$\$$ sciendo

Uniqueness of $p(f)$ and $P[f]$ concerning weakly weighted-sharing ${ }^{1}$

Dilip Chandra Pramanik, Jayanta Roy

Abstract

In the year 2006, S. Lin and W. Lin introduced the definition of weakly weightedsharing of meromorphic functions which is between "CM" and "IM". In this paper, using the notion of weakly weighted-sharing, we study the uniqueness of a polynomial function $p(f)$ of f and a homogeneous differential polynomial $P[f]$ generated by f. Our results improve and generalizes the results due to Charak and Lal, S. Lin and W. Lin, and H-Y Xu and Y Hu.

2010 Mathematics Subject Classification: 30D30, $30 D 35$.
Key words and phrases: Meromorphic function, Weakly weighted share, Small function, Differential polynomial..

1 Introduction and main results

Let \mathbb{C} denote the complex plane and let f be a non-constant meromorphic function defined on \mathbb{C}. We assume that the reader is familiar with the standard definitions and notations used in the Nevanlinna value distribution theory, such as $T(r, f), m(r, f), N(r, f)($ see $[3,8,9])$. By $S(r, f)$ we denote any quantity satisfying the condition $S(r, f)=\circ(T(r, f))$ as $r \rightarrow \infty$ possibly outside an exceptional set of finite linear measure. A meromorphic function a is called a small function with respect to f if either $a \equiv \infty$ or $T(r, a)=S(r, f)$. We denote by $S(f)$ the collection

[^0]of all small functions with respect to f. Clearly $\mathbb{C} \cup\{\infty\} \subset S(f)$ and $S(f)$ is a field over the set of complex numbers. For $a \in \mathbb{C} \cup\{\infty\}$ the quantities
$$
\delta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)}
$$
and
$$
\Theta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}
$$
are respectively called the deficiency and ramification index of a for the function f.
For any two non-constant meromorphic functions f and g, and $a \in S(f) \cap S(g)$, we say that f and g share $a \operatorname{IM}(\mathrm{CM})$ provided that $f-a$ and $g-a$ have the same zeros ignoring(counting) multiplicities. If $\frac{1}{f}$ and $\frac{1}{g}$ share $0 \mathrm{IM}(\mathrm{CM})$, we say that f and g share $\infty \mathrm{IM}(\mathrm{CM})$.

Definition 1 Let k be a non-negative integer or infinity and $a \in S(f)$. We denote by $E_{k}(a, f)$ the set of all zeros of $f-a$, where a zero of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a, f)=E_{k}(a, g)$, we say that f, g share the function a with weight k. We write f and g share (a, k) to mean that f and g share the function a with weight k. Since $E_{k}(a, f)=E_{k}(a, g)$ implies that $E_{l}(a, f)=E_{l}(a, g)$ for any integer $l(0 \leq l<k)$, if f, g share (a, k), then f, g share (a, l). Moreover, we note that f and g share the function a IM or CM if and only if f and g share $(a, 0)$ or (a, ∞) respectively.

Definition 2 [5] Let $N_{E}(r, a)$ be the counting function of all common zeros of $f-a$ and $g-a$ with the same multiplicities, and $N_{0}(r, a)$ be the counting function of all common zeros of $f-a$ and $g-a$ ignoring multiplicities. Denote by $\bar{N}_{E}(r, a)$ and $\bar{N}_{0}(r, a)$ the reduced counting functions of f and g corresponding to the counting functions $N_{E}(r, a)$ and $N_{0}(r, a)$ respectively. If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{E}(r, a)=S(r, f)+S(r, g)
$$

then we say that f and g share a "CM". If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{0}(r, a)=S(r, f)+S(r, g)
$$

then we say that f and g share a "IM".
Definition 3 Let k be a positive integer, and let f be a meromorphic function and $a \in S(f)$.
(i) $\bar{N}_{k)}(r, a ; f)$ denotes the counting function of those a-points of f whose multiplicities are not greater than k, where each a-point is counted only once.
(ii) $\bar{N}_{(k}(r, a ; f)$ denotes the counting function of those a-points of f whose multiplicities are not less than k, where each a-point is counted only once.
(iii) $N_{p}(r, a ; f)$ denotes the counting function of those a-points of f, where an a-point of f with multiplicity m counted m times if $m \leq p$ and p times if $m>p$.

We denote by $\delta_{p}(a, f)$ the quantity

$$
\delta_{p}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{p}(r, a ; f)}{T(r, f)}
$$

where p is a positive integer. Clearly $\delta_{p}(a, f) \geq \delta(a, f)$.

