
 

 

International Journal of Computer Science in Sport 
 

  

Volume 23, Issue 1, 2024 

Journal homepage: http://iacss.org/index.php?id=30 

 

DOI: 10.2478/ijcss-2024-0002 

�✁✂✄☎✆✂✝✞ ✟✠✂✠✞✂✝✄✡ ✄☛ ☞✆✁✌✂✍ ✝✡ ✎✝☎✁✌✆✂✠✏ ✑✆✞✠

✒✆✌✓✝✡✔ ☛✕✄☎ ✆ ☞✝✖✠✏ ✎☎✆✕✂✗✘✄✡✠ ✙✆☎✠✕✆ 

Tomohiro Suzuki1, Kazuya Takeda1 and Keisuke Fujii1,2,3* 

1Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan; 2RIKEN Center 

for Advanced Intelligence Project, Fukuoka, Fukuoka, Japan; 3PRESTO, Japan Science and  

Technology Agency, Kawaguchi, Saitama, Japan 

* Corresponding author 

Abstract 

Automatic fault detection is a major challenge in many sports. In race walking, 

judges visually detect faults according to the rules. Hence, automatic fault detection 

systems will help a training of race walking ✚✛✜✢✣✤✜ ✥✦✧✥★✜✩✪ ✫✛✩✤✬✭ judgement. 

Some studies have attempted to use sensors and machine learning to automatically 

detect faults. However, there are problems associated with sensor attachments and 

equipment such as a high-speed camera, which conflict with the visual judgement 

of judges, and the interpretability of the fault detection models. In this study, we 

proposed an automatic fault detection system for non-contact measurement. We 

used pose estimation and machine learning models trained based on the judgements 

of multiple qualified judges to realize fair fault judgement. We verified them using 

smartphone videos of normal race walking and walking with intentional faults in 

several athletes including the medalist of the Tokyo Olympics. The results show 

that the proposed system detected faults with an average accuracy of over ✮✯✰. 

We also revealed that the machine learning model detects faults according to the 

rules. In addition, the intentional faulty walking movement of the medalist was 

different from that of other walkers. This finding informs realization of a more 

general fault detection model. 

KEYWORDS: MACHINE LEARNING, MOTION ANALYSIS, RACE-WALKING, POSE 
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Introduction 

Race walking is one of the long-distance track and field Olympic events, which has been also 

studied as biomechanical and race analysis research (Gomez-Ezeiza et al., 2018; Miura et al., 

2017; Menting et al., 2022; Pavei & La Torre, 2016). Race Walking is a progression of steps so 

taken that the walker makes contact with the ground, so that no visible (to the human eye) loss 

of contact occurs. The advancing leg must be straightened (i.e. not bent at the knee) from the 

moment of first contact with the ground until the vertical upright position (World Athletics, 

2023). Violation of the first part is called loss of contact (LC) violation and that of the second 

part is called bent knee (BK) violation. The walker who commits these violations will be given 

a red card and disqualified after four red cards. 

Judges in race walking check such faults visually (World Athletics, 2023). Then, the standard of 

judgement varies depending on the judges, calling into question the objectivity of the judgements 

(Hanley et al., 2019; Knicker & Loch, 1990). In addition, because judges check several walkers 

at the same time, they may not be able to fully observe all walkers. For spectators who are not 

familiar with race walking, it is difficult to understand whether a fault has been committed and 

to appreciate the sport. Therefore, it is important to realize objective and fair judgement. It is 

also necessary to clarify the reasons for the judgements and devise ways to make it easier for 

spectators to understand race walking. 

To detect faults precisely, some approaches detected LC using piezoelectric sensors on the 

surface of the insole in contact with the sole (Santoso & Setyanto, 2013) or inertial measurement 

units (IMU) attached to the waist and lower limbs (Di Gironimo et al., 2016; Lee et al., 2013). 

Another study used machine learning to detect two faults using IMU data as input (Taborri et al., 

2019). However, all of these studies used sensors attached to the body, which is not practical 

because they may affect the performance of walkers. In addition, some machine learning 

methods (e.g., support vector machine (Vapnik, 1999) used in Taborri et al., 2019) may make it 

difficult to interpret the reasons for the fault detection and sometimes be in conflict with the 

visual judgement of race-walk judges. Other sports use image recognition technology to solve 

similar problems. Examples include scoring in rhythmic gymnastics (Díaz-Pereira et al., 2014) 

and figure skating (Xu et al., 2019) and detecting offsides in soccer (Uchida et al., 2021). These 

studies use competition videos and do not require sensors. Similarly, in judging the race walking 

competition, automatic non-contact fault detection from the walking video would contribute to 

reducing the burden on judges and improving the objectivity of judgement. 

