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ABSTRACT
During the summer months, greenhouse tomato production is challenged by the heat, causing yield reduction; 
therefore, we conducted a study to test the effectiveness of different foliar spray compositions for the improvement of 
Lycopersicon esculentum var. cerasiforme ‘Qianxi’ nutrition uptake and fruit yield. Two forms of silicon, two kinds 
of organic nitrogenous compounds and water as the control factor were two-two paired to become nine different 
recipes, which were as follows: CK (H2O), ISi (K2SiO3), organic silicon (OSi), potassium fulvate (BSFA), BSFA + ISi, 
BSFA + OSi, betaine (GB), GB + ISi and GB + OSi. The plants were sprayed three times during the period of the first, 
second and third truss fruit expansions with a 2-week interval. As a result, BSFA or K2SiO3 generated higher yield in 
plants compared with the other compositions. Also, K2SiO3 significantly enhanced the total nitrogen, phosphorus and 
potassium accumulation in fruit and the whole plant. Comparing across the nine recipes, BSFA + ISi, ISi and GB had 
improved the fruit yield by 17%, 12.7% and 9.5%, performing the best. BSFA + ISi, ISi and GB also improved the plant 
nitrogen uptake by 8.2%, 18.8% and 9.8%, as well as the potassium uptake by 16.2%, 12.3% and 15.2%, compared with 
CK, respectively. Thus, K2SiO3, BSFA and GB stimulated the plant nitrogen and potassium uptake, which improved the 
marketable yield.
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pollens, interferes with pollen tube development 
and  shortens  the  flower  mating  time  (Hedhly  et  al., 
2009); it reduces the plant seeding rate and induces 
embryo abortion after fertilisation (León-Osper et 
al., 2020). Although the reduction of yield due to heat 
was accompanied with the improvement on some fruit 
quality (FrQ) parameters like total soluble content or 
total acid (Vijayakumar et al., 2021; Mesa et al., 2022), 
it cannot override the loss on the total production. 

 Open Access. © 2022 Xu et al., published by Sciendo.  This work is licensed under the Creative Commons Attribution alone 3.0 License.

INTRODUCTION
In the north of China, long-time high temperatures 
from May to August are challenging for the summer 
greenhouse tomato production. High temperatures 
suppress plant reproduction, decreasing the fertility 
of tomato pollen, decreasing the fruit setting rate, and 
increasing the percentage of abnormal fruits because 
of the loss of osmosis balance (Pham et al., 2020). 
More specifically, the heat during the flower stage and 
pollination phase retards gamete development, sterilises 
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It also modulates the nutrients uptake and transportation, 
causing physiological disorder diseases such as fruit 
blossom end rot from calcium deficiency (Marcelis and 
Ho, 1999; Suzuki et al., 2003; Saure, 2014) and yellow 
shoulder from potassium deficiency (Zhang et al., 2018). 
Likewise, low vapor pressure deficit could elongate the 
time of tomato fruit formation and ripening, reducing 
the fruit number, fruit diameter and yield per truss 
(Doan and Tanaka, 2022), as well as reduce the N, P, K 
concentrations in tomato plant stem, leaves and fruits 
(Suzuki et al., 2015) or the Ca and K uptake in vigorous 
growing organs (Ding et al., 2022).

Leaf spray is one of the widely accepted methods 
that help plants to get relief from heat stress. It can be 
used  as  an  excessive  sunlight  reflector,  metabolism 
regulator and physical light film (Mphande et al., 2020), 
or as a biostimulant for improving crop aboveground 
biomass and photosynthesis-related performance under 
heat stress (Niu et al., 2022). For instance, leaf sprayed 
silicon can improve the crop leaf chlorophyll content, 
maximum quantum transport efficiency of photosystem 
II (PSII) and the activity of antioxidation enzymes 
under  water  deficiency  (Verma  et  al.,  2021);  promote 
leaf photosynthesis, leaf total soluble sugar content 
and biomass accumulation under shading (Hussain 
et al., 2021); as well as strengthen the leaf cortex wax 
layer and increase stomatal conductance under heat 
stress (Hu et al., 2020). Increasing plant silicon uptake 
under environmental stress can stabilise the epidermal 
cell lipid layers and maintain membrane function, and 
polymerised silicon can strengthen the epidermal cell 
wall (Agarie et al., 1998). Root supply with silicate 
may mitigate the biotoxicity of antibiotics that remain 
in soil, reducing root damage and antibiotic absorption 
(Lv et al., 2021). Under heat stress, silicon improves 
the plant transpiration, leaf chlorophyll concentration, 
photosystem core protein, cell wall rigidity and cortical 
wax thickness without manipulating abscisic acid (ABA) 
content  (Saha  et  al.,  2021).  Specifically,  for  fruiting, 
silicon can improve the plant anthesis rate, pollen 
fertility and membrane stability (Nahar et al., 2015). It is 
also suggested that spraying silicate at low dosage (50–
100 mg ⋅ dm-3) could enlarge the flower diameter and 
even accelerate flowering for some Asteraceae species 
(Attia and Elhawat, 2021, Kamenidou et al., 2010). 
Similarly, betaine (GB) as a more commonly used organic 
biostimulant can increase plant stomatal conductance, 
CO2 assimilation rate, leaf chlorophyll and relative water 
content (Denaxa et al., 2012), while cooling down the 
leaf temperature, increasing quantum yield of PSII and 
the yield of crop under stress (Khedr et al., 2022). It also 
improves the activity of catalase, peroxide degrease, 
superoxide dismutase and nitrate reductase and reduces 
the concentration of malondialdehyde (MDA), H2O2 
and ·O2

-, increasing crop performance under numerous 
environmental stresses (Rady et al., 2018; Ahmed et al., 
2019; Islam and Mohammad, 2021; Islam et al., 2021,). 
It also promotes inflorescence formation, shoot and root 

elongation and their dry mass (DM) accumulation with 
or without stress (Habib et al., 2012).

Unlike the substances mentioned before, fulvic acid 
and fulvate are a much more complicated mixture of 
numerous amino acids, carbohydrates, organic acids, 
minerals and even some phytohormone-like compounds. 
When subject to stress, fulvic acid can increase plant 
mineral  nutrients  uptake,  including  Fe,  Zn  and  Mn, 
and leaf chlorophyll content, increasing the plant 
photosynthesis capacity (Wang et al., 2019). It accelerates 
the plant recovery from water stress, maintaining a 
higher photosynthesis rate and antioxidant enzymes 
activity, saving yield loss (Do Rosário Rosa et al., 2021). 
Although fulvic acid also works as an antitranspirant, 
its ability to increase water use efficiency and leaf water 
content are in in favour of over-summer production 
(AbdAllah et al., 2018). Furthermore, leaf spraying 
fulvic acid can intensify the effect of paclobutrazol 
(PBZ)  on  the  suppression  of  gibberellin  synthesis, 
improve  the  flower  uniformity  and  the  accumulation 
of carbohydrates, protein and amino acids (Dos Santos 
Silva et al., 2021).

The reduction of mineral nutrient uptake and 
effective fruit setting are the main challenges in the 
summer greenhouse tomato production, so guaranteeing 
the plant nutrition acquisition and marketable yield are 
the focus of this study. Our objective is to compare 
the effectiveness of different combinations of silicon, 
potassium fulvate (BSFA) and GB on yield improvement 
by foliar spraying. We hypothesised that these contents 
can enhance the plant uptake of nitrogen, phosphorus 
and potassium and their translocation to fruit, then 
improving the fruit yield.