Definition 4 Let f and g be two non-constant meromorphic functions sharing a "IM", for $a \in S(f) \cap S(g)$, and a positive integer k or ∞.
(i) $\bar{N}_{k)}^{E}(r, a)$ denotes the counting function of those a-points of f whose multiplicities are equal to the corresponding a-points of g, both of their multiplicities are not greater than k, where each a-point is counted only once.
(ii) $\bar{N}_{(k}^{0}(r, a)$ denotes the reduced counting function of those a-points of f which are a-points of g, both of their multiplicities are not less than k, where each a-point is counted only once.

Definition 5 [5] For $a \in S(f) \cap S(g)$, if k is a positive integer or ∞, and

$$
\begin{gathered}
\bar{N}_{k)}(r, a ; f)+\bar{N}_{k)}(r, a ; g)-2 \bar{N}_{k)}^{E}(r, a)=S(r, f)+S(r, g) \\
\bar{N}_{(k+1}(r, a ; f)+\bar{N}_{(k+1}(r, a ; g)-2 \bar{N}_{(k+1}^{0}(r, a)=S(r, f)+S(r, g)
\end{gathered}
$$

or if $k=0$ and

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{0}(r, a)=S(r, f)+S(r, g)
$$

then we say f and g weakly share a with weight k. Here we write f, g share " (a, k) " to mean that f, g weakly share a with weight k.

Obviously if f and g share " (a, k) ", then f and g share " (a, p) " for any $p(0 \leq p<k)$. Also, we note that f and g share a "IM" or "CM" if and only if f and g share " $(a, 0)$ " or " (a, ∞) " respectively.

Definition 6 Suppose F and G share 1 "IM" and let z_{0} be a zero of $F-1$ of multiplicity r and a zero of $G-1$ of multiplicity s.
(i) By $\bar{N}_{L}(r, 1 ; F)$ we denotes the reduced counting function of those a-points of F and G where $r>s \geq 1 ; \bar{N}_{L}(r, 1 ; G)$ is defined similarly.
(ii) $B y N_{E}^{1)}(r, 1 ; F)$ the counting function of those 1-points of F and G where $r=s=$ 1 and
(iii) by $\bar{N}_{E}^{(2}(r, 1 ; F)$ the counting function of those 1-points of F and G where $r=$ $s \geq 2$, where each such zero is counted only once.

Definition 7 Let $n_{0 j}, n_{1 j}, n_{2 j}, \ldots, n_{q j}$ are non-negative integers. The expression

$$
M_{j}[f]=(f)^{n_{0 j}}\left(f^{(1)}\right)^{n_{1 j}}\left(f^{(2)}\right)^{n_{2 j}} \ldots\left(f^{(q)}\right)^{n_{q j}}
$$

is called a differential monomial generated by f of degree $d\left(M_{j}\right)=\sum_{i=0}^{q} n_{i j}$ and weight $\Gamma_{M_{j}}=\sum_{i=0}^{q}(i+1) n_{i j}$. Let $a_{j} \in S(f)$ and $a_{j} \not \equiv 0(j=1,2, \ldots, t)$. The sum $P[f]=\sum_{j=1}^{t} a_{j} M_{j}[f]$ is called a differential polynomial generated by f of degree $\bar{d}(P)=\max \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}$ and weight $\Gamma_{P}=\max \left\{\Gamma_{M_{j}}: 1 \leq j \leq t\right\}$. The numbers $\underline{d}(P)=\min \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}$ and q (the highest order of the derivative of f in $P[f])$ are called respectively the lower degree and the order of $P[f] . P[f]$ is said to be homogeneous differential polynomial of degree d if $\bar{d}(P)=\underline{d}(P)=d . P[f]$ is called a linear differential Polynomial generated by f if $\bar{d}(P)=1$. Otherwise, $P[f]$ is called non-linear differential polynomial. Also, we denote by Q the quantity $Q=\max _{1 \leq j \leq t} \sum_{i=0}^{q} i . n_{i j}$.

