
General Mathematics Vol. 28, No. 1 (2020), 11–24

DOI: 10.2478/gm-2020-0002

Uniqueness of p(f) and P [f ] concerning weakly
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Abstract

In the year 2006, S. Lin and W. Lin introduced the definition of weakly weighted-
sharing of meromorphic functions which is between “CM” and “IM”. In this
paper, using the notion of weakly weighted-sharing, we study the uniqueness
of a polynomial function p(f) of f and a homogeneous differential polynomial
P [f ] generated by f . Our results improve and generalizes the results due to
Charak and Lal, S. Lin and W. Lin, and H-Y Xu and Y Hu.
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1 Introduction and main results

Let C denote the complex plane and let f be a non-constant meromorphic func-
tion defined on C. We assume that the reader is familiar with the standard def-
initions and notations used in the Nevanlinna value distribution theory, such as
T (r, f),m(r, f), N(r, f)(see [3, 8, 9]). By S(r, f) we denote any quantity satisfying
the condition S(r, f) = ◦(T (r, f)) as r → ∞ possibly outside an exceptional set
of finite linear measure. A meromorphic function a is called a small function with
respect to f if either a ≡ ∞ or T (r, a) = S(r, f). We denote by S(f) the collection
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of all small functions with respect to f . Clearly C∪ {∞} ⊂ S(f) and S(f) is a field
over the set of complex numbers. For a ∈ C ∪ {∞} the quantities

δ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)

and

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

are respectively called the deficiency and ramification index of a for the function f .

For any two non-constant meromorphic functions f and g, and a ∈ S(f)∩ S(g),
we say that f and g share a IM(CM) provided that f − a and g − a have the same
zeros ignoring(counting) multiplicities. If 1

f and 1
g share 0 IM(CM), we say that f

and g share ∞ IM(CM).

Definition 1 Let k be a non-negative integer or infinity and a ∈ S(f). We denote
by Ek(a, f) the set of all zeros of f − a, where a zero of multiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. If Ek(a, f) = Ek(a, g), we say that
f, g share the function a with weight k. We write f and g share (a, k) to mean that
f and g share the function a with weight k. Since Ek(a, f) = Ek(a, g) implies that
El(a, f) = El(a, g) for any integer l (0 ≤ l < k), if f, g share (a, k), then f, g share
(a, l). Moreover, we note that f and g share the function a IM or CM if and only if
f and g share (a, 0) or (a,∞) respectively.

Definition 2 [5] Let NE(r, a) be the counting function of all common zeros of f−a
and g − a with the same multiplicities, and N0(r, a) be the counting function of all
common zeros of f − a and g − a ignoring multiplicities. Denote by NE(r, a) and
N0(r, a) the reduced counting functions of f and g corresponding to the counting
functions NE(r, a) and N0(r, a) respectively. If

N(r, a; f) +N(r, a; g)− 2NE(r, a) = S(r, f) + S(r, g)

then we say that f and g share a “CM”. If

N(r, a; f) +N(r, a; g)− 2N0(r, a) = S(r, f) + S(r, g)

then we say that f and g share a “IM”.

Definition 3 Let k be a positive integer, and let f be a meromorphic function and
a ∈ S(f).
(i) Nk)(r, a; f) denotes the counting function of those a-points of f whose multiplic-
ities are not greater than k, where each a-point is counted only once.
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(ii) N (k(r, a; f) denotes the counting function of those a-points of f whose mul-
tiplicities are not less than k, where each a-point is counted only once.

(iii) Np(r, a; f) denotes the counting function of those a-points of f , where an
a-point of f with multiplicity m counted m times if m ≤ p and p times if m > p.

We denote by δp(a, f) the quantity

δp(a, f) = 1− lim sup
r→∞

Np(r, a; f)

T (r, f)
,

where p is a positive integer. Clearly δp(a, f) ≥ δ(a, f).