MATERIALS AND METHODS
Experiment site and cultivation method
The experiment was conducted in the gut-connected 
glass greenhouse of Beijing Academy of Agriculture 
and Forestry Sciences. Beijing has four distinct seasons 
in  a year. Precipitation mainly happens from May to 
August, with an average annual precipitation around 
500–700. Monthly average temperature is -4.1 °C and 
27.6 °C in January and July, which also has the lowest 
and highest annual temperatures at -15 °C and 41.9 °C, 
respectively. The frost-free period here is around 180–
200 days, with annual cumulative sunlight of 2,000–
2,800 h. Greenhouse was equipped with top window and 
side wall fans for air exchange, top-drop hanging fans 
blowing horizontally for air circulation, and wet pad for 
summer cooling. Cherry tomato ‘QianXi’ seedlings with 
four true leaves were transplanted on 27 February 2017. 
The planting area was sized 8 m × 13.5 m, containing 18 
flat planting beds with double lines of crop in each bed. 
The distance between each plant within and between 
the lines was 30 cm, so the designed planting density 
was 66,666 plants per hectare. The planting bed was in 
the south-north direction, equipped with double drip 
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irrigation lines close to the plants. Plants were irrigated 
every 3–4 days depending on the weather, and all the 
plants were under the same fertilisation management 
through fertigation. Commercial high potassium (5-
19-27) and high nitrogen (30-5-15) compound fertiliser 
containing necessary trace elements were alternatively 
supplied through irrigation water. Commercial 
sphagnum-mixed substrate was used, whose properties 
and analysed nutrition content were  as follows: pH –7.43, 
EC-713 μS ⋅ cm−1, organic matter 316 g ⋅ kg−1, total N 
9.67 g ⋅ kg−1, NH4-N 40.8 mg ⋅ kg−1, NO3-N 298 mg ⋅ kg−1, 
P2O5 213 mg ⋅ kg−1, K2O 150 mg ⋅ kg−1. Additional 
base fertiliser of 150 kg ⋅ ha−1 nitrogen, 120 kg ⋅ ha−1 
phosphorus and 180 kg ⋅ ha−1 potassium were evenly 
spread in the planting bed before transplanting.

Experimental design
The experiment was a split plot experiment with random 
design. The biostimulants were separated into two 
categories: organic nitrogenous compounds (NSource) 
and different forms of silicon (SiForm). The BSFA and 
GB  are  defined  as  organic  nitrogenous  compounds, 
and the forms of silicon are organic silicon (OSi) and 
potassium silicate. The compositions and water as control 
factor were two-two paired to be the final recipe for leaf 
spray, details are shown in Table 1. The planting area 
was separated into nine main plots, and each plot was 
further divided into three subplots as three repetitions 
within. The plants were treated three times at 2-weeks’ 
interval, which were at the first, second and third truss 
fruit expansion periods, during the experiment. The 
concentration of each composition was 0.5 g × dm−3, and 
the spraying volume was 750 dm3 ⋅ ha−1.

FrQ, water content, yield and DM
Fruit total soluble solids (TSS), fruit vitamin C 
concentration (Vc), fruit nitrate content (FrNitrate) 
and fruit water content were measured with the fruits 
harvested from the third fruit truss with fully red colour 
and similar size. The TSS, Vc and FrNitrate were measured 
via anthrone colorimetry, colorimetric method and 
ultraviolet spectroscopy, respectively. Four repetitions of 
each treatment were taken for each parameter assessment. 
Additional fruits were harvested for measuring the fruit 

water content. All fruits were weighed for fresh mass and 
sliced into thin pieces for oven drying under 65 °C. After 
120 h, the totally dried fruits were weighed for dried mass. 
All fruits from the experiment plants were harvested at the 
time when they were just ripened and weighed for yield. 
In this way, cumulative fruit production and cumulative 
fruit DM of each treatment were documented gradually 
until the end of the experiment. The final yield calculation 
also considered all the fruits harvested for further analysis 
and assessment.

The macronutrients concentration, 
accumulation, translocation and partition
On 2 July 2017, six plants were chosen randomly from 
each treatment for final harvest. Plants were cut at  the 
base of the stem just above the substrate surface after 
harvesting all fruits. Then, the stem, branch and leaf 
were sampled at 20% separately of its biomass, weighing 
for fresh mass. Weighed plant material were preheated 
under 105 °C for 6 h, then oven dried under 85 °C for 
72 h, and weighed for DM. The water content of each 
part was then calculated. The organs of dried plant 
were manually ground and sieved. The total nitrogen 
content was measured using the Kieldahl’s method 
with automatic Kjeldahl nitrogen analyzer (KDY-9820, 
KETUO, Beijing, China); the total phosphorus was 
measured using Olsen method with spectrophotometer 
(Model 722, Modern Science Ltd., Shanghai, China); 
and the total potassium was determined with Atomic 
Absorption Spectrometer (6400A, Shanghai Jingmi Ltd, 
Shanghai, China). The macronutrients accumulation 
and translocation were calculated as follows:

Nutrients accumulation 
  = Nutrients concentration in the organ 
    Dry mass of the organ×

Nutrients translocation 
  = Nutrients concentration in the fruit/
     Nutrients concentration in vegetative organs

The nutrients translocation factors (NTF) are the 
ratio between the nutrient’s concentration of fruit and 

Table 1. Experimental design.

NSource SiForm Leaf spray content Treatment Concentration (g ⋅ dm−3)

H2O
H2O H2O CK None
K2SiO3 Solely inorganic silicon ISi 0.5
C8H20O4Si Solely OSi OSi 0.5

BSFA
H2O Solely BSFA BSFA None
K2SiO3 BSFA and inorganic silicon BSFA + ISi 0.5 + 0.5
C8H20O4Si BSFA and OSi BSFA + OSi 0.5 + 0.5

GB
H2O Solely GB GB None
K2SiO3 GB and inorganic silicon GB + ISi 0.5 + 0.5
C8H20O4Si GB and OSi GB + OSi 0.5 + 0.5

BSFA, potassium fulvate; CK, control group; GB, betaine; ISi, potassium silicate; OSi, organic silicon; SiForm, different forms of silicon.
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vegetative organs, including stem, branch and leaf. The 
factor shows the status of the root absorbed nutrients 
moving from the transportation organs (stem and 
branch) to the source organs (leaf) and finally to the sink 
organ (fruit).

Data analysis
The  significant  effects  of  the  two  categories  of 
biostimulants were detected through two-way ANOVA. 
Duncan Test for Multiple-comparison (p < 0.05) 
was performed for ANOVA analyses. Pearson’s 
correlation was performed between the macronutrient 
accumulation, partition and translocation of each plant 
organ. Pearson’s correlation and principal components 
analysis (PCA) were performed using OriginPro 2021 
OriginLab Corporation, Northampton, MA, USA. 
ANOVA analyses was performed using IBM SPSS 
Statistics 23.0 (SPSS Inc., New York, USA). Figures were 
plotted in OriginPro 2021 (OriginLab Corporation). All 
data in the tables are presented as mean.

RESULT
The fruit yield, FrQ, plant DM and partitioning
BSFA + ISi, ISi and GB performed best in yield 
improvement, increasing fruit fresh mass by 17%, 12.7%, 
9.5% compared with CK correspondingly (Table 2). 
Other treatments did not show obvious advantages in 
fruit production.