In 2006 S. Lin and W. Lin [5] first defined and used the concept of weaklyweighted sharing of functions to prove the uniqueness of a meromorphic function and its derivative and proved the following theorems:

Theorem 1 Let $n \geq 1$ and $2 \leq k \leq \infty$, let f be a non-constant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If f and $f^{(n)}$ share " (a, k) " and

$$
4 \Theta(\infty, f)+2 \delta_{2+n}(0, f)>5
$$

then $f \equiv f^{(n)}$.
Theorem 2 Let $n \geq 1$ and let f be a non-constant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If f and $f^{(n)}$ share " $(a, 1)$ " and

$$
\left(\frac{n+9}{2}\right) \Theta(\infty, f)+\frac{5}{2} \delta_{2+n}(0, f)>\frac{n}{2}+6
$$

then $f \equiv f^{(n)}$.
Theorem 3 Let $n \geq 1$ and let f be a non-constant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If f and $f^{(n)}$ share " $(a, 0)$ " and

$$
(7+2 n) \Theta(\infty, f)+5 \delta_{2+n}(0, f)>2 n+11
$$

then $f \equiv f^{(n)}$.

Later in 2016 Charak and Lal [2] proved the uniqueness of a polynomial $p(f)$ in f and a differential polynomial $P[f]$ of f, using the concept of weighted sharing.
Theorem 4 [2] Let f be a non-constant meromorphic function and a $\in S(f)$, $a \not \equiv 0, \infty$, and $p(z)$ be a polynomial of degree $n \geq 1$ with $p(0)=0$. Let $P[f]$ be a non-constant differential polynomial of f. Suppose $p(f)$ and $P[f]$ share (a, k) with one of the following conditions:
(i) $k \geq 2$ and

$$
(Q+3) \Theta(\infty, f)+2 n \Theta(0, p(f))+\bar{d}(P) \delta(0, f)>Q+3+2 \bar{d}(P)-\underline{d}(P)+n
$$

(ii) $k=1$ and

$$
\left(Q+\frac{7}{2}\right) \Theta(\infty, f)+\frac{5 n}{2} \Theta(0, p(f))+\bar{d}(P) \delta(0, f)>Q+\frac{7}{2}+2 \bar{d}(P)-\underline{d}(P)+\frac{3 n}{2}
$$

(iii) $k=0$ and
$(2 Q+6) \Theta(\infty, f)+4 n \Theta(0, p(f))+2 \bar{d}(P) \delta(0, f)>2 Q+6+4 \bar{d}(P)-2 \underline{d}(P)+3 n$.
Then $p(f) \equiv P[f]$.
In this paper we prove the uniqueness of $p(f)$ and $P(f)$ mentioned in Theorem 4 with the notion of weakly weighted sharing which is between "CM" and "IM" and measures how close a share value is share "CM" or share "IM". Here we prove the following theorems:

Theorem 5 Let $2 \leq k \leq \infty$, f be a non-constant meromorphic function, $a \in$ $S(f), a \not \equiv 0, \infty$ and $p(z)$ be a polynomial of degree $n \geq 1$ with $p(0)=0$. Let $P[f]$ be a homogeneous differential polynomial of degree d generated by f defined as in Definition 7. If $p(f)$ and $P[f]$ share " (a, k) " and

$$
\begin{equation*}
4 \Theta(\infty, f)+\delta_{2+q}(0, f)+n \delta_{2}(0, p(f))>5+n-d \tag{1}
\end{equation*}
$$

then $p(f) \equiv P[f]$.
Theorem 6 Let f be a non-constant meromorphic function and $a \in S(f), a \not \equiv 0, \infty$ and $p(z)$ be a polynomial of degree $n \geq 1$ with $p(0)=0$. Let $P[f]$ be same as in Theorem 5. If $p(f)$ and $P[f]$ share " $(a, 1)$ " and

$$
\begin{equation*}
\left(\frac{7}{2}+Q\right) \Theta(\infty ; f)+\frac{3 n}{2} \delta_{2}(0 ; p(f))+\delta_{2+q}(0 ; f)>\frac{n+9}{2}+Q \tag{2}
\end{equation*}
$$

then $p(f) \equiv P[f]$.
Theorem 7 Let f be a non-constant meromorphic function and $a \in S(f), a \not \equiv 0, \infty$, and $p(z)$ be a polynomial of degree $n \geq 1$ with $p(0)=0$. Let $P[f]$ be same as in Theorem 5. If $p(f)$ and $P[f]$ share " $(a, 0)$ " and

$$
\begin{equation*}
(6+2 Q) \Theta(\infty, f)+n \delta_{2}(0, p(f))+2 n \Theta(0, p(f))+2 \delta_{2+q}(0, f)>2 Q+8+2 n \tag{3}
\end{equation*}
$$

then $p(f) \equiv P[f]$.