Definition 4 Let f and g be two non-constant meromorphic functions sharing a
“IM”, for a ∈ S(f) ∩ S(g), and a positive integer k or ∞.

(i) N
E
k)(r, a) denotes the counting function of those a-points of f whose multi-

plicities are equal to the corresponding a-points of g, both of their multiplicities are
not greater than k, where each a-point is counted only once.

(ii) N
0
(k(r, a) denotes the reduced counting function of those a-points of f which

are a-points of g, both of their multiplicities are not less than k, where each a-point
is counted only once.

Definition 5 [5] For a ∈ S(f) ∩ S(g), if k is a positive integer or ∞, and

Nk)(r, a; f) +Nk)(r, a; g)− 2N
E
k)(r, a) = S(r, f) + S(r, g)

N (k+1(r, a; f) +N (k+1(r, a; g)− 2N
0
(k+1(r, a) = S(r, f) + S(r, g)

or if k = 0 and

N(r, a; f) +N(r, a; g)− 2N0(r, a) = S(r, f) + S(r, g)

then we say f and g weakly share a with weight k. Here we write f , g share “(a, k)”
to mean that f , g weakly share a with weight k.

Obviously if f and g share “(a, k)”, then f and g share “(a, p)” for any p (0 ≤ p < k).
Also, we note that f and g share a “IM” or “CM” if and only if f and g share “(a, 0)”
or “(a,∞)” respectively.

Definition 6 Suppose F and G share 1 “IM” and let z0 be a zero of F − 1 of
multiplicity r and a zero of G− 1 of multiplicity s.

(i) By NL(r, 1;F ) we denotes the reduced counting function of those a-points of F
and G where r > s ≥ 1; NL(r, 1;G) is defined similarly.
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(ii) By N
1)
E (r, 1;F ) the counting function of those 1-points of F and G where r = s =

1 and

(iii) by N
(2
E (r, 1;F ) the counting function of those 1-points of F and G where r =

s ≥ 2, where each such zero is counted only once.

Definition 7 Let n0j , n1j , n2j , ..., nqj are non-negative integers. The expression

Mj [f ] = (f)n0j (f (1))n1j (f (2))n2j ...(f (q))nqj

is called a differential monomial generated by f of degree d(Mj) =
q∑

i=0
nij and

weight ΓMj =
q∑

i=0
(i + 1)nij. Let aj ∈ S(f) and aj 6≡ 0(j = 1, 2, ..., t). The

sum P [f ] =
t∑

j=1
ajMj [f ] is called a differential polynomial generated by f of de-

gree d(P ) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP = max{ΓMj : 1 ≤ j ≤ t}. The
numbers d(P ) = min{d(Mj) : 1 ≤ j ≤ t} and q (the highest order of the derivative
of f in P [f ]) are called respectively the lower degree and the order of P [f ]. P [f ] is
said to be homogeneous differential polynomial of degree d if d(P ) = d(P ) = d. P [f ]
is called a linear differential Polynomial generated by f if d(P ) = 1. Otherwise,
P [f ] is called non-linear differential polynomial. Also, we denote by Q the quantity

Q = max1≤j≤t
q∑

i=0
i.nij.

In 2006 S. Lin and W. Lin [5] first defined and used the concept of weakly-
weighted sharing of functions to prove the uniqueness of a meromorphic function
and its derivative and proved the following theorems:

Theorem 1 Let n ≥ 1 and 2 ≤ k ≤ ∞, let f be a non-constant meromorphic
function, a ∈ S(f) and a 6≡ 0,∞. If f and f (n) share “(a, k)” and

4Θ(∞, f) + 2δ2+n(0, f) > 5,

then f ≡ f (n).

Theorem 2 Let n ≥ 1 and let f be a non-constant meromorphic function, a ∈ S(f)
and a 6≡ 0,∞. If f and f (n) share “(a, 1)” and(

n+ 9

2

)
Θ(∞, f) +

5

2
δ2+n(0, f) >

n

2
+ 6,

then f ≡ f (n).

