
cally YOLOv2’s original architecture combines
a 26x26 feature map taken from the near end
with a 13× 13 feature map at the end to make
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convolution and 5 layers of max-pooling which
makes it faster than previous YOLO version.

YOLOv3 [42] has a similar architecture to
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– Using logistic regression to predict the confi-
dence of the bounding box.

– YOLOv3 uses logistic classifiers instead of soft-
max for object classification. This works bet-
ter if the labels are not “mutually exclusive”, i.e.
there can be objects belonging to two or more
different classes.

– YOLOv3 uses Darknet-53 as backbone.

– YOLOv3 uses the Feature Pyramid Networks
(FPN) architecture to make predictions from
various scales of feature maps. This helps
YOLOv3 take advantage of feature maps with
different coarseness — fineness for prediction.

– YOLOv3 also adds associations between pre-
diction classes. Model upsample the prediction
classes at the later layers and then concatenate
with the prediction classes in the earlier layers.
This method helps to increase accuracy when
predicting small objects.
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The object detection challenge is now more
accessible to those who do not have powerful
computer resources thanks to the architecture of
YOLOv4 [4]. Using YOLOv4, we can train an ob-
ject detection network with extremely high accu-
racy using only a 1080ti or 2080ti GPU. To bring
computer vision applications into practice in the fu-
ture, current networks will need to be re-optimized
to tolerate weak computing resources or develop
high parallelism in servers.

In this paper, we use a pre-trained model trained
on the COCO dataset of YOLOv5 [24] for head and
human detection in a crowd and a context constraint
to get the bounding box of the detected human in
the image. The result of human and head detection
when not using the constraint is shown in Figure 3.
In Figure 3, the wall camera was mistakenly de-
tected as a person. And in the image, the person has
the largest bounding box in the image. Therefore,
we propose that the bounding box of the person is
the bounding box with the highest height among the
bounding boxes detected and marked as the person.

3.2 HRNet-based for for 2D Human pose
estimation/2D keypoints estimation

For human pose estimation/2D keypoints esti-
mation of human, can use backbones like ResNet
[20], Stacked Hourglass Networks [36], or some
studies like Openpose [37], 2D Pose Estimation us-
ing Part Affinity Fields [7], CPM (Convolutional
pose machines) [54]. In this paper, we used the
study’s Ke et al. [47] that called HRNet for 2D hu-
man pose estimation on the images.

HRNet has the first stage of using a high-
resolution subnetwork, after that repeatedly fus-
ing the representations produced by the high-to-low
subnetworks. The feature maps are created by sim-
ply generating high-resolution representations by
2D Gaussian on the ground truth position of each
keypoint from the heatmaps. On the COCO and
MPII datasets, HRNet uses the pre-trained ResNet
as the backbone.

In this paper, we use the pre-trained model of
HRNet on the Human 3.6M dataset to evaluate the
2D human pose estimation results on the detected
human, as presented in Section 3.1.

4 Experimental Results

4.1 Data collection

To train and evaluate the model and the esti-
mated model, we use the benchmark Human 3.6M
dataset [23]. Human3.6M is the most widely used
indoor dataset for 3D human pose estimation from
single-view or multi-view (4 different views in an
indoor Lab scene) of the cameras. This dataset
is captured from 11 subjects/people (6 males and
5 females). The people perform six types of ac-
tion (upper body directions movement, full body
upright variations, walking variations, variations
while seated on a chair, sitting on the floor, var-
ious movements), which includes 16 daily activi-
ties (directions, discussion, greeting, posing, pur-
chases, taking photos, waiting, walking, walking
dog, walking pair, eating, phone talk, sitting, smok-
ing, sitting down, miscellaneous). The frames are
captured from TOF (Time-of-Flight) cameras, and
the data frame rate of the cameras is from 25 to
50 Hz. This dataset contains about 3.6 million im-
ages (1,464,216 frames for training from 5 people
(2 female and 3 male), 646,180 frames for valida-
tion from 2 people (1 female and 1 male), 1,467,684
frames for testing from 4 people (2 female and 2
male)), 3.6 million 3D human pose annotations cap-
tured by the marker-based MoCap system. 3D hu-
man pose annotation of Human 3.6M dataset con-
sists of 17 key points arranged in order as shown in
Figure 4.