2 Lemmas

To prove our theorems, we will require some lemmas as follows.
Lemma 1 [4] Let f be a non-constant meromorphic function, and $P[f]$ be same as in Theorem 5. Then
(i) $T(r, P) \leq d T(r, f)+Q \bar{N}(r, \infty ; f)+S(r, f)$.
(ii) $N(r, 0 ; P) \leq T(r, P)-d T(r, f)+d N(r, 0 ; f)+S(r, f)$
$\leq Q \bar{N}(r, \infty ; f)+d N(r, 0 ; f)+S(r, f)$.
Lemma 2 Let f be a transcendental meromorphic function and $P[f]$ be same as in Lemma 1. If $P[f] \not \equiv 0$ then we have
(i) $N_{2}(r, 0 ; P) \leq N_{2+q}(r, 0 ; f)+Q \bar{N}(r, \infty ; f)+S(r, f)$,
(ii) $N_{2}(r, 0 ; P) \leq N_{2+q}(r, 0 ; f)+T(r, P)-d T(r, f)+S(r, f)$.

Proof.

$$
\begin{aligned}
N_{2}(r, 0 ; P) & \leq N(r, 0 ; P)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k) \\
& =T(r, P)-m(r, 0 ; P)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+O(1) \\
& \leq T(r, P)+m\left(r, \infty ; \frac{P}{f^{d}}\right)-m\left(r, 0 ; f^{d}\right)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+O(1) \\
& \leq T(r, P)-d T(r, f)+N\left(r, 0 ; f^{d}\right)-\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+S(r, f) \\
& \leq T(r, P)-d T(r, f)+N_{2+q}\left(r, 0 ; f^{d}\right)+\sum_{k=3+q}^{\infty} \bar{N}\left(r, 0 ; f^{d} \mid \geq k\right) \\
& -\sum_{k=3}^{\infty} \bar{N}(r, 0 ; P \mid \geq k)+S(r, f) \\
& \leq T(r, P)-d T(r, f)+N_{2+q}(r, 0 ; f)+S(r, f) .
\end{aligned}
$$

This proves (ii).
Now,

$$
\begin{aligned}
T(r, P) & =N(r, \infty ; P)+m(r, \infty ; P) \\
& \leq m\left(r, \infty ; f^{d}\right)+m\left(r, \infty ; \frac{P}{f^{d}}\right)+N(r, \infty ; P) \\
& =d m(r, \infty ; f)+N(r, \infty ; P)+S(r, f) \\
& \leq d m(r, \infty ; f)+d N(r, \infty ; f)+Q \bar{N}(r, \infty ; f)+S(r, f) \\
& =d T(r, f)+Q \bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

Therefore $N_{2}(r, 0 ; P) \leq N_{2+q}(r, 0 ; f)+Q \bar{N}(r, \infty ; f)+S(r, f)$.
Lemma 3 [1] Let f be a non-constant meromorphic function and $P[f]$ be as in Lemma 1. Then

$$
N\left(r, \frac{P[f]}{f^{d}}\right) \leq Q(\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f))+S(r, f)
$$

Lemma 4 [5] Let k be a non-negative integer or infinity. Let F and G be nonconstant meromorphic functions, and F, G share " $(1, k)$ ". Let

$$
H=\left(\frac{F^{(2)}}{F^{(1)}}-2 \frac{F^{(1)}}{F-1}\right)-\left(\frac{G^{(2)}}{G^{(1)}}-2 \frac{G^{(1)}}{G-1}\right)
$$

If $H \not \equiv 0,2 \leq k \leq \infty$, then
$T(r, F) \leq N_{2}(r, \infty ; F)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; G)+S(r, F)+S(r, G)$.
The same inequality hold for $T(r, G)$.

Lemma 5 [7] If F and G be non-constant meromorphic functions sharing " $(1,1)$ ", then
$2 \bar{N}_{L}(r, 1 ; F)+2 \bar{N}_{L}(r, 1 ; G)+\bar{N}_{E}^{(2}(r, 1 ; F)-\bar{N}_{F>2}(r, 1 ; G) \leq N(r, 1 ; G)-\bar{N}(r, 1 ; G)$.
Lemma 6 [7] If F and G be non-constant meromorphic functions sharing " $(1,1)$ ", then
$\bar{N}_{F>2}(r, 1 ; G) \leq \frac{1}{2} \bar{N}(r, 0 ; F)+\frac{1}{2} \bar{N}(r, \infty ; F)-\frac{1}{2} \bar{N}_{0}\left(r, 0 ; F^{(1)}\right)+S(r, F)$.
Lemma 7 [7] If F and G be non-constant meromorphic functions sharing " $(1,0)$ ", then

$$
\begin{gathered}
\bar{N}_{L}(r, 1 ; F)+2 \bar{N}_{L}(r, 1 ; G)+N_{E}^{(2}(r, 1 ; F)-\bar{N}_{F>1}(r, 1 ; G)-\bar{N}_{G>1}(r, 1 ; F) \\
\leq N(r, 1 ; G)-\bar{N}(r, 1 ; G)
\end{gathered}
$$