Theorem 3 Let n ≥ 1 and let f be a non-constant meromorphic function, a ∈ S(f)
and a 6≡ 0,∞. If f and f (n) share “(a, 0)” and

(7 + 2n)Θ(∞, f) + 5δ2+n(0, f) > 2n+ 11,

then f ≡ f (n).
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Later in 2016 Charak and Lal [2] proved the uniqueness of a polynomial p(f) in
f and a differential polynomial P [f ] of f , using the concept of weighted sharing.

Theorem 4 [2] Let f be a non-constant meromorphic function and a ∈ S(f),
a 6≡ 0,∞, and p(z) be a polynomial of degree n ≥ 1 with p(0) = 0. Let P [f ] be
a non-constant differential polynomial of f . Suppose p(f) and P [f ] share (a, k) with
one of the following conditions:

(i) k ≥ 2 and

(Q+ 3)Θ(∞, f) + 2nΘ(0, p(f)) + d(P )δ(0, f) > Q+ 3 + 2d(P )− d(P ) + n,

(ii) k = 1 and

(Q+
7

2
)Θ(∞, f) +

5n

2
Θ(0, p(f)) + d(P )δ(0, f) > Q+

7

2
+ 2d(P )− d(P ) +

3n

2
,

(iii) k = 0 and

(2Q+ 6)Θ(∞, f) + 4nΘ(0, p(f)) + 2d(P )δ(0, f) > 2Q+ 6 + 4d(P )− 2d(P ) + 3n.

Then p(f) ≡ P [f ].

In this paper we prove the uniqueness of p(f) and P (f) mentioned in Theorem
4 with the notion of weakly weighted sharing which is between “CM” and “IM” and
measures how close a share value is share “CM” or share “IM”. Here we prove the
following theorems:

Theorem 5 Let 2 ≤ k ≤ ∞, f be a non-constant meromorphic function, a ∈
S(f), a 6≡ 0,∞ and p(z) be a polynomial of degree n ≥ 1 with p(0) = 0. Let P [f ]
be a homogeneous differential polynomial of degree d generated by f defined as in
Definition 7. If p(f) and P [f ] share “(a, k)” and

(1) 4Θ(∞, f) + δ2+q(0, f) + nδ2(0, p(f)) > 5 + n− d,

then p(f) ≡ P [f ].

Theorem 6 Let f be a non-constant meromorphic function and a ∈ S(f), a 6≡ 0,∞
and p(z) be a polynomial of degree n ≥ 1 with p(0) = 0. Let P [f ] be same as in
Theorem 5. If p(f) and P [f ] share “(a, 1)” and

(2)

(
7

2
+Q

)
Θ(∞; f) +

3n

2
δ2(0; p(f)) + δ2+q(0; f) >

n+ 9

2
+Q,

then p(f) ≡ P [f ].

Theorem 7 Let f be a non-constant meromorphic function and a ∈ S(f), a 6≡ 0,∞,
and p(z) be a polynomial of degree n ≥ 1 with p(0) = 0. Let P [f ] be same as in
Theorem 5. If p(f) and P [f ] share “(a, 0)” and

(3) (6 + 2Q)Θ(∞, f) + nδ2(0, p(f)) + 2nΘ(0, p(f)) + 2δ2+q(0, f) > 2Q+ 8 + 2n,

then p(f) ≡ P [f ].
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2 Lemmas

To prove our theorems, we will require some lemmas as follows.

Lemma 1 [4] Let f be a non-constant meromorphic function, and P [f ] be same as
in Theorem 5. Then

(i) T (r, P ) ≤ dT (r, f) +QN(r,∞; f) + S(r, f).

(ii) N(r, 0;P ) ≤ T (r, P )− dT (r, f) + dN(r, 0; f) + S(r, f)

≤ QN(r,∞; f) + dN(r, 0; f) + S(r, f).