The purpose of this study is to develop a fault detection system using a fixed smartphone camera 

video to realize non-contact (i.e., without sensors) and objective fault detection (an overview of 

the proposed system is shown in Figure 2). Note that we consider the usage as self-checking 

(e.g., in training) rather than during competition. This study explores the feasibility of non-

contact fault detection through validation of the proposed system using intentional faulty 

walking videos. The system first estimates key points (joint locations) from walking videos by 

pose estimation. We used a pose estimation model whose performance was improved by the 

fine-tuning technique described below. Next, the input features of the fault detection model are 

calculated from the coordinate data estimated by the pose estimation. Finally, the feature vector 

is input to the classifier, which outputs the detection results. A smartphone camera is used to 

capture video to simplify the system, which can be used in a wide range of situations such as 

✧★✬✁✜✛✁✥✂ ✁✣✄✧✥✜✛✜✛✣☎✂ ✬☎✆ ✝✤✆✞✥✪✩ ✜★✬✛☎✛☎✞✟ ✠✢✥ ✥✡✡✥✁✜✛✫✥☎✥✩✩ ✣✡ ✜✢✥ ✧★✣✧✣✩✥✆ ✩☛✩✜✥✄ ✚✬✩
verified by intentionally faulty walking videos of a university student race walker and a Tokyo 

Olympics medalist. We extend our previous short paper (Suzuki et al., 2022) by enhancing all 

sections including analysis of the reason for the fault detection and the differences in individual 

faulty walking movements, and evaluation of the validity of the data collection environment. 
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Since ✚✥ ✆✣ ☎✣✜ ✛☎✩✜✬✭✭ ✜✢✥ ✁✬✄✥★✬ ✧✥★✧✥☎✆✛✁✤✭✬★ ✜✣ ✜✢✥ ✚✬✭�✥★✪✩ ✚✬✭�✛☎✞ ✆✛★✥✁✜✛✣☎✂ ✜✢✥ �☎✥✥
angle varies slightly depending on the position. However, we speculate that this may have less 

effect on the fault detection performance because we created input features that include 

differences in position. Figure 4 shows that maximum angle of the right knee is approximately 

195° to 205°, becoming slightly smaller as the target moves to the right of the image. Therefore, 

we can say that the variation of the knee angle depending on the position is small and not random. 

This variation is also included in the input data for the machine learning model (because we used 

the angles for two step cycles extracted from the various positions), and the model can be trained 

to account for angle variation. For these reasons, if the input data for the judgement does not 

deviate significantly from the image position range of the training data, the judgement could not 

be affected.  

 

Figure 4. Variation of the maximum angle of the right knee angle. The x-coordinates of the walker's nose key 

point on the image coordinates were plotted on the horizontal axis and the maximum right knee angle at 

each position was plotted on the vertical axis. The mean of the start and end coordinates of the two steps 

walking extracted as input to the model is indicated by the dashed line, and the SD is indicated by the 

color-filled area. 

Classifier 

A logistic regression model was used as the classifier for fault detection. The logistic regression 

model is one of the simplest machine learning models, and it can analyze the detection criteria 

from feature importance based on the standard regression coefficients. Since it is undesirable not 

to understand the process of judging sports, we use the model that allows analysis of judging 

criteria. The detection model was created separately for two faults (BK and LC). The model 

takes the key points coordinates and knee angles as input, and outputs the results of the fault 

detection. 

System Verification 

Pose Estimation Model 

Some walking images extracted from the collected videos were used to fine-tune the pose 

estimation model. The walking images were annotated by the COCO Annotator (Brooks, 2019). 

We used 108 images of walkers A, D, and E as training data, 25 images of walker B as validation 

data, and 52 images of walker C as test data. We used MMPose (Contributors, 2020), an open-

source framework for pose estimation, for fine-tuning. 

The average Precision (AP) and time-series changes in knee angle were used to evaluate the pose 

estimation models. Representative pose estimation and object detection models, including the 
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HigherHRNet used in this study, such as Openpose (Cao et al., 2019) and Detectron2 (Wu et al., 

2019), use AP for evaluation. AP is calculated from object keypoint similarity (✞�✁), which 

represents the degree of proximity between the correct and estimated points at each key point. 

✞�✁ is defined by the following equation: 

                                                        ✞�✁ ✌
✄ ☛✂☎✆✝✟☞

✠ ✡✍✠✎☞
✠✏ ✑✒✓✔☞✕✖✗☞

✄ ✒✓✔☞✕✖✗☞
✘                                          (1) 

where ✙✚ is the Euclidean distance between the detected key point and the corresponding ground 

truth, ✛✚ is the visibility flag of the ground truth, ✜ is the object scale, and ✢✚ is a per-keypoint 

constant that controls falloff. 

In the AP calculation, a threshold value is defined, and the average precision of all key points is 

calculated, assuming that the ✞�✁ of key point ✣  exceeds the threshold value as the correct 

answer. For general evaluation, the average value of the AP for each threshold value is used 

when the threshold value is changed in 10 steps of ✯✤✯✥ from ✯✤✥✯ to ✯✤✮✥. The time-series 

variation in the knee angle allows for the identification of angle outliers. Since outliers are caused 

by incorrect key point estimation, the occurrence of incorrect estimation can be visually 

determined by checking the time-series variation of the knee angle. 