Lemma 8 [7] If F and G be non-constant meromorphic functions sharing " $(1,0)$ ", then

$$
\bar{N}_{L}(r, 1 ; F) \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+S(r, F)
$$

Lemma 9 [7] If F and G be non-constant meromorphic functions sharing " $(1,0)$ ", then
(i) $\bar{N}_{F>1}(r, 1 ; G) \leq \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)-\bar{N}_{0}\left(r, 0 ; F^{(1)}\right)+S(r, F)$;
(ii) $\bar{N}_{G>1}(r, 1 ; F) \leq \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)-\bar{N}_{0}\left(r, 0 ; G^{(1)}\right)+S(r, G)$.

Lemma 10 [6] Let f be a non-constant meromorphic function and let

$$
R(f)=\frac{\sum_{k=0}^{n} a_{k} f^{k}}{\sum_{j=0}^{m} b_{j} f^{j}}
$$

be an irreducible rational function in f with constant coefficients a_{k} and b_{j} where $a_{n} \neq 0$ and $b_{m} \neq 0$. Then

$$
T(r, R(f))=d T(r, f)+S(r, f)
$$

where $d=\max \{n, m\}$

3 Proof of the main Theorems

Proof of Theorem 5. Let $p(z)=z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\ldots+a_{1} z$, where $a_{1}, a_{2}, \ldots \ldots a_{n-1}$ are constants,

$$
F=\frac{p(f)}{a}, G=\frac{P[f]}{a}
$$

Since $p(f)$ and $P[f]$ share " (a, k) ", it follows that F, G share " $(1, k)$ " except at the zeros and poles of a.
Also note that

$$
\begin{gathered}
T(r, F)=O(T(r, f))+S(r, f) \\
T(r, G)=O(T(r, f))+S(r, f) \\
\bar{N}(r, \infty ; F)=\bar{N}(r, \infty ; G)+S(r, f)
\end{gathered}
$$

Let H be defined as in Lemma 4. Suppose that $H \not \equiv 0$, it follows that

$$
\begin{aligned}
T(r, G) & \leq N_{2}(r, \infty ; F)+N_{2}(r, 0 ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; G)+S(r, F)+S(r, G) \\
\Rightarrow T(r, P) & \leq N_{2}(r, \infty ; p(f))+N_{2}(r, 0 ; p(f))+N_{2}(r, \infty ; P)+N_{2}(r, 0 ; P)+S(r, f) \\
& \leq N_{2}(r, \infty ; f)+N_{2}(r, 0 ; p(f))+N_{2}(r, \infty ; f)+N_{2}(r, 0 ; P)+S(r, f) \\
& \leq 4 \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; p(f))+N_{2+q}(r, 0 ; f)+T(r, P)-d T(r, f)+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& d T(r, f) \leq 4 \bar{N}(r, \infty ; f)+N_{2+q}(r, 0 ; f)+N_{2}(r, 0 ; p(f))+S(r, f) \\
\Rightarrow & 4 \Theta(\infty, f)+\delta_{2+q}(0, f)+n \delta_{2}(0, p(f)) \leq 5+n-d
\end{aligned}
$$

which contradicts (1). Thus $H \equiv 0$.
That is

$$
\left(\frac{F^{(2)}}{F^{(1)}}-2 \frac{F^{(1)}}{F-1}\right)=\left(\frac{G^{(2)}}{G^{(1)}}-2 \frac{G^{(1)}}{G-1}\right)
$$

Integrating twice we get

$$
\frac{1}{F-1}=\frac{A}{G-1}+B
$$

where $A \neq 0$ and B are constants.
Thus

$$
\begin{equation*}
F=\frac{(B+1) G+(A-B-1)}{B G+(A-B)} . \tag{4}
\end{equation*}
$$