NSource  and  SiForm  had  interactive  influence 
on FrQ (Table 2). BSFA + OSi, BSFA and GB + OSi 
separately produced the highest fruit total soluble 
solids (FrTSS), fruit Vitamin C (FrVc) and fruit nitrate 

contents (FrNitrate) among all the treatments and CK. 
Both BSFA and GB resulted in minimal but significant 
improvement in FrVc, but ISi, OSi and nearly all 
compounded treatments had significantly reduced FrVc 
compared with CK. The lowest FrVc was generated in 
GB + ISi, which was 22.8% lower than CK.

ISi, BSFA + ISi and GB also produced the highest 
fruit dry mass (FrDM) among all treatments and CK, 
and CK produced the least amount of FrDM (Table 3). 
Only  ISi  significantly  improved  FrDM  by  18.3%. We 
noticed that the improvement on FrDM was better than 
fresh yield, indicating a higher fruit photosynthates 
accumulation of the relevant treatments.

For canopy biomass (Table 3), only SiForm had 
impacted  branch  dry  mass  (BrDM)  significantly. 
Treatments containing K2SiO3  generated  significantly 
higher BrDM than those containing OSi. The former 
increased BrDM by 11.0% while the latter reduced 
BrDM by 10.67%. Among all treatments and CK, 
ISi performed the best on BrDM, and GB + OSi was 
the worst. Interestingly, solely applied GB or OSi did 
not hamper the BrDM accumulation as severe as the 
compounded treatment did. GB and OSi may have 
interactive effect on branch growth, which led to this 
aggravation.

The DM partitioning to different organs is also 
shown in Table 3. Around half DM was partitioned to 
fruit for all treatments; the best balance was achieved 
in GB + OSi, which is 5.6% higher than the worst 
performance of CK. It can be concluded that BSFA + ISi 
was the optimum in terms of yield improvement among 
all treatments; ISi was the optimum for promoting 
general biomass accumulation; GB + OSi shifted 

Table 2. The mean (n = 4) of FrY, FrTSS, FrVc and FrNitrate of the tomato plants sprayed with nine different recipes.

Treatment FrY (kg ⋅ m−2) FrTSS (%) FrVc (mg ⋅ 100 g−1) FrNitrate (mg ⋅ kg−1)
CK 3.67 c 8.2 ab 32.6 b 259.9
ISi 4.14 ab 7.8 c 29.8 cd 209.8
OSi 3.66 c 7.7 c 28.8 de 171.6
BSFA 3.71 c 8.3 ab 34.2 a 310.3
BSFA + ISi 4.29 a 8.0 bc 27.8 ef 219.0
BSFA + OSi 3.91 bc 8.4 a 30.6 c 233.7
GB 4.02 abc 8.2 ab 33.1 ab 256.4
GB + ISi 3.81 bc 8.0 abc 25.5 g 228.9
GB + OSi 3.74 c 8.4 a 26.8 fg 413.0
NSource
H2O 3.82 7.9 B 30.8 213.8
BSFA 3.97 8.3 A 31.1 254.3
GB 3.86 8.2 A 28.8 299.4
SiForm
H2O 3.80 8.3 A 33.7 A 275.5
K2SO3 4.08 7.9 B 27.9 B 219.2
OSi 3.77 8.2 A 29.1 B 272.8

BSFA, potassium fulvate; CK – H2O, ISi – K2SO3; FrNitrate, nitrate concentration; FrTSS, fruit total soluble solids; FrVc, fruit vitamin C 
concentration; FrY, cumulative fruit yield; GB, betaine; ISi, potassium silicate; OSi, organic silicon; SiForm, different forms of silicon.
The different letters following each number stand for the different Duncan’s homogeneous subsets of the corresponding mean. The lowercase, 
uppercase and italic uppercase letters are used for the interactive effect, main effect of silicon forms and main effect of nitrogen source, 
respectively. The letters are not indicated if no significance was found.
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most DM partitioning towards fruit; and nitrogenous 
compounds can benefit FrQ.

Plant nitrogen content, translocation factor and 
accumulation
The concentration, translocation factor and 
accumulation of plant nitrogen are shown in Table 4. 
SiForm  significantly  impacted  the  stem  nitrogen 
concentration (StemN), as the treatments contained 
K2SiO3 which reduced StemN. The leaf nitrogen 
concentration (LeafN) was significantly increased when 
the treatments contained BSFA and K2SiO3. NSource 
had an effect on fruit nitrogen concentration (FrN), 
and  the  existence  of  GB  significantly  decreased  the 
FrN level. It is interesting to note that the nitrogenous 
compounds could not increase the plant general nitrogen 
level,  but  the  substance  containing  potassium benefits 
plant nitrogen assimilation regardless of its accompanied 
composition.

Both NSource  and SiForm  significantly  influenced 
the plant nitrogen translocation factors. Stem nitrogen 
translocation  factor  (StemNTF)  was  significantly 
improved compared with CK when treatments contained 
K2SiO3. The K2SiO3 increased branch nitrogen 
translocation factor (BrNTF) while GB reduced it, 
similarly, GB also significantly reduced the leaf nitrogen 
translocation factor (LeafNTF).

NSource had significant influence on branch nitrogen 
accumulation (BrTN) so that both of the nitrogenous 
compounds  total  BrTN.  While  SiForm  significantly 

influenced  the  nitrogen  accumulation  in  all  vegetative 
organs and fruit. The existence of silicon significantly 
reduced total stem nitrogen accumulation (StemTN), 
and the OSi reduced the BrTN, StemTN, and the whole 
canopy and fruit nitrogen accumulation (CTN), while 
the K2SiO3 improved leaf total nitrogen accumulation 
(LeafTN) and fruit total nitrogen accumulation (FrTN). 
GB had the highest StemTN than all other treatments 
and CK. The interactive effect between nitrogenous 
compounds and silicon exacerbated the reduction of 
BrTN. ISi, OSi, BSFA, BSFA + ISi, GB and GB + ISi all 
improved LeafTN compared with CK. FrTN had been 
increased by ISi, BSFA and BSFA + ISi. Also, the ISi, 
BSFA, BSFA + ISi and GB improved the CTN compared 
with CK.

Plant phosphorus content, translocation factor 
and accumulation
The concentration, translocation factor and 
accumulation of plant phosphorus are shown in Table 5. 
Both NSource and SiForm significantly influenced plant 
phosphorus concentration, and so did their interaction. 
The  existence  of  GB  or  OSi  significantly  increased 
the stem phosphorus level (StemP). The existence of 
K2SiO3  significantly  improved  the  branch  phosphorus 
concentration (BrP), and OSi could distinctively improve 
the effect of BSFA on BrP, indicating a superimposed 
effect. Both BSFA and silicon significantly reduced leaf 
phosphorus concentration (LeafP). Only the existence 
of K2SiO3 improved fruit phosphorus concentration 

Table 3. The mean (n ≥ 4) of stem, branch,  leaf, fruit and total DM, as well as  the percentage of DM partitioning 
to stem, branch, leaf and fruit (Stem%, Br%, Leaf%, Fr%, respectively) of the tomato plants sprayed with different 
recipes.