3D human pose annotations of Human 3.6M are
annotated based on the Mocap system. The coordi-
nate system of this data is the real-world coordinate
system. To evaluate the estimation results, we con-
vert this data to the camera coordinate system. We
based on the parameter set of the cameras and the
formula for converting data from 2D to 3D of Nico-
las [5] by Equation 2.

P3Dc.x =
(xd − cx)∗depth(xd ,yd)

f x

P3Dc.y =
(yd − cy)∗depth(xd ,yd)

f y
P3Dc.z = depth(xd ,yd)

(2)

where f x, f y,cx, and cy are the intrinsics of the
depth camera. P3Dc is the coordinate of the key
point in the camera coordinate system.
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Figure 3. Human and head detection results using YOLOv5 [24] on Subject 11 of the Human 3.6M dataset.

Figure 4. An illustration of human pose in Human 3.6M dataset. The left is a human skeleton in the
real-world coordinate system. The middle is the human skeleton on the 2D image. The right is the order

and names of the joints of the human skeleton.
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Figure 3. Human and head detection results using YOLOv5 [24] on Subject 11 of the Human 3.6M dataset.

Figure 4. An illustration of human pose in Human 3.6M dataset. The left is a human skeleton in the
real-world coordinate system. The middle is the human skeleton on the 2D image. The right is the order

and names of the joints of the human skeleton.
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We reprojected the 3D human pose annotation
from the real-world coordinate system to the cam-
era coordinate system using Equation 3.

P3Dc = (P3Dw −T )∗R−1 (3)

where R and T are the rotation and translation pa-
rameters to transform from the real-world coordi-
nate system to the camera coordinate system. P3Dw

is the coordinate of the keypoint in the world coor-
dinate system. We projected 3D human pose an-
notation to 2D human pose annotation according to
Equation 4.

P2D.x =
P3Dc.x∗ f x

P3Dc.z
+ cx

P2D.y =
P3Dc.y∗ f y

P3Dc.z
+ cy

(4)

where P2D is the coordinate of the key point in the
image.

The source code mark and 2D annotation of Hu-
man 3.6M database is shown in the link 1.

The authors have divided the Human 3.6M
dataset into three protocols to train and test the es-
timation models. Protocol #1 uses the subjects S1,
S5, S6, and S7 for training, and the subjects S9 and
S11 for testing. Protocol #2 is divided into training-
testing similar to Protocol #1, but the predictions
are further post-processed by a rigid transformation
before comparing to the ground-truth. Protocol #3
uses the subjects S1, S5, S6, S7, and S9 for train-
ing, and the subjects S11 for testing. This dataset is
saved in path 2.

To evaluate the results of human detection on
the image of Human 3.6M (testing set includes Pro-
tocol #1 (Subject 9, Subject 11), Protocol #3 (Sub-
ject 11)), we marked the person in the image with
a bounding box (bbox(x,y,w,h)), as shown in Fig-
ure 5. The number of frames manually marked
bounding box is 548,819 images.

Figure 5. Illustration of a person’s bounding box
on the image.

4.2 Implementation and Evaluation mea-
surement

In this paper, we used PC with GPU GTX 970,
4GB for fine-tuning, training, testing human de-
tection, human pose estimation. The processing
steps, code fine-tuning, training, testing, and devel-
opment process were performed in Python language
(≥3.6 version) with the support of the OpenCV,
Pytorch (≥3.6 version), CUDA/cuDNN libraries,
gcc/& g++ (≥5.4 version), In addition, there are
a number of other libraries such as Numpy, scipy,
Pillow, cython, matplotlib, scikit-image, tensorflow
≥ 1.3.0, keras ≥ 2.0.8, opencv-python, h5py, im-
gaug, and IPython. The source code for training
and testing is shown in link 3.