Lemma 2 Let f be a transcendental meromorphic function and P [f ] be same as in
Lemma 1. If P [f ] 6≡ 0 then we have
(i) N2(r, 0;P ) ≤ N2+q(r, 0; f) +QN(r,∞; f) + S(r, f),
(ii) N2(r, 0;P ) ≤ N2+q(r, 0; f) + T (r, P )− dT (r, f) + S(r, f).

Proof.

N2(r, 0;P ) ≤ N(r, 0;P )−
∞∑
k=3

N(r, 0;P | ≥ k)

= T (r, P )−m(r, 0;P )−
∞∑
k=3

N(r, 0;P | ≥ k) +O(1)

≤ T (r, P ) +m(r,∞;
P

fd
)−m(r, 0; fd)−

∞∑
k=3

N(r, 0;P | ≥ k) +O(1)

≤ T (r, P )− dT (r, f) +N(r, 0; fd)−
∞∑
k=3

N(r, 0;P | ≥ k) + S(r, f)

≤ T (r, P )− dT (r, f) +N2+q(r, 0; fd) +

∞∑
k=3+q

N(r, 0; fd| ≥ k)

−
∞∑
k=3

N(r, 0;P | ≥ k) + S(r, f)

≤ T (r, P )− dT (r, f) +N2+q(r, 0; f) + S(r, f).

This proves (ii).
Now,

T (r, P ) = N(r,∞;P ) +m(r,∞;P )

≤ m(r,∞; fd) +m(r,∞;
P

fd
) +N(r,∞;P )

= dm(r,∞; f) +N(r,∞;P ) + S(r, f)

≤ dm(r,∞; f) + dN(r,∞; f) +QN(r,∞; f) + S(r, f)

= dT (r, f) +QN(r,∞; f) + S(r, f)
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Therefore N2(r, 0;P ) ≤ N2+q(r, 0; f) +QN(r,∞; f) + S(r, f).

Lemma 3 [1] Let f be a non-constant meromorphic function and P [f ] be as in
Lemma 1. Then

N

(
r,
P [f ]

fd

)
≤ Q

(
N(r, 0; f) +N(r,∞; f)

)
+ S(r, f).

Lemma 4 [5] Let k be a non-negative integer or infinity. Let F and G be non-
constant meromorphic functions, and F , G share “(1, k)”. Let

H =

(
F (2)

F (1)
− 2

F (1)

F − 1

)
−

(
G(2)

G(1)
− 2

G(1)

G− 1

)
.

If H 6≡ 0, 2 ≤ k ≤ ∞, then

T (r, F ) ≤ N2(r,∞;F ) +N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;G) + S(r, F ) + S(r,G).

The same inequality hold for T (r,G).

Lemma 5 [7] If F and G be non-constant meromorphic functions sharing “(1, 1)”,
then
2NL(r, 1;F ) + 2NL(r, 1;G) +N

(2
E (r, 1;F )−NF>2(r, 1;G) ≤ N(r, 1;G)−N(r, 1;G).

Lemma 6 [7] If F and G be non-constant meromorphic functions sharing “(1, 1)”,
then
NF>2(r, 1;G) ≤ 1

2N(r, 0;F ) + 1
2N(r,∞;F )− 1

2N0(r, 0;F (1)) + S(r, F ).

Lemma 7 [7] If F and G be non-constant meromorphic functions sharing “(1, 0)”,
then

NL(r, 1;F ) + 2NL(r, 1;G) +N
(2
E (r, 1;F )−NF>1(r, 1;G)−NG>1(r, 1;F )

≤ N(r, 1;G)−N(r, 1;G).

Lemma 8 [7] If F and G be non-constant meromorphic functions sharing “(1, 0)”,
then

NL(r, 1;F ) ≤ N(r,∞;F ) +N(r, 0;F ) + S(r, F ).