Treatments Stem DM 
(g)

Branch DM 
(g)

Leaf DM 
(g)

Fruit DM 
(g)

Total DM 
(g) 

Stem% Branch% Leaf% Fruit%

CK 1511 ab 667 ab 1064 ab 3018 d 6260 c 24.2 10.7 a 17.0 48.3 b
ISi 1566 ab 742 a 1233 a 3570 a 7137 a 21.8 10.6 a 17.6 50.0 ab
OSi 1397 b 585 abc 1065 ab 3163 bcd 6168 c 22.2 9.5 ab 16.9 51.4 ab
BSFA 1353 b 541 bc 1136 ab 3303 abcd 6240 c 21.3 8.4 ab 17.5 52.9 ab
BSFA + ISi 1572 ab 599 abc 1127 ab 3465 ab 6923 ab 23.4 9.4 ab 17.0 50.1 ab
BSFA + OSi 1360 b 588 abc 935 ab 3115 cd 6145 c 24.0 9.7 ab 15.6 50.7 ab
GB 1848 a 730 a 1127 ab 3407 abc 6902 ab 25.4 9.2 ab 15.9 49.6 ab
GB + ISi 1549 ab 588 abc 1040 ab 3206 bcd 6402 bc 24.3 9.7 ab 16.0 50.1 ab
GB + OSi 1425 b 427 c 842 b 3213 bcd 5974 c 24.6 7.5 b 14.0 53.9 a
NSource
H2O 1481 669 1120 3250 6522 22.7 10.2 17.2 49.9
BSFA 1473 590 1078 3294 6435 22.9 9.2 16.7 51.2
GB 1588 570 990 3275 6426 24.7 8.8 15.3 51.3
SiForm
H2O 1528 609 AB 1087 AB 3243 AB 6466 AB 23.6 9.4 16.8 50.2
K2SO3 1578 677 A 1152 A 3414 A 6821 A 23.2 9.9 16.9 50.1
OSi 1437 545 B 950 B 3164 B 6096 B 23.6 8.9 15.5 52.0

BSFA, potassium fulvate; CK – H2O, ISi – K2SO3; DM, dry mass; GB, betaine; ISi, potassium silicate; OSi, organic silicon; SiForm, different 
forms of silicon.
The different letters following each number stand for the different Duncan’s homogeneous subsets of the corresponding mean. The lowercase, 
uppercase and italic uppercase letters are used for the interactive effect, main effect of silicon forms and main effect of nitrogen source, 
respectively. The letters are not indicated if no significance was found.
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Table 5. The mean (n ≥ 3) of phosphorus concentration, translocation factor and accumulation of different organs of 
the tomato plants sprayed with different recipes.

Treatment Phosphorus concentration (g ⋅ kg−1) Translocation factor Phosphorus accumulation (g)
Stem Branch Leaf Fruit Stem Branch Leaf Stem Branch Leaf Fruit Total 

CK 2.57 d 1.83 d 2.40 b 2.26 c 0.88 a 1.24 a 0.94 c 3.90 e 1.22 cd 2.56 b 6.85 f 14.5 f
ISi 3.43 b 2.27 a 2.09 cd 2.47 a 0.72 cd 1.09 b 1.18 a 5.38 b 1.69 a 2.58 b 8.84 a 18.5 b
OSi 3.32 b 1.86 d 2.08 cd 2.37 abc 0.71 cd 1.27 a 1.14 ab 4.65 vd 1.09 f 2.22 d 7.51 de 15.5 de
BSFA 3.07 c 1.83 d 2.05 d 2.38 ab 0.77 bc 1.30 a 1.16 a 4.16 e 0.99 g 2.34 d 7.86 c 15.3 e
BSFA + ISi 2.91 c 1.95 cd 2.15 cd 2.42 a 0.83 ab 1.24 a 1.12 ab 4.59 d 1.18 de 2.43 c 8.40 b 16.6 c
BSFA + OSi 3.42 b 2.14 b 2.04 d 2.40 a 0.70 cd 1.12 b 1.18 a 4.66 cd 1.26 c 1.91 e 7.49 de 15.3 e
GB 3.72 a 2.01 c 2.53 a 2.29 bc 0.61 e 1.14 b 0.91 c 6.89 a 1.47 b 2.85 a 7.82 cd 19.0 a
GB + ISi 2.99 c 1.91 cd 2.18 c 2.42 a 0.81 ab 1.27 a 1.11 ab 4.63 d 1.13 ef 2.27 d 7.78 cd 15.8 d
GB + OSi 3.50 b 1.84 d 2.11 cd 2.27 bc 0.65 de 1.23 a 1.08 b 4.99 c 0.79 h 1.78 f 7.32 e 14.9 f
NSource
H2O 3.11 1.99 2.19 AB 2.37 0.77 A 1.20 A 1.09 B 4.64 B 1.33 2.46 7.73 16.2
BSFA 3.14 1.98 2.09 B 2.41 0.77 A 1.21 A 1.15 A 4.47 B 1.14 2.23 7.92 15.8
GB 3.41 1.93 2.27 A 2.33 0.69 B 1.22 A 1.03 C 5.50 A 1.13 2.30 7.64 16.6
SiForm
H2O 3.13 1.89 B 2.33 A 2.32 B 0.76 A 1.23 A 1.00 B 4.98 1.23 AB 2.58 A 7.51 B 16.3 AB
K2SO3 3.11 2.05 A 2.14 B 2.44 A 0.79 A 1.20 A 1.14 A 4.86 1.33 A 2.43 A 8.34 A 17.0 A
OSi 3.42 1.95 AB 2.08 B 2.35 B 0.69 B 1.21 A 1.13 A 4.77 1.05 B 1.97 B 7.44 B 15.2 B
Note: First row lists the trait, and the second row lists the different organs as stem, branch, leaf, fruit or whole plant (total).
BSFA, potassium fulvate; CK – H2O, ISi – K2SO3; GB, betaine; ISi, potassium silicate; OSi, organic silicon; SiForm, different forms of silicon.
The different letters following each number stand for the different Duncan’s homogeneous subsets of the corresponding mean. The lowercase, 
uppercase and italic uppercase letters are used for the interactive effect, main effect of silicon forms and main effect of nitrogen source, 
respectively. The letters are not indicated if no significance was found.

Table 4. The mean (n ≥ 3) of nitrogen concentration, translocation factor and accumulation of different organs of the 
tomato plants sprayed with different recipes.

Treatments Nitrogen concentration (g ⋅ kg−1) Translocation factor Nitrogen accumulation (g)
Stem Branch Leaf Fruit Stem Branch Leaf Stem Branch Leaf Fruit Total

CK 20.0 bcd 22.1 abc 39.8 d 20.5 bc 1.02 bcd 0.93 bc 0.51 ab 30.2 b 14.7 a 42.4 d 61.8 c 149.1 c
ISi 19.3 bcd 20.3 bc 42.2 ab 22.3 a 1.15 ab 1.10 a 0.53 a 30.3 b 15.1 a 52.2 a 79.7 a 177.1 a
OSi 19.7 bcd 21.8 abc 40.8 cd 20.7 bc 1.04 bcd 0.95 bc 0.51 abc 27.7 bc 12.8 c 43.6 c 65.5 c 149.6 c
BSFA 22.7 a 24.1 a 41.8 abc 21.5 ab 0.96 cd 0.90 c 0.52 ab 30.8 b 13.0 bc 47.5 b 71.2 b 162.5 b
BSFA + ISi 17.5 d 20.4 bc 42.7 a 21.1 abc 1.20 a 1.04 ab 0.49 bcd 27.6 bc 12.3 c 48.3 b 73.2 b 161.3 b

BSFA + OSi 21.1 ab 21.6 abc 41.6 abc 20.2 bcd 0.96 cd 0.94 bc 0.49 bcd 28.8 bc 12.7 c 38.9 e 63.1 c 143.5 c
GB 20.4 abc 19.5 c 41.8 abc 18.83 d 0.92 d 0.97 bc 0.45 d 37.9 a 14.3 ab 47.2 b 64.4 c 163.7 b
GB + ISi 18.6 bcd 21.3 bc 41.9 abc 19.70 cd 1.06 abcd 0.93 bc 0.47 cd 28.9 bc 12.6 c 43.7 c 63.4 c 148.6 c