In particular, the 2D human pose estimation
process using HRNet is performed on the image
with resolution (228×384), while the image size of
human detection by YOLOv5 + CC is (w×h), this
image is resized to the size of (228×384), and the
2D human pose image of the Human 3.6M database
has the resolution of (1000× 1002). In this paper,
we use Affine transformation (Am) [48] to transform
the estimated 2D human pose onto a resolution im-
age of (1000x1002), as illustrated in Figure 6.

1https://drive.google.com/drive/folders/1xtiI0VqSXXytAG5NxmlK3ci-ObR1MgT-?usp=sharing
2http://vision.imar.ro/human3.6m/
3https://drive.google.com/drive/folders/1-Hu2842xWDtZWBo762iTviBY cuaAR7V ?usp = sharing
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Figure 6. An illustration of human pose in Human 3.6M dataset. (a) is 2D human pose estimation results
on the image of size (w×h) from human detection results by YOLov5 +CC. (b) is 2D human pose

estimation results on the image of size (288×384). (c) is 2D human pose estimation results on the image
of size (1000×1002).

The Affine transformation (Am) includes the
Rotation (Equation 5), Translation (Equation 6) and
Scaling (Equation 7) matrices as shown.
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where (Xro,Yro), (X ,Y ) are the resulting rotated co-
ordinates, the coordinates of the pixel to be rotated,
respectively. α is the rotation angle.
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where (Xtr,Ytr), (X ,Y ) are the resulting translated
coordinates, the coordinates of the pixel to be trans-
lated, respectively. (Tx,Ty) is the translation vector.
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where (Xsd ,Ysd), (X ,Y ) are the resulting scaled co-
ordinates, the coordinates of the pixel to be scaled,
respectively. (Sx,Sy) is the scales of the image.

In this paper, the coordinate rotation has (α =
0). The process of converting the pose estimated
(PE) on the resolution image (288×384) to the res-
olution image (1000 × 1002) (PEN) is performed
based on the Equation 8.

PEN = A−1
m ∗PE (8)

In this paper, we perform the assessment in two
stages: The results of detecting people in the im-
age are first evaluated; The second is to evaluate the
2D keypoints estimation results of humans on the
image.

At the first stage, we use the Jaccard index (Pji)
[16] for the evaluation, it is illustrated in Equation
9.

Pji =
Rg ∩Re

Rg ∪Re
(9)

where Rg is the person’s ground truth bound-
ing box, Re is the estimated bounding box
of human. We use the thresholds (t =
{50%,55%,60%,65%,70%}) to evaluate the accu-
racy of the results of human detection in the image
with ({AP50,AP55,AP60,AP65,AP70}), if Pji ≥ t then
it is a true detection.

To evaluate the results of 2D human pose es-
timation/2D keypoints estimation, we evaluate on
three measures: the average distance between the
2D key point of the 2D ground truth and the esti-
mated 2D key point (Erravg), as shown in Equation
10.

Erravg =
1
N

ΣN
1

1
J ΣJ

1Dis(pi, p̃i)(10)

where N and J are the numbers of frames and num-
ber of joints (J = 17) respectively, p̃i and pi are pre-
dicted and ground-truth coordinates of ith joint of
the hand, Erravg is the Euclidean distance between
two points.
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on the image of size (w×h) from human detection results by YOLov5 +CC. (b) is 2D human pose

estimation results on the image of size (288×384). (c) is 2D human pose estimation results on the image
of size (1000×1002).
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Rotation (Equation 5), Translation (Equation 6) and
Scaling (Equation 7) matrices as shown.
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where (Xsd ,Ysd), (X ,Y ) are the resulting scaled co-
ordinates, the coordinates of the pixel to be scaled,
respectively. (Sx,Sy) is the scales of the image.

In this paper, the coordinate rotation has (α =
0). The process of converting the pose estimated
(PE) on the resolution image (288×384) to the res-
olution image (1000 × 1002) (PEN) is performed
based on the Equation 8.