Lemma 9 [7] If F and G be non-constant meromorphic functions sharing “(1, 0)”,
then

(i) NF>1(r, 1;G) ≤ N(r, 0;F ) +N(r,∞;F )−N0(r, 0;F (1)) + S(r, F );

(ii) NG>1(r, 1;F ) ≤ N(r, 0;G) +N(r,∞;G)−N0(r, 0;G(1)) + S(r,G).
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Lemma 10 [6] Let f be a non-constant meromorphic function and let

R(f) =

∑n
k=0 akf

k∑m
j=0 bjf

j

be an irreducible rational function in f with constant coefficients ak and bj where
an 6= 0 and bm 6= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f)

.
where d = max{n,m}

3 Proof of the main Theorems

Proof of Theorem 5. Let p(z) = zn + an−1z
n−1 + an−2z

n−2 + ... + a1z, where
a1, a2, ......an−1 are constants,

F =
p(f)

a
, G =

P [f ]

a
.

Since p(f) and P [f ] share “(a, k)”, it follows that F , G share “(1, k)” except at
the zeros and poles of a.
Also note that

T (r, F ) = O(T (r, f)) + S(r, f)

T (r,G) = O(T (r, f)) + S(r, f)

N(r,∞;F ) = N(r,∞;G) + S(r, f).

Let H be defined as in Lemma 4. Suppose that H 6≡ 0, it follows that

T (r,G) ≤ N2(r,∞;F )+N2(r, 0;F )+N2(r,∞;G)+N2(r, 0;G)+S(r, F )+S(r,G),

⇒ T (r, P ) ≤ N2(r,∞; p(f)) +N2(r, 0; p(f)) +N2(r,∞;P ) +N2(r, 0;P ) + S(r, f)

≤ N2(r,∞; f) +N2(r, 0; p(f)) +N2(r,∞; f) +N2(r, 0;P ) + S(r, f)

≤4N(r,∞; f)+N2(r, 0; p(f))+N2+q(r, 0; f)+T (r, P )−dT (r, f)+S(r, f),

dT (r, f) ≤ 4N(r,∞; f) +N2+q(r, 0; f) +N2(r, 0; p(f)) + S(r, f)
⇒ 4Θ(∞, f) + δ2+q(0, f) + nδ2(0, p(f)) ≤ 5 + n− d,
which contradicts (1). Thus H ≡ 0.

That is (F (2)

F (1)
− 2

F (1)

F − 1

)
=
(G(2)

G(1)
− 2

G(1)

G− 1

)
.
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Integrating twice we get
1

F − 1
=

A

G− 1
+B,

where A 6= 0 and B are constants.
Thus

(4) F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
.

Next we consider the following three cases:

Case 1. B 6= 0,−1

If A−B − 1 6= 0 then by (4)

N(r,
−A+B + 1

B + 1
;G) = N(r, 0;F ).

By Nevanlinna second fundamental theorem and (ii) of Lemma 2 we have

T (r,G) < N(r,∞;G) +N(r, 0;G) +N(r,
−A+B + 1

B + 1
;G) + S(r,G)

= N(r,∞;G) +N(r, 0;G) +N(r, 0;F ) + S(r,G)

i.e

T (r, P ) < N(r,∞; f) +N(r, 0;P ) +N(r, 0; p(f)) + S(r, f)

≤ N(r,∞; f) + T (r, P )− dT (r, f) +N2+q(r, 0; f) +N(r, 0; p(f)) + S(r, f)

dT (r, f) ≤ N(r,∞; f) +N2+q(r, 0; f) +N2(r, 0; p(f)) + S(r, f),

which gives

Θ(∞, f) + δ2+q(0, f) + nδ2(0, p(f)) ≤ 2 + n− d

which violates our assumption (1).

If A−B − 1 = 0 then by (4)

N(r,
−1

B
;G) = N(r,∞;F ).

By similar argument as above we get a contradiction.