GB + OSi 17.9 cd 22.5 ab 41.3 bc 19.7 cd 1.10 abc 0.88 c 0.48 bcd 25.6 c 9.6 d 34.8 f 63.5 c 133.6 d
NSource
H2O 19.7 21.39 41.01 B 21.17 A 1.08 0.99 A 0.52 A 29.4 14.2 A 46.0 69.0 158.6
BSFA 20.5 22.05 42.07 A 20.98 A 1.03 0.86 AB 0.50 A 29.0 12.7 B 44.9 69.2 155.8
GB 19.0 21.15 41.72 AB 19.48 B 1.04 0.93 B 0.47 B 30.8 12.2 B 41.9 63.8 148.6
SiForm
H2O 21.1 A 21.9 41.2 B 20.3 0.97 B 0.92 B 0.49 32.9 A 14.0 A 45.7 A 65.8 B 158.4 A
K2SO3 18.5 B 20.7 42.3 A 21.1 1.14 A 1.02 A 0.50 28.9 B 13.3 A 48.0 A 72.1 A 162.3 A
OSi 19.6 AB 22.0 41.3 B 20.2 1.04 B 0.93 B 0.49 27.3 B 11.7 B 39.1 B 64.0 B 142.2 B
Note: First row lists the trait, and the second row lists the different organs as stem, branch, leaf, fruit or whole plant (total).
BSFA, potassium fulvate; CK – H2O, ISi – K2SO3; GB, betaine; ISi, potassium silicate; OSi, organic silicon; SiForm, different forms of silicon.
The different letters following each number stand for the different Duncan’s homogeneous subsets of the corresponding mean. The lowercase, 
uppercase and italic uppercase letters are used for the interactive effect, main effect of silicon forms and main effect of nitrogen source, 
respectively. The letters are not indicated if no significance was found.
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(FrP), regardless of whether it was combined with any 
nitrogenous compounds.

NSource,  SiForm  and  their  interaction  influenced 
the plant phosphorus translocation factor. GB reduced 
the stem phosphorus translocation factor (StemPTF) 
and the leaf phosphorus translocation factor (LeafPTF), 
while BSFA increased LeafPTF. OSi suppressed 
StemPTF but both forms of silicon improved LeafPTF. 
No treatments performed better than CK on StemPTF, 
but all treatments except GB improved LeafPTF.

NSource  significantly  influenced  the  stem 
phosphorus accumulation (StemTP), so that the existence 
of GB improved StemTP by 18.5% compared with 
H2O. SiForm significantly influenced plant phosphorus 
accumulation in branch, leaf and fruit (BrTP, LeafTP and 
FrTP, respectively). K2SiO3 significantly improved BrTP 
and FrTP, while OSi reduced LeafTP. The interaction 
of  NSource  and  SiForm  also  had  a  significant  effect. 
All treatments resulted in higher StemTP and FrTP 
compared with CK, while only ISi and GB improved 
BrTP. GB increased LeafTP but the combination of 
nitrogenous compounds and silicon exacerbated their 
negative effect on LeafTP. For the total phosphorus 
accumulation (TP) in the whole canopy and fruit (CTP), 
all the treatments except GB + OSI had a positive effect.

Plant potassium content, translocation factor 
and accumulation
The concentration, translocation factor and accumulation 
of plant potassium are shown in Table 6. NSource 
impacted the stem potassium concentration (StemK) 

and the branch potassium concentration (BrK), that GB 
increased both of them while BSFA only increased BrK. 
SiForm impacted BrK, the leaf potassium concentration 
(LeafK) and the fruit potassium concentration (FrK). 
OSi improved BrK and LeafK while K2SiO3 improved 
FrK.  All  treatments  benefited  the  StemK  compared 
to CK except ISi and BSFA + OSi, and ISi and GB 
suppressed BrK and LeafK, respectively. GB + ISi 
was the only treatment elevated FrK compared to 
CK. Interestingly, neither BSFA or K2SiO3 was able 
to directly increase LeafK, but silicon could be the 
key of LeafK improvement. FrK was more sensitive 
to potassium content in the sprays. Hence, the K2SiO3 
can inverse the negative effect of GB on FrK and the 
combination even resulted in highest FrK.

Plant potassium translocation factor (StemKTF, 
BrKTF and LeafKTF) was also impacted by NSource, 
SiForm and their interaction, respectively. GB decreased 
StemKTF, and BrKTF, and BSFA only reduced BrKTF. 
At the meanwhile, K2SiO3 increased BrKTF and OSi 
reduced LeafKTF. Almost all treatments had lower 
StemKTF than CK, except BSFA + OSi. Different 
from StemKTF, most treatments had lower BrKTF than 
CK, except ISi. LeafKTF was elevated by the K2SiO3 
and nitrogenous compounds, especially by the GB, 
but organic compounds would reduce LeafKTF and 
attenuated the positive effect of K2SiO3 and nitrogenous 
compounds.

Both NSource and SiForm had significant effect on 
plant total potassium accumulation (TK), and so did 
their interaction. GB improved total stem potassium 

Table 6. The mean (n ≥ 3) of potassium concentration, translocation factor and accumulation of different organs of the 
tomato plants sprayed with different recipes.

Treatment Potassium concentration (g ⋅ kg−1) Translocation factor Potassium accumulation (g)
Stem Branch Leaf Fruit Stem Branch Leaf Stem Branch Leaf Fruit Total

CK 24.4 d 31.7 d 27.4 ab 25.4 bcd 1.05 a 0.80 b 0.93 bcd 36.9 g 21.2 b 29.2 bc 76.8 f 164.2 c
ISi 26.1 cd 25.8 e 26.1 b 25.8 bc 0.99 ab 1.00 a 0.99 ab 40.9 de 19.2 d 32.2 a 92.1 a 184.4 a
OSi 31.4 a 34.1 c 28.4 a 25.4 bcd 0.81 cd 0.75 bcd 0.90 cd 44.0 cd 20.0 cd 30.3 bc 80.6 def 174.8 b
BSFA 28.4 bc 36.7 a 27.0 ab 26.0 b 0.92 bc 0.71 de 0.96 bc 38.5 ef 19.9 cd 30.8 ab 86.1 bc 175.3 b
BSFA + ISi 30.4 ab 35.1 bc 26.8 ab 26.4 b 0.86 cd 0.75 bcd 0.99 ab 48.0 b 21.1 b 30.2 bc 91.5 a 190.8 a
BSFA + OSi 25.4 d 36.1 ab 28.1 a 26.7 ab 1.05 a 0.74 cd 0.95 bc 34.6 g 21.3 b 26.3 d 83.5 cd 165.7 c
GB 29.80 ab 35.7 ab 22.7 c 24.1 d 0.81 cd 0.67 e 1.06 a 55.1 a 26.2 a 25.7 d 82.2 cde 189.1 a
GB + ISi 31.4 a 35.1 bc 27.7 ab 27.9 a 0.88 bc 0.79 bc 1.01 ab 48.8 b 20.7 bc 28.9 c 89.6 ab 187.9 a
GB + OSi 31.8 a 36.1 ab 28.4 a 24.4 cd 0.77 d 0.68 e 0.86 d 45.3 bc 15.4 e 23.9 e 78.5 ef 163.2 c
NSource
H2O 27.4 B 30.6 B 27.3 25.6 0.95 A 0.85 A 0.94 40.6 B 20.1 30.6 A 83.2 174.5
BSFA 28.1 B 36.0 A 27.3 26.4 0.95 A 0.73 B 0.97 40.4 B 20.8 29.1 A 87.0 177.2
GB 31.1 A 35.7 A 26.0 25.5 0.82 B 0.71 B 0.98 49.8 A 20.8 26.2 B 83.4 180.1
SiForm
H2O 27.6 34.8 B 25.8 B 25.2 B 0.93 0.73 B 0.98 A 43.5 22.4 A 28.6 AB 81.7 B 176.2 B
K2SO3 29.4 32.0 AB 26.9 AB 26.7 A 0.91 0.85 A 0.99 A 45.9 20.3 AB 30.4 A 91.1 A 187.7 A
OSi 29.6 35.5 A 28.3 A 25.6 B 0.88 0.72 B 0.90 B 41.3 18.9 B 26.8 B 80.8 B 167.9 C
Note: First row lists the trait, and the second row lists the different organs as stem, branch, leaf, fruit or whole plant (total).
BSFA, potassium fulvate; CK – H2O, ISi – K2SO3; GB, betaine; ISi, potassium silicate; OSi, organic silicon; SiForm, different forms of silicon.
The different letters following each number stand for the different Duncan’s homogenous subsets of the corresponding mean. The lowercase, 
uppercase and italic uppercase letters are used for the interactive effect, main effect of silicon forms and main effect of nitrogen source, 
respectively. The letters are not indicated if no significance was found.
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accumulation (StemTK) but reduced total leaf potassium 
accumulation (LeafTK). K2SiO3 decrease total branch 
potassium accumulation (BrTK), and the elevated the 
LeafTK, total fruit potassium accumulation (FrTK) 
and the total potassium accumulated in whole canopy 
and fruit (CTK). Also, OSi reduced the CTK. All 
treatments increased StemTK compared with CK 
except BSFA + OSi. Whilst GB and ISi improved BrTK 
and LeafTK compared with CK, respectively. All the 
treatments except OSi and GB + OSi increased FrTK 
compared to CK, and all treatments except BSFA + OSi 
and GB + OSi increased CTK.