Next we consider the following three cases:
Case 1. $B \neq 0,-1$

If $A-B-1 \neq 0$ then by (4)

$$
\bar{N}\left(r, \frac{-A+B+1}{B+1} ; G\right)=\bar{N}(r, 0 ; F)
$$

By Nevanlinna second fundamental theorem and (ii) of Lemma 2 we have

$$
\begin{aligned}
T(r, G) & <\bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}\left(r, \frac{-A+B+1}{B+1} ; G\right)+S(r, G) \\
& =\bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}(r, 0 ; F)+S(r, G)
\end{aligned}
$$

i.e

$$
\begin{aligned}
T(r, P) & <\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; P)+\bar{N}(r, 0 ; p(f))+S(r, f) \\
& \leq \bar{N}(r, \infty ; f)+T(r, P)-d T(r, f)+N_{2+q}(r, 0 ; f)+\bar{N}(r, 0 ; p(f))+S(r, f) \\
d T(r, f) & \leq \bar{N}(r, \infty ; f)+N_{2+q}(r, 0 ; f)+N_{2}(r, 0 ; p(f))+S(r, f)
\end{aligned}
$$

which gives

$$
\Theta(\infty, f)+\delta_{2+q}(0, f)+n \delta_{2}(0, p(f)) \leq 2+n-d
$$

which violates our assumption (1).

If $A-B-1=0$ then by (4)

$$
\bar{N}\left(r, \frac{-1}{B} ; G\right)=\bar{N}(r, \infty ; F)
$$

By similar argument as above we get a contradiction.
Case 2. $B=-1$. Then $F=\frac{A}{A+1-G}$.
If $A+1 \neq 0, \bar{N}(r, A+1 ; G)=\bar{N}(r, \infty ; F)$.
Proceeding similarly as in Case 1 we get a contradiction.

If $A+1=0$ then $F G=1$.

$$
\Rightarrow p(f) \cdot P[f] \equiv a^{2}
$$

It is clear from above that $\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)=S(r, f)$.
By Lemma 3 we have $N\left(r, \frac{P[f]}{f^{d}}\right)=S(r, f)$ and $m\left(r, \frac{P[f]}{f^{d}}\right)=S(r, f)$. Again using Lemma 10 we get

$$
\begin{aligned}
(d+n) T(r, f) & \leq T\left(r, \frac{a^{2}}{f^{d+n}}\right)+O(1) \\
& \leq T\left(r,\left(1+\frac{a_{n-1}}{f}+\ldots \ldots . .+\frac{a_{1}}{f^{n-1}}\right) \cdot \frac{P[f]}{f^{d}}\right) \\
& \leq(n-1) T(r, f)+T\left(r, \frac{P[f]}{f^{d}}\right)+S(r, f) \\
& \leq(n-1) T(r, f)+S(r, f) \\
\text { i.e., }(1+d) T(r, f) & \leq S(r, f), \\
T(r, f) & =S(r, f) .
\end{aligned}
$$

which is a contradiction.
Case 3. $B=0$. Then (4) gives $F=\frac{G+A-1}{A}$.
If $A-1 \neq 0, \bar{N}(r, 1-A ; G)=\bar{N}(r, 0 ; F)$
which again contradict our assumption (1). Therefore $A-1=0$. Then $F=G$ i.e., $p(f) \equiv P[f]$. This completes the proof.

Proof of Theorem 6. Let $p(z)=z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\ldots \ldots . .+a_{1} z$, where $a_{1}, a_{2}, \ldots . . . a_{n-1}$ are constants,

$$
F=\frac{p(f)}{a}, G=\frac{P[f]}{a} .
$$

Since $p(f)$ and $P[f]$ share " $(a, 1)$ ", it follows that F, G share " $(1,1)$ " except at the zeros and poles of a.

Also H be defined as in Lemma 4. Suppose that $H \not \equiv 0$. Since F and G share " $(1,1)$ ", we can get

$$
\begin{align*}
N(r, \infty ; H) & \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}_{0}\left(r, 0 ; F^{(1)}\right) \\
& +\bar{N}_{0}\left(r, 0 ; G^{(1)}\right)+S(r, F)+S(r, G), \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
N(r, 1 ; F \mid=1) \leq N(r, 0 ; H)+S(r, F) \leq N(r, \infty ; H)+S(r, F), \tag{6}
\end{equation*}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{(1)}\right)$ is the reduce counting function of zeros of $F^{(1)}$ which are not the zeros of $F(F-1)$ and $\bar{N}_{0}\left(r, 0 ; G^{(1)}\right)$ is similarly defined.