Case 2. B = −1. Then F = A
A+1−G .

If A+ 1 6= 0, N(r,A+ 1;G) = N(r,∞;F ).
Proceeding similarly as in Case 1 we get a contradiction.
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If A+ 1 = 0 then FG = 1.

⇒ p(f).P [f ] ≡ a2

It is clear from above that N(r, 0; f) +N(r,∞; f) = S(r, f).

By Lemma 3 we have N
(
r, P [f ]

fd

)
= S(r, f) and m

(
r, P [f ]

fd

)
= S(r, f).

Again using Lemma 10 we get

(d+ n)T (r, f) ≤ T (r,
a2

fd+n
) +O(1)

≤ T

(
r, (1 +

an−1
f

+ .......+
a1
fn−1

).
P [f ]

fd

)
≤ (n− 1)T (r, f) + T (r,

P [f ]

fd
) + S(r, f)

≤ (n− 1)T (r, f) + S(r, f)

i.e., (1 + d)T (r, f) ≤ S(r, f),

T (r, f) = S(r, f).

which is a contradiction.

Case 3. B = 0. Then (4) gives F = G+A−1
A .

If A− 1 6= 0, N(r, 1−A;G) = N(r, 0;F )
which again contradict our assumption (1). Therefore A− 1 = 0. Then F = G i.e.,
p(f) ≡ P [f ]. This completes the proof.

Proof of Theorem 6. Let p(z) = zn + an−1z
n−1 + an−2z

n−2 + ........+ a1z, where
a1, a2, ......an−1 are constants,

F =
p(f)

a
, G =

P [f ]

a
.

Since p(f) and P [f ] share “(a, 1)”, it follows that F , G share “(1, 1)” except at the
zeros and poles of a.

Also H be defined as in Lemma 4. Suppose that H 6≡ 0. Since F and G share
“(1, 1)”, we can get

N(r,∞;H) ≤ N(r,∞;F ) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N0(r, 0;F (1))

+ N0(r, 0;G(1)) + S(r, F ) + S(r,G),(5)

and

(6) N(r, 1;F | = 1) ≤ N(r, 0;H) + S(r, F ) ≤ N(r,∞;H) + S(r, F ),
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where N0(r, 0;F (1)) is the reduce counting function of zeros of F (1) which are not
the zeros of F (F − 1) and N0(r, 0;G(1)) is similarly defined.

By Nevanlinna second fundamental theorem, we have

T (r, F ) + T (r,G) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 0;G) +N(r,∞;G)

+ N(r, 1;F ) +N(r, 1;G)−N0(r, 0;F (1))(7)

− N0(r, 0;G(1)) + S(r, F ) + S(r,G).

By (5), (6) and Lemmas 5, 6 we have

N(r, 1;F ) +N(r, 1;G) ≤ N(r, 1;F | = 1) +NL(r, 1;F ) +NL(r, 1;G)

+N
(2
E (r, 1;F ) +N(r, 1;G) + S(r, F ) + S(r,G)

≤ N(r, 1;F | = 1)−NL(r, 1;F )−NL(r, 1;G) +NF>2(r, 1;G)

+N(r, 1;G) + S(r, F ) + S(r,G)

≤ N(r, 1;F | = 1)−NL(r, 1;F )−NL(r, 1;G)

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F )− 1

2
N0(r, 0;F (1))

+N(r, 1;G) + S(r, F ) + S(r,G)

≤ N(r,∞;F ) +N(r, 0;G| ≥ 2) +N(r, 0;F | ≥ 2)

+N0(r, 0;F (1)) +N0(r, 0;G(1))

+
1

2
N(r, 0;F ) +

1

2
N(r,∞;F )− 1

2
N0(r, 0;F (1)) +N(r, 1;G)

−NL(r, 1;F )−NL(r, 1;G) + S(r, F ) + S(r,G).