Macronutrients partitioning
The plant macronutrients partitioning to different organs 
are shown in Table 7. Nsource and Siform manipulated 
the nitrogen, phosphorus and potassium partitioned to 
the stem (StemN%, StemP% and StemK%, respectively). 
GB increased StemN%, StemP% and StemK%, while 
OSi reduced StemN%. Almost all treatments decrease 
StemN% excepted for GB, and all treatments promoted 
StemP% except BSFA. The Isi, BSFA + OSi, GB, 
GB + ISi and GB + OSi also increased StemK%.

For macronutrients partitioned to branch, both 
nitrogenous compounds and silicon tend to have negative 
impact. The nitrogen, phosphorus and potassium 
partitioned to branch (BrN%, BrP% and BrK%, 
respectively) were reduced by most of the treatments. 
All treatments had decreased BrN%, especially when 
contained nitrogenous compounds. All treatments except 
OSi reduced BrP%, and only GB increased BrK%.

The macronutrients partitioned to leaf also tended to 
be suppressed by nitrogenous compounds and silicon. 
Two nitrogenous  compounds  significantly  reduced  the 
potassium partitioned to leaf (LeafK%), and GB showed 
more extensively effect. And K2SiO3 reduced the 
nitrogen and phosphorus partitioned to leaf (LeafN% 
and LeafP%, respectively), while OSi only suppressed 
LeafP%. None of the treatments elevated the LeafP% 
or LeafK% compared to CK, and only BSFA + OSi 
increased LeafN%.

In all treatments, a major part of macronutrients 
assimilated by plants were partitioned to fruits. NSource 
did not have significantly influence to the macronutrients 
partitioned to fruit, but SiForm impacted total fruit 
nitrogen partitioning (FrN%), that both forms of silicon 
elevated FrN%. All treatments excepted GB had higher 
FrN% than CK, and all treatments excepted ISi and OSi 
increased FrP% compared to CK. Also, OSi, BSFA and 
BSFA + ISi increased FrK%.

The performance of yield preferable treatments 
on plant macronutrient content, translocation 
factor, accumulation and partitioning
BSFA +  Isi  generated  significantly  higher FrTN, FrTP 
and FrTK, which are 18.4%, 22.6% and 19.2% more than 
CK fruit. The StemNTF of BSFA + ISi is competitive 
among all treatments and CK, at the meanwhile, its 
BrTN is16.7% lower than CK. Its best performances 
were presented in LeafTN and CTK, which were 13.8% 
and 16.2% higher than CK. ISi generated highest FrP, 
which was 9.3% higher than CK, and it also resulted 

Table 7. The mean (n ≥ 3) of the partitioning of total nitrogen, phosphorus and potassium to the different organs of the 
tomato plants sprayed with different recipes. 

Treatment Total nitrogen partitioning to Total phosphorus partitioning to Total potassium partitioning to

Stem 
(%)

Branch 
(%)

Leaf (%) Fruit 
(%)

Stem 
(%)

Branch 
(%)

Leaf 
(%)

Fruit 
(%)

Stem 
(%)

Branch 
(%)

Leaf 
(%)

Fruit 
(%)

CK 20.3 b 9.9 a 28.4 b 41.4 d 26.8 e 8.4 b 17.6 a 47.1 d 22.5 c 12.9 b 17.8 a 46.8 cd
ISi 18.5 bc 8.6 b 29.1 ab 43.8 bc 30.0 c 7.1 d 14.4 bc 48.5 cd 25.2 b 11.4 c 17.3 a 46.1 d
OSi 17.1 c 8.5 b 29.5 ab 45.0 b 29.1 cd 9.1 a 14.0 c 47.8 cd 22.2 c 10.4 d 17.5 a 49.9 a
BSFA 18.9 bc 8.0 c 29.2 ab 43.8 bc 27.1 e 6.5 e 15.2 b 51.2 a 21.9 c 11.4 c 17.6 a 49.1 ab
BSFA + ISi 20.0 b 8.9 b 27.2 c 44.0 bc 30.4 c 8.2 b 12.5 d 48.9 bc 20.9 c 12.9 b 15.9 b 50.4 a
BSFA + OSi 17.1 c 7.6 c 29.9 a 45.4 b 27.6 de 7.1 d 14.7 bc 50.6 ab 25.1 b 11.0 cd 15.9 b 48.0 bc
GB 23.1 a 8.7 b 28.8 ab 39.3 e 36.2 a 7.7 c 15.0 b 41.1 e 29.1 a 13.8 a 13.6 d 43.5 e
GB + ISi 19.2 bc 7.2 c 26.1 c 47.6 a 33.6 b 5.3 e 11.9 d 49.2 bc 27.8 a 9.5 e 14.7 c 48.1 bc
GB + OSi 19.5 b 8.5 b 29.4 ab 42.7 c 29.3 cd 7.1 d 14.4 bc 49.2 bc 26.0 b 11.0 cd 15.4 bc 47.7 bcd
Nsource
H2O 18.6 B 9.0 A 29.0 43.4 28.7 B 8.2 A 15.33 47.8 AB 23.3 A 11.6 17.5 A 47.6 AB
BSFA 18.7 B 8.2 B 28.8 44.4 28.4 B 7.3 B 14.13 50.3 A 22.7 A 11.8 16.4 B 49.2 A
GB 20.6 A 8.1 B 28.1 43.2 33.0 A 6.7 B 13.77 46.5 B 27.6 B 11.4 14.5 C 46.4 B
SiForm
H2O 20.8 A 8.9 28.8 A 41.5 B 30.0 7.5 15.95 A 46.5 24.5 12.7 A 16.3 46.5
K2SO3 19.2 AB 8.2 27.5 B 45.1 A 28.7 6.9 12.93 C 48.9 24.6 11.3 B 16.0 48.2
OSi 17.9 B 8.2 29.6 A 44.3 A 31.3 7. 8 14.34 B 49.2 24.4 10.8 B 16.2 48.5
BSFA, potassium fulvate; CK – H2O, ISi – K2SO3; GB, betaine; ISi, potassium silicate; OSi, organic silicon; SiForm, different forms of silicon.
The different letters following each number stand for the different Duncan’s homogenous subsets of the corresponding mean. The lowercase, 
uppercase and italic uppercase letters are used for the interactive effect, main effect of silicon forms and main effect of nitrogen source, 
respectively. The letters are not indicated if no significance was found.
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in highest FrTN, FrTP and FrTK, which were 28.9%, 
29.1%, 19.9% more than CK did. Its StemP and LeafN 
are  significantly  higher  than  CK  for  33.5%  and  6.0% 
correspondingly. But its general potassium concentration 
was relatively low among all treatments, especially for 
BrK. The ISi had highest BrNTF, BrKTF and LeafPTF 
among the treatments and CK. It also accumulated more 
LeafTN (+23.5%), BrTP (+38.5%), LeafTK (+10.1%), 
CTN (+18.8%) and CTK (+12.3%) than CK did. GB 
generated low FrN, but it had highest StemP and LeafP 
which are 44.7% and 5.4% higher than CK. Its LeafKTF 
is highest among all treatments and CK, too. GB results 
in highest amount of N, P, K accumulation in stem, 
highest amount of K in branch and highest amount of 
P accumulation in leaf among all treatments and CK, 
which improved StemTN by 25.2%, StemTP by 76.7%, 
StemTK by 49.2%, LeafTP by 11.3%, and BrTK by 
23.3% compared to CK. The CTN, CTP and CTK of 
GB are ranking highest or second highest, which are 
9.8%, 31.1% and 15.2% more than CK. The performance 
of yield preferable treatments on fruit macronutrients 
partitioning are not outstanding.