By Nevanlinna second fundamental theorem, we have

$$
\begin{align*}
T(r, F)+T(r, G) & \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G) \\
& +\bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G)-\bar{N}_{0}\left(r, 0 ; F^{(1)}\right) \tag{7}\\
& -\bar{N}_{0}\left(r, 0 ; G^{(1)}\right)+S(r, F)+S(r, G)
\end{align*}
$$

By (5), (6) and Lemmas 5, 6 we have

$$
\begin{aligned}
\bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G) & \leq N(r, 1 ; F \mid=1)+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G) \\
& +\bar{N}_{E}^{(2}(r, 1 ; F)+\bar{N}(r, 1 ; G)+S(r, F)+S(r, G) \\
& \leq N(r, 1 ; F \mid=1)-\bar{N}_{L}(r, 1 ; F)-\bar{N}_{L}(r, 1 ; G)+\bar{N}_{F>2}(r, 1 ; G) \\
& +N(r, 1 ; G)+S(r, F)+S(r, G) \\
& \leq N(r, 1 ; F \mid=1)-\bar{N}_{L}(r, 1 ; F)-\bar{N}_{L}(r, 1 ; G) \\
& +\frac{1}{2} \bar{N}(r, 0 ; F)+\frac{1}{2} \bar{N}(r, \infty ; F)-\frac{1}{2} \bar{N}_{0}\left(r, 0 ; F^{(1)}\right) \\
& +N(r, 1 ; G)+S(r, F)+S(r, G) \\
& \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}(r, 0 ; F \mid \geq 2) \\
& +\bar{N}_{0}\left(r, 0 ; F F^{(1)}\right)+\bar{N}_{0}\left(r, 0 ; G^{(1)}\right) \\
& +\frac{1}{2} \bar{N}(r, 0 ; F)+\frac{1}{2} \bar{N}(r, \infty ; F)-\frac{1}{2} \bar{N}_{0}\left(r, 0 ; F^{(1)}\right)+N(r, 1 ; G) \\
& -\bar{N}_{L}(r, 1 ; F)-\bar{N}_{L}(r, 1 ; G)+S(r, F)+S(r, G) .
\end{aligned}
$$

Using above inequality in (7) we get

$$
\begin{aligned}
T(r, F)+T(r, G) & \leq \frac{3}{2} \bar{N}(r, 0 ; F)+\frac{5}{2} \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G) \\
& +\bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2)+T(r, G)+S(r, F)+S(r, G)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
T(r, F) & \leq \frac{1}{2} \bar{N}(r, 0 ; F)+\frac{5}{2} \bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+N_{2}(r, 0 ; F) \\
& +N_{2}(r, 0 ; G)+S(r, F)+S(r, G) \\
& \leq \frac{1}{2} \bar{N}(r, 0 ; p(f))+\frac{7}{2} \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; p(f))+N_{2}(r, 0 ; P)+S(r, F)+S(r, G)
\end{aligned}
$$

By (i) of Lemma 2, we have

$$
\begin{aligned}
n T(r, f) & \leq \frac{7}{2} \bar{N}(r, \infty ; f)+\frac{3}{2} N_{2}(r, 0 ; p(f))+N_{2}(r, 0 ; P)+S(r, F) \\
& \leq\left(\frac{7}{2}+Q\right) \bar{N}(r, \infty ; f)+\frac{3}{2} N_{2}(r, 0 ; p(f))+N_{2+q}(r, 0 ; f)+S(r, f)
\end{aligned}
$$

So

$$
\left(\frac{7}{2}+Q\right) \Theta(\infty, f)+\frac{3 n}{2} \delta_{2}(0, f)+\delta_{2+q}(0, f) \leq \frac{n+9}{2}+Q
$$

which contradicts the assumption of Theorem 6 . Thus $H \equiv 0$.
By similar arguments as in Theorem 5, we can prove that the conclusion of Theorem 6 holds.
Proof of Theorem 7. Let F, G and $p(f)$ be same as in Theorem 5. From given condition of Theorem $7, F, G$ share " $(1,0)$ ". Also H be defined as in Lemma 4.

Suppose that $H \not \equiv 0$. Since F and G share " $(1,0)$ ", we can get

$$
\begin{align*}
N(r, \infty ; H) & \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2) \\
& +\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}_{0}\left(r, 0 ; F^{(1)}\right) \tag{8}\\
& +\bar{N}_{0}\left(r, 0 ; G^{(1)}\right)+S(r, F)+S(r, G)
\end{align*}
$$

and

$$
N_{E}^{1)}(r, 1 ; F)=N_{E}^{1)}(r, 1 ; G)+S(r, F), N_{E}^{(2}(r, 1 ; F)=N_{E}^{(2}(r, 1 ; G)+S(r, F)
$$

where $\bar{N}_{0}\left(r, 0 ; F^{(1)}\right)$ is the reduce counting function of zeros of $F^{(1)}$ which are not the zeros of $F(F-1)$ and $\bar{N}_{0}\left(r, 0 ; G^{(1)}\right)$ is similarly defined.