PEN = A−1
m ∗PE (8)

In this paper, we perform the assessment in two
stages: The results of detecting people in the im-
age are first evaluated; The second is to evaluate the
2D keypoints estimation results of humans on the
image.

At the first stage, we use the Jaccard index (Pji)
[16] for the evaluation, it is illustrated in Equation
9.

Pji =
Rg ∩Re

Rg ∪Re
(9)

where Rg is the person’s ground truth bound-
ing box, Re is the estimated bounding box
of human. We use the thresholds (t =
{50%,55%,60%,65%,70%}) to evaluate the accu-
racy of the results of human detection in the image
with ({AP50,AP55,AP60,AP65,AP70}), if Pji ≥ t then
it is a true detection.

To evaluate the results of 2D human pose es-
timation/2D keypoints estimation, we evaluate on
three measures: the average distance between the
2D key point of the 2D ground truth and the esti-
mated 2D key point (Erravg), as shown in Equation
10.

Erravg =
1
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where N and J are the numbers of frames and num-
ber of joints (J = 17) respectively, p̃i and pi are pre-
dicted and ground-truth coordinates of ith joint of
the hand, Erravg is the Euclidean distance between
two points.
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Figure 7. An illustration of human pose format in Human 3.6M dataset, LSP dataset.

The second and third are the PCk (Percent-
age of Correct Key-points) and the PDJ (Percent-
age of Detected Joints) measurements, respectively
[59, 38, 45]. In this paper, we use the format of
the LSP dataset implemented in Yang et al.’s study
[59], the skeleton data includes 14 keypoints repre-
senting the evaluation of PCK, PDJ [58] of the Hu-
man 3.6M dataset. The data normalization process
is illustrated in Figure 7. In [59], PCK and PDJ are
computed on seven representative keypoints in the
human skeleton, called: “Ankle”– Ankle, “Knee” –
Knee, “Hip” – Hip, “Wris” – Wrist, “Elbo” – El-
bow, “Shou” – Shoulder, “Head” – Head. The eval-
uation code is shown in [60].

4.3 Results and Discussions

We first evaluate the results of human detec-
tion in images when using the proposed method
(YOLOv5 +CC). At the same time, we compare
this method with some studies on human detection
(e.g. Mask R-CNN, VGG, SSD, Mobilenet) in im-
ages combined with constraints (CC). The results
are shown in Table 1.

In Table 1, we evaluate the number of the de-
tected human (Number detected), each frame with
only one detected human marked with a bound-
ing box (rectangle) on the Human 3.6M dataset
(Protocol #1 - 548,819 images). In which, Mask
R-CNN has the highest detection rate (100%).

Next, we evaluate the accuracy of human de-
tection (AP) on the images that have been de-
tected (Number detected). Our proposed method
has the highest accuracy (AP) at all thresholds
(AP50,AP55,AP60,AP65,AP70). In particular, we also
evaluate the processing speed of human detection
on images, which we recommend as having the
fastest processing speed (55 f ps). This is a very fast
speed on an average configuration computer. The
results of human detection in the image are shown
in link 4.

Based on the human detection results of our
proposed method (Table 1), we evaluate of 2D key-
points estimation/2D human pose estimation. The
results of human pose estimation based on Erravg

measurement on the Human 3.6M dataset (Protocol
#1) are shown in Table 2.

In Table 2, the average error value of our pro-
posed model is 5.14 pixels, this error value is very
low, it is only 2 pixels larger than (HRN + U + S)
[28], [29] method. While we evaluate the whole
image. In particular, the PCKh@50 measure has a
very high accuracy, 94.8% on average.

The results of the 2D keypoints estimation on
the image are illustrated in Figure 8.

We next evaluate the 2D keypoints estimation/
2D human pose estimation results by PCK, PDJ
measurements, they are shown in Table 3.

4https://drive.google.com/drive/folders/1F0GKwKVx6Wp4_YzjmJEwAJKXd5fIUP80?usp=sharing
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Table 1. The results of human detection on the Human 3.6M dataset (Protocol #1) evaluated on the CNNs.