Using above inequality in (7) we get

T (r, F ) + T (r,G) ≤ 3

2
N(r, 0;F ) +

5

2
N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)

+ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + T (r,G) + S(r, F ) + S(r,G).

Therefore

T (r, F ) ≤ 1

2
N(r, 0;F ) +

5

2
N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F )

+N2(r, 0;G) + S(r, F ) + S(r,G)

≤ 1

2
N(r, 0; p(f))+

7

2
N(r,∞; f)+N2(r, 0; p(f))+N2(r, 0;P )+S(r, F )+S(r,G).

By (i) of Lemma 2, we have

nT (r, f) ≤ 7

2
N(r,∞; f) +

3

2
N2(r, 0; p(f)) +N2(r, 0;P ) + S(r, F )

≤ (
7

2
+Q)N(r,∞; f) +

3

2
N2(r, 0; p(f)) +N2+q(r, 0; f) + S(r, f).
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So

(
7

2
+Q)Θ(∞, f) +

3n

2
δ2(0, f) + δ2+q(0, f) ≤ n+ 9

2
+Q,

which contradicts the assumption of Theorem 6. Thus H ≡ 0.
By similar arguments as in Theorem 5, we can prove that the conclusion of Theorem
6 holds.

Proof of Theorem 7. Let F , G and p(f) be same as in Theorem 5. From given
condition of Theorem 7, F , G share “(1, 0)”. Also H be defined as in Lemma 4.

Suppose that H 6≡ 0. Since F and G share “(1, 0)”, we can get

N(r,∞;H) ≤ N(r,∞;F ) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2)

+ NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0;F (1))(8)

+ N0(r, 0;G(1)) + S(r, F ) + S(r,G).

and

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) + S(r, F ), N

(2
E (r, 1;F ) = N

(2
E (r, 1;G) + S(r, F ),

where N0(r, 0;F (1)) is the reduce counting function of zeros of F (1) which are not
the zeros of F (F − 1) and N0(r, 0;G(1)) is similarly defined.

Also we have

(9) N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ).

By (8), (9) and Lemma 7 we have

N(r, 1;F ) +N(r, 1;G) ≤ N
1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2
E (r, 1;F )

+ N(r, 1;G) + S(r, F ) + S(r,G).

≤ N
1)
E (r, 1;F ) +N(r, 1;G)−NL(r, 1;G) +NF>1(r, 1;G)

+ NG>1(r, 1;F ) + S(r, F ) + S(r,G)

≤ N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N(r,∞;F ) + T (r,G)

+ NL(r, 1;F ) +NF>1(r, 1;G) +NG>1(r, 1;F )

+ N0(r, 0;F (1)) +N0(r, 0;G(1)) + S(r, F ) + S(r,G).
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Using above inequality and Lemmas 8, 9 in (7) we get

T (r, F ) ≤ 4N(r,∞;F ) + 2N(r,∞;G) + 3N(r, 0;F )

+ 2N(r, 0;G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + S(r, F ) + S(r,G)

≤ 4N(r,∞;F ) + 2N(r,∞;G) + 2N(r, 0;F )

+N2(r, 0;F ) + 2N2(r, 0;G) + S(r, F ) + S(r,G)

i.e., nT (r, f) ≤ 6N(r,∞; f) + 2N(r, 0; p(f)) +N2(r, 0; p(f)) + 2N2(r, 0;P ) + S(r, f)

≤ (6 + 2Q)N(r,∞; f) + 2N(r, 0; p(f)) +N2(r, 0; p(f))

+ 2N2+q(r, 0; f) + S(r, f).

So,

(6 + 2Q)Θ(∞, f) + δ2(0, p(f)) + 2Θ(0, p(f)) + 2δ2+q(0, f) ≤ 2Q+ 8 + 2n,

which contradicts the assumption (3) of Theorem 7. Thus H ≡ 0

Proceeding similarly as in Theorem 5, we can prove that the conclusion of
Theorem 7 holds.
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