Also we have

$$
\begin{equation*}
N_{E}^{1)}(r, 1 ; F) \leq N(r, \infty ; H)+S(r, F) \tag{9}
\end{equation*}
$$

By (8), (9) and Lemma 7 we have

$$
\begin{aligned}
\bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G) & \leq N_{E}^{1)}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}_{E}^{(2}(r, 1 ; F) \\
& +\bar{N}(r, 1 ; G)+S(r, F)+S(r, G) \\
& \leq N_{E}^{1)}(r, 1 ; F)+N(r, 1 ; G)-\bar{N}_{L}(r, 1 ; G)+\bar{N}_{F>1}(r, 1 ; G) \\
& +\bar{N}_{G>1}(r, 1 ; F)+S(r, F)+S(r, G) \\
& \leq \bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}(r, \infty ; F)+T(r, G) \\
& +\bar{N}_{L}(r, 1 ; F)+\bar{N}_{F>1}(r, 1 ; G)+\bar{N}_{G>1}(r, 1 ; F) \\
& +\bar{N}_{0}\left(r, 0 ; F^{(1)}\right)+\bar{N}_{0}\left(r, 0 ; G^{(1)}\right)+S(r, F)+S(r, G)
\end{aligned}
$$

Using above inequality and Lemmas 8,9 in (7) we get

$$
\begin{aligned}
T(r, F) & \leq 4 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G)+3 \bar{N}(r, 0 ; F) \\
& +2 \bar{N}(r, 0 ; G)+\bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2)+S(r, F)+S(r, G) \\
& \leq 4 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G)+2 \bar{N}(r, 0 ; F) \\
& +N_{2}(r, 0 ; F)+2 N_{2}(r, 0 ; G)+S(r, F)+S(r, G) \\
i . e ., n T(r, f) & \leq 6 \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; p(f))+N_{2}(r, 0 ; p(f))+2 N_{2}(r, 0 ; P)+S(r, f) \\
& \leq(6+2 Q) \bar{N}(r, \infty ; f)+2 \bar{N}(r, 0 ; p(f))+N_{2}(r, 0 ; p(f)) \\
& +2 N_{2+q}(r, 0 ; f)+S(r, f) .
\end{aligned}
$$

So,

$$
(6+2 Q) \Theta(\infty, f)+\delta_{2}(0, p(f))+2 \Theta(0, p(f))+2 \delta_{2+q}(0, f) \leq 2 Q+8+2 n
$$

which contradicts the assumption (3) of Theorem 7. Thus $H \equiv 0$

Proceeding similarly as in Theorem 5, we can prove that the conclusion of Theorem 7 holds.

References

[1] S. Bhoosnurmath, S. R. Kabbur, On entire and meromorphic functions that share one small function with their differential polynomial, Hindawi Publishing Corporation, Int. J. Analysis, 2013, Article ID 926340.
[2] K. S. Charak, B. Lal, Uniqueness of $p(f)$ and $P[f]$, Turk. J. Math., vol. 40, 2016, 569-581.
[3] W. K. Hayman, Meromorphic function, Clarendon Press, Oxford, 1964.
[4] I. Lahiri, B. Pal, Uniqueness of meromorphic functions with their homogeneous and linear differential polynomials sharing a small function, Bull. Korean Math. Soc., vol. 54, no. 3, 2017, 825-838.
[5] S. Lin, W. Lin, Uniqueness of meromorphic functions concerning weakly weighted sharing, Kodai. Math. J., vol. 29, 2006, 269-280.
[6] A.Z. Mohon'ko, On the Nevanlinna characteristics of some meromorphic functions. Theory of functions, Functional analysis and its applications, vol. 14, 1971, 83-87.
[7] H. Y. Xu, Y. Hu, Uniqueness of meromorphic function and its Differential polynomial concerning weakly weighted sharing, General Mathematics, vol. 19, no. 3, 2011, 101-111.
[8] L. Yang, Value distributions theory, Springer-Verlag, Berlin, 1993.
[9] H. X. Yi, C. C. Yang, Uniqueness theory of meromorphic functions(in Chinese), Science Press, Beijing, 1995.

Dilip Chandra Pramanik
University of North Bengal
Department of Mathematics
Raja Rammohunpur
Darjeeling-734013
West Bengal, India
e-mail: dcpramanik.nbu2012@gmail.com

Jayanta Roy

University of North Bengal
Raja Rammohunpur
Darjeeling-734013
West Bengal, India
e-mail: jayantaroy983269@yahoo.com

[^0]: ${ }^{1}$ Received 23 August, 2018
 Accepted for publication (in revised form) 19 March, 2020