Fault Detection Model 

The fault detection model was evaluated by dividing the data by walker and cross-validating. In 

this method, the training walker data does not include the test data, thus the model performance 

for unknown walkers can be evaluated. In the training and evaluation, since we used all data 

except the test target walker, the number of data for training the model was sufficient as shown 

in Table 1. We used the accuracy and F-score to evaluate the model performance. The accuracy 

is the percentage of the estimated results that are correct. The F-score is expressed as F-score = 

(2 × Precision × Recall) / (Precision + Recall), where the Recall is equal to the true-positive rate, 

and the Precision is defined as the ratio of the sum of true positives and true negatives to false 

positives. The BK detection model was evaluated using data from walkers A to D. The LC 

detection model was evaluated using data from walkers A to E. 

To determine why faults were detected, we used the standard regression coefficient for the 

logistic regression model as a measure of feature importance. In the analysis of feature 

importance by standard regression coefficients, the input features with larger absolute values of 

the coefficients contribute more to the detection results. We classified the input features into 

nine categories: features related to the x and y coordinates of the hip, knee, shank, and ankle, 

and features related to the knee angle. For the analysis of the detection reason, we used the 

average of the absolute values of the standard regression coefficients of the four (BK detection) 

or five (LC detection) models created for cross-validation. 

Results 

In this section, we first compared the performance of the pre-trained and fine-tuned pose 

estimation models. Second, we evaluated the performance of the fault detection model. In 

addition, we analyzed the feature importance of the model to clarify the reason for fault 

detection. Finally, we explained why the LC detection performance of Walker A was worse than 

the others by showing the difference in movement between the training and test data.  

Pose Estimation Performance 

First, we show the results of the pose estimation performance. AP increased by ✯✤✯✦✧ from 

✯✤✮★✧ to ✯✤✮✮✩ before and after fine-tuning. For comparison between the pre-trained and fine-
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Table 2. Fault detection model evaluation for each walker and fault. 

 Bent Knee Loss of Contact 

 Accuracy F-score Accuracy F-score 

Walker A 0.850 0.893 0.700 0.727 

Walker B 0.966 0.961 0.960 0.959 

Walker C 0.915 0.905 0.967 0.967 

Walker D 0.972 0.966 1.000 1.000 

Walker E - - 0.969 0.969 

Feature Importance Analysis 

We show the feature importance of the BK detection model in Figure 7(a). This figure reveals 

that the knee angle is the most important feature in BK detection. Next, we analyzed the 

importance by frame of the input feature of knee angle. Figures 7(b) and 7(c) show the average 

importance for each of the five frames for the left and right knee angles. Frames 0�9, 35�49, and 

75�84 had high importance for the left knee angle, while frames 15�24 and 55�69 had high 

importance for the right knee angle. From the above results, the BK detection of the model was 

considered to be based on the knee angle in specific frames. Figures 7(d) and 7(e) show the 

average time-series change in knee angle for all walkers during normal walking and BK walking. 

The frames with high feature importance indicate the pose from when the front foot touches the 

ground until it becomes vertical. In BK walking, the knee at this time is more bent than in normal 

walking. An example image of the pose is shown in Figure 8(a). Therefore, the BK detection of 

the model would follow the rules of race walking (e.g., the timing and the knee angle).  









IJCSS � Volume 23/2024/Issue 1              www.iacss.org 

34 

Typical pose estimation models are trained on large amounts of data, such as the COCO dataset 

(Lin et al., 2014). However, such datasets are mainly composed of daily activity movements, 

and trained models cannot accurately estimate sports movements. In this study, we were able to 

improve the performance of a pre-trained model by fine-tuning it with approximately 100 race 

walking images. The training was successful even with a small amount of data because the race 

walking movement consists of repetitions of specific periodic movements. In this sense, this 

method may also be effective for training a high-performance pose estimation model with low 

annotation cost for running and sprinting movements. 

In detecting the faults in the movements of Walker A, the features in the training data did not 

match the rules, resulting in poor performance. In this case, even if both feet were off the ground, 

the model could fail to detect LC when walkers do not lift their legs. In other words, the model 

may have selected features that do not match the rules. We also need to take care to avoid bias 

in training data when building a fault detection model using machine learning. In addition, 

additional validation with large-scale data is necessary to clarify what kind of data is needed to 

create a more general detection model and accurate detection criteria. 

Conclusion 

The fault detection system proposed in this study achieved highly accurate non-contact fault 

detection under the constraint of using intentional faulty walking video data. This accuracy is 

insufficient for use in competition but may be sufficient for use in training self-checks. We also 

showed that the reason for the detection of a fault can be analyzed by feature importance analysis 

of the machine learning model. If a system is created by collecting faulty walking videos during 

a race, a judgement assistance system for a single walker could be relatively easy to implement. 

On the other hand, applying the system to a race is more difficult because it is necessary to 

improve the performance of pose estimation for multiple walkers and to solve the problem of 

occlusion between walkers. To realize a system that can be used in races, the following issues 

must be addressed: (1) to collect as many natural faulty walking videos as possible, (2) to verify 

the versatility of the system using the collected videos, and (3) to achieve high-performance pose 

estimation for multiple persons. 
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