PCA and correlation matrix
The PCA comprehensive scores are shown in Table 8. 
The comprehensive scores were assessed from three 
different emphasis, which are general growth, fruiting 
performance and vegetative organs growth with leaf 
status. Among all treatments and CK, ISi performed 
best from all three aspects, especially in general growth. 
BSFA + ISi is comparable to ISi in terms of fruiting 
performance, but the difference is still obvious. GB’s 
comprehensive  influence  on  plant  vegetative  organs 
growth and performance is very close to that of ISi, 
and the gap is minimal. Thus, ISi, BSFA + ISi and GB 
are the top three ranking treatments considering both 
fruiting and plant growth.

The Figure 1 shows the PCA result of the N, P, K 
accumulation of different organs, DM of different 
organs, FrQ parameters, and the total N, P, K partitioned 
to fruit. The green, blue and red symbol cluster represent 
difference NSource, which are water (no nitrogenous 
compound), BSFA and GB, respectively. The FrN%, 
FrP%, FrK%, FrVc, StemDM, Stem TN, StemTP, StemTK 
and BrTK contribute more to the GB clustering, while the 
FrTSS, FrTN, FrTP, FrTK, LeafTK and FrDM contribute 

Table 8. Principle components analysis comprehensive scores of the growth, nutrients and fruiting traits.

CK ISi OSi BSFA BSFA + ISi BSFA + OSi GB GB + ISi GB + OSi

General growth −1.68 3.03 −0.74 0.12 1.46 −0.99 1.19 −0.04 −2.35
Fruiting performance −0.73 1.62 −0.37 0.28 1.15 −0.51 0.20 −0.24 −1.41
Vegetative organs performance −0.33 2.15 −0.97 −0.84 0.60 −0.66 2.07 −0.25 −1.77

Note: General growth includes the N, P, K concentration and accumulation in each organ and DM of each organ; fruiting performance includes 
the vitamin C, TSS, water content, DM, fresh yield, and the N, P, K concentration, accumulation and partitioning of fruit; vegetative organ 
performance includes the N, P, K concentration and accumulation in vegetative organs, DM of vegetative organs, leaf SPAD index (data not 
shown), leaf net photosynthesis rate (data not shown) and leaf temperature (data not shown).
BSFA, potassium fulvate; DM, dry mass; GB, betaine; ISi, potassium silicate; OSi, organic silicon; TSS, total soluble solids.

more to the water and BSFA clustering. The two major 
components explained 36.3% (PC1) and 23.2% (PC2) 
of the combined influence to all the experiment factors. 
The different organs’ DM accumulation, LeafTN, BrTP, 
BrTN  and  LeafTP  are  more  positively  influenced  by 
component 1, while the fruit nutrients accumulation, 
fruit nutrients partition and LeafTK are more positively 
influenced  by  component  2.  The  FrVc,  BrTK  and 
nutrients accumulation of stem are more positively 
influenced by component 1 but negatively influenced by 
component 2. Only the FrTSS is negatively influenced by 
both components 1 and 2. Attractively, LeafTN has the 
strongest consistency with FrDM, BrDM and LeafDM, 
whereas the FrVc has the strongest consistency with the 
total nutrient accumulation in stem. Besides, FrTSS has 
the total conversed response to the experiment factors 
compared with FrTN, FrTP and FrTK and so does the 
FrVc concentration compared with FrTN%, FrTP% and 
FrTK%.

The correlation matrix of plant macronutrient 
translocation factors, accumulation and their partitioning 
to fruit are shown in Figure 2. The FrTSS has negative 
correlation with FrDM, FrTN, FrTP, FrTK, LeafTN, 
LeafTP and LeafTK. But the FrDM, FrTN, FrTP and 
FrTK have a positive correlation with LeafTN, LeafTP 
and LeafTK. The macronutrients accumulated in stem 
and branch and LeafTP are negatively correlated to the 
FrTN%, FrTP% and FrTK%, but LeafTN and LeafTK 
had no correlation with those. On the contrary, the 
macronutrients concentration of stem of branch had no 
impact on FrTN%, FrTP% and FrTK%, but LeafP and 
LeafK have negative and positive correlation with them, 
respectively.

DISCUSSION
As the treatments generated the highest yield and most 
fruit DM, it drew our attention that the BSFA + ISi and 
ISi increased LeafN and LeafTN more extensively, 
and the percentage improved by BSFA + ISi and ISi on 
fruit total nutrient accumulation is much higher than 
its impact on fruit DM, showing a further enrichment 
effect on the N, P, K in fruit. The common point shared 
by BSFA + ISi and ISi in the stimulation of fruit yield 
and photosynthates accumulation is it improves the 
plant nitrogen uptake and accumulation. Potassium 
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Figure 1. Principle components analysis of plant macronutrients accumulation, fruit macronutrients partitioning, 
FrTSS  content  and  FrVc  concentration. The  green,  blue  and  red  circles  represent  the  confidential  eclipses  of  the 
treatments having water (control), BSFA and GB as the source of nitrogen, respectively. The square, round and triangle 
dots represent the treatments having water (control), ISi and OSi as the form of silicon, respectively. The green, 
blue and purple vectors show the N, P, K accumulation in different plant organs, and the orange, dark yellow and 
red vectors show the fruit nutrients partitioning, DM of different plant organs and FrQ, respectively. *FrN%, the 
percentage of TN partitioned to fruit, similar for FrP% and FrK%, which indicate the percentage of total phosphorus 
and potassium accumulation partitioned to fruit, respectively. Br, branch; BSFA, potassium fulvate; DM, dry mass; Fr, 
fruit; FrN, fruit nitrogen concentration; FrQ, fruit quality; FrTSS, fruit total soluble solids; GB, betaine; ISi, potassium 
silicate; OSi, organic silicon; TK, total potassium accumulation; TN, total nitrogen accumulation; TP, total phosphorus 
accumulation; TSS, total soluble solids; Vc, vitamin C.