Measurement/
Methods

Number
testing
samples

Number
detected

AP50
(%)

AP55
(%)

AP60
(%)

AP65
(%)

AP70
(%)

Processing
time (fps)

YOLOv5 [24] + CC 548,819
548,346
(99.91%)

99.78 99.38 98.42 97.07 94.16 55

Mask R-CNN
[2, 18] + CC 548,819

548,819
(100%)

97.17 96.93 96.61 96.12 95.51 2

MobilenetV1 SSD
[1, 13] + CC 548,819

507,991
(92.56%)

96.87 95.66 93.59 89.52 81.38 10

VGG SSD [13] + CC 548,819
536,496
(97.75%)

99.14 98.60 97.66 95.99 92.81 12

Mobilenet SSD [27]
+ CC 548,819

548,801
(99.99%)

77.04 75.93 73.43 68.34 59.99 4.34

Table 2. The results of 2D keypoints estimtion/2D human pose estimation ((Erravg - pixels)) on the Human
3.6M dataset (Protocol #1 - 548,346 images) that based on the human detection results of YOLOv5+CC

method.

Methods
Average Joint Localization Error

(Erravg)
(pixels)

CPN (CVPR’ 18) [9] 5.4
HRN + U + S [28], [29] 4.4
Our (YOLOv5 +CC+ HRNet)(Full size of image) 5.14

Table 3. The results of 2D keypoints estimtion/2D human pose estimation ((PCK,PDJ - %)) on the
Human 3.6M dataset (Protocol #1 - 548,346 images) that based on the human detection results of

YOLOv5+CC method.

Part/
Joints/

Measurement

Ankle
(%)

Knee
(%)

Hip
(%)

Wris
(%)

Elbo
(%)

Shou
(%)

Head
(%)

Mean
(%)

Part
PCKh@0.5 94.4 95.0 96.0 92.2 94.0 96.1 96.1 94.8

Joints
PDJ@0.10 88.2 92.1 93.1 86.1 88.9 92.6 93.9 -
PDJ@0.20 94.4 95.0 96.0 92.2 94.0 96.1 96.1 -
PDJ@0.30 95.9 96.1 97.1 94.7 96.2 97.2 97.3 -
PDJ@0.40 98.2 98.3 99.1 97.4 98.4 99.1 99.2 -
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Figure 8. An illustration of 2D keypoints estimation on the Human 3.6M dataset (Protocol #1 - Subject 9,
Subject 11). The blue keypoints are the ground truth keypoints, the red keypoints are the estimated

keypoints.
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The estimated results of 2D keypoints/2D hu-
man pose is shown in link 5.
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Figure 9. Human 3.6M - Area Under the Curve
(AUC) is computed for a range of PDJ thresholds.

The results of the 2D human pose estimation on
the image are illustrated in Figure 10.

Full source code for human pose estimation,
evaluation is shared in link 6.

5 Conclusion

In this paper, we implement a combination of
YOLOv5, contextual constraints (CC), and HRNet
to build an automated application for detecting and
estimating human posture with high accuracy. The
person detection result is (AP50 = 99.78%,AP55 =
99.38%,AP60 = 98.42%,AP65 = 97.07%,AP70 =
94.16%) and the processing time is 55 fps. The
distance error is 5.14 pixels, the average accuracy
according to PCKh@0.5 is 94.8 % and PDJ@0.4 is
99.2% of the head joint. The results are shown in
Table 1, 2, 3 and illustrated in Figure 8, 10. The
model that we proposed is fully automated and has
fast computation times, which can be run on com-
puters with typical configurations. It is suitable for
developing practical applications of human detec-
tion and human pose estimation for sports analysis,
sign language development. Especially the inter-
mediate step for automatic estimation of 3D human
pose. In the near future, we plan to develop a high-
precision automatic model of 3D human pose esti-
mation that can run on a regular desktop computer.
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Figure 10. An illustration of 2D human pose estimation on the Human 3.6M dataset (Protocol #1 - Subject
9, Subject 11). The blue skeleton are the ground truth skeleton, the red skeleton are the estimated skeleton.
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