fertiliser amendment to field can improve plant SPAD, 
photosynthesis, transpiration and fruit yield (Yang et al., 
2017), while lack of potassium retards leaf growth and 
expansion (Jordan-Meille and Pellerin, 2004). Nitrogen 
was the primary element in plant used for synthesis 
of amino acids, chlorophyll, enzyme and DNA, and 
potassium is vital for enzyme activation, ATP synthesis 
and stomatal opening (Hasanuzzaman et al., 2018). The 
stimulation on nitrogen and potassium uptake benefits 
plant biomass accumulation. It has been proved that 
under the same level of nitrogen source, higher potassium 
supply stimulates plant photosynthesis, stomatal 
conductance, transpiration and biomass accumulation, 
and vice versa (Guo et al., 2019). Early serial studies 
revealed the efficacy of potassium on nitrate absorption, 
root to shoot translocation and assimilation of plant, 
specifically,  higher  potassium  supply  increases  shoot 
nitrate concentration and the nitrate reductase activity 
(Blevins et al., 1978); in the meantime, nitrate supply 

also stimulates the absorption and assimilation of 
potassium, in condition of the presence of light (Blevins 
et al., 1974). The difference is, early studies supplied 
potassium or nitrogen through root system while our 
study considered foliar application (BSFA: K in solution 
for appr. > 46.8 ppm, N in solution for appr. ≥ 15 ppm; 
GB: N in solution for appr. 59.8 ppm; K2SiO3: K in 
solution for 253 ppm). Although leaf sprayed potassium 
fertiliser was able to improve crop yield and whole 
plant biomass under stress condition (Amanullah et al., 
2016), its relation with nitrogen uptake is unclear. Thus, 
the function of potassium inside ISi and BSFA was to 
promote the nitrogen and photosynthates accumulation 
in leaf but not increase the local potassium content. Thus, 
it can be seen that potassium or nitrogen source given 
from the foliar is also able to improve the acquisition 
of the other, with the only ambiguity being the efficacy.

The  influence  of GB on  plant  growth  and  nutrient 
metabolism of GB could be through another mechanism. 
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With no additional potassium content, GB produced the 
highest CTP, the second highest CTN and CTK and 
also the highest biomass on aboveground vegetative 
organs (data not shown). Its PCA comprehensive 
score is more advanced on the vegetative growth, 
especially the biomass, but its fruiting performance is 
not competitive. Plant membrane stability, chloroplast 
function and Rubisco activity can be shifted by high 
temperature (Maestri et al., 2002), gas exchange and the 
effectiveness of PSII would decrease and the chlorophyll 
will decompose under heat stress (Morales et al., 2003). 
While GB can improve crop leaf both chlorophyll content 
and relative water content through leaf spray (Denaxa 
et al., 2012; Sofy et al., 2020; Islam and Mohammad, 
2021; Islam et al., 2021; Khedr et al., 2022), which is 
different from the regulation mechanism of potassium. 
Although  GB  benefits  plant  growth  more  extensively 
in the vegetative stage, it can increase the source to 
sink (leaf to fruit or seed) transportation (Osman, 
2015). Moreover, one of the potassium metabolism 
functions is to strengthen the positive transportation of 
photosynthate in phloem by promoting ATP production, 
which increases the photosynthates moving from source 
organ (leaf) to sink organ (fruit) (Mengel, 1980). The 
shifting on source-sink transportation brought by GB 
and potassium shares a common point; thus, the way 
of GB improving plant potassium uptake deserves 

further study. It also proposed that GB improves crop 
nutrient uptake and photosynthesis ability mainly by 
recovering the osmosis balance but not regulating the 
stress resistance mechanism under stress (Sofy et al., 
2020). Early study also suggested that GB helps plants 
to maintain the leaf water potential and CO2 assimilation 
while slowing down wilting under stress, it was not able 
to increase shoot biomass (Xing and Rajashekar, 1999). 
As a phytohormone which can be synthesised from 
plant body, GB can function as a signal molecule or 
an indicator of plant resisting to environmental stress, 
whose synthesis can also be triggered by exogenous 
ABA or itself (Xing and Rajashekar, 2001). Thus, 
GB  may  increase  the  efficiency  of  plant  response  to 
heat stress or interactively work with phytohormone 
like ABA on modulating plant nutrient uptake and 
assimilation. Although BSFA + ISi, ISi and GB have 
significant  higher  fruit  yield  and  whole  aboveground 
macronutrients accumulation, their FrDM% is not 
different or improved from CK. Therefore, the yield 
improvement is the company of aboveground biomass 
enlargement, but not better photosynthates allocation.

Beyond the effects shown in fruiting and biomass 
accumulation, the nutrient balance between different 
organs tells the potential on the direction of further 
study. LeafN and LeafTN show a strong positive 
correlation with the macronutrients pool in fruits, and 

Figure 2. Correlation matrix of macronutrients concentration and accumulation in different plant organs, as well as the 
fruit DM, FrTSS content and the macronutrients partition to fruit. *FrN%, the percentage of TN partitioned to fruit, 
similar for FrP% and FrK%, which indicate the percentage of total phosphorus and potassium accumulation partitioned 
to fruit, respectively; Br, branch; DM, dry mass; Fr, fruit; FrN, fruit nitrogen concentration; FrTSS, fruit total soluble 
solids; TK, total potassium accumulation; TN, total nitrogen accumulation; TP, total phosphorus accumulation; TSS, 
total soluble solids; Vc, vitamin C.
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LeafK has a positive correlation with fruit nutrients 
partitioning, which means high leaf nitrogen and 
potassium  content  benefit  fruit  biomass.  However, 
high stem macronutrients accumulation, high LeafP 
and LeafTP reduced fruit macronutrients partitioning. 
The mechanism of how leaf phosphorus content 
hampers fruit growth deserves further study. Besides, 
silicon is also able to elevate plant nitrogen uptake, 
strengthening its photosynthesis, transpiration and 
biomass accumulation (Xu et al., 2018); increase K+-
ATPase activity, then enlarge plant potassium uptake 
(Ahmad, 2014). Thus, separating silicon from potassium 
or nitrogen to be a single study subject may give new 
direction on production improvement by leaf spray.

CONCLUSION
For the greenhouse cherry tomato summer production, 
periodically spraying the plant with ISi, GB and 
BSFA combined ISi are more effective than the sole 
use of organic silicate, BSFA or other combinations 
between the compositions above. Foliar application 
of ISi or BSFAs increase tomato yield by stimulating 
the nitrogen and potassium uptake and accumulation 
of leaf and whole plant, while GB increase yield by 
improving plant nitrogen, phosphorus and potassium 
uptake and accumulation potentially through improving 
plant osmosis balance and interacting with endogenous 
phytohormone. All the three recipes improve fruit yield 
with general increase of the aboveground biomass but 
not higher biomass partitioning towards fruit. Further 
study  targets  of  the  dosage  and  refined  combinations 
between ISi, BSFA and GB are still needed. 
Furthermore, silicon could also be an independent 
subject to be studied in terms of yield promotion 
through foliar application.
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