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Abstract. Academia remains the central place of machine learning education.
While academic culture is the predominant factor influencing the way we teach ma-
chine learning to students, many practitioners question this culture, claiming the lack
of alignment between academic and business environments. Drawing on professional
experiences from both sides of the chasm, we describe the main points of contention,
in the hope that it will help better align academic syllabi with the expectations to-
wards future machine learning practitioners. We also provide recommendations for
teaching of the applied aspects of machine learning.
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1. Introduction

Machine learning (ML) is quickly becoming one of the defining technologies of modern
computer science (CS). It attracts attention from both academia and business, with
some going as far as calling it the source of the growth of future economy [89]. How-
ever, the deployment of scalable and efficient ML solutions remains a very challenging
task due to numerous practical obstacles. In the opinion of some practitioners, one of
the consequential obstacles is the lack of alignment between the way ML is presented
and taught in academia, and the industrial requirements [106, 107].

The main goal of this paper is to identify the divergences between academic and
applied ML. Obviously, the paper is heavily opinionated as we draw from our experi-
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ences resulting from the involvement in scientific research, educational activities, and
working both in startups and corporate environments. Even if some of our claims seem
controversial, we hope that they provide ML educators with inspiration and business
perspective. At this point we also want to stress that our paper is addressed to teach-
ers and students of ML engineering specializations. We acknowledge the need to train
ML researchers who are faced with a different set of challenges and requirements, so
the curriculum of more research-oriented ML courses will be different.

There are consequential differences between the way ML is taught and the way ML
is applied. We focus on enriching the academic curriculum with ML engineering best
practices at the early stages of education. We address this paper primarily to students
of ML, as well as to faculty members engaged in teaching ML engineering. We hope
to enrich the academic perspective on applied ML, borrowing as the guiding principle
the advice which opens the excellent Google’s guide Rules of Machine Learning [119]:

Do machine learning like the great engineer you are, not like the great
machine learning expert you aren’t.

We divide our discussion into four blocks covering the entire lifespan of an ML
project. Each section concludes with recommendations of available tools and libraries
that can be useful for teaching that particular aspect of ML deployment. In Section 2
we focus on the problem of business objectives. We discuss the importance of the
proper definition of business objectives and their alignment with loss functions and
evaluation metrics used during model design and training. Section 3 presents our per-
spective on the acquisition, transformation, and provenance of data used for training,
testing, and validation. Section 4 is devoted to the problem of algorithm selection
and training. Finally, in Section 5 we present specific recommendations regarding
the orchestration of ML workflows, and best practices for the management of ML
projects. The paper concludes in Section 6. The paper is an extended version of the
publication submitted to the PP-RAI’2019 conference [83].

2. Business Objectives

The quality of an ML model is evaluated using a set of metrics. Examples include
mean squared error for regression, accuracy for classification, mean average precision
for ranking, silhouette score for clustering, and many others. Unfortunately, the
reality is much more complex and requires a more holistic approach.

2.1. Machine learning metrics

A metric used for model evaluation is often not directly translatable into an actionable
business metric, usually referred to as the key performance indicator (KPI). And the
KPI is not synonymous with the business objective, which usually consists of multiple
criteria and KPIs. Consider the problem of automatic speech recognition system
(ASR) development. The most frequently used objective function for ASR training
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is the word error rate (WER). From the business perspective, however, much more
nuanced KPIs are important, such as verb confusion, keyword error rate, grammatical
correctness (measured by the coherence of parse trees), intent recognition, etc. And
these KPIs may not fully represent the major business objective, which may be defined
as the overall text understanding or human impression of the quality of a transcript.
Oftentimes, a business objective is to jointly optimize two metrics. In many natural
language processing (NLP) tasks, the objective function is to optimize recall given
a fixed minimum precision threshold, a goal which is relatively difficult to achieve.
A typical example is the task of spam e-mail identification, where a model should
maximize the recall (the number of identified spam messages), but only after securing
a certain accuracy threshold (the probability that an identified spam message is indeed
unsolicited). The definition of a good business objective that models the business
case closely or evaluating the models using a Pareto frontier [52] in a multi-criteria
setting (accuracy, latency, efficacy) should receive particular attention in the design
of machine learning curricula.

2.2. Downstream tasks and constraints

One must not forget that there are essential upstream and downstream metrics which
postpone the evaluation of an ML model [119]. Upstream metrics for model evaluation
usually revolve around system infrastructure costs. For example, a simple lightweight
model incurring minimum CPU usage and consuming less memory may be preferred
to a more complex model consuming more memory and requiring more computing
power, because it translates directly into monetary savings. A larger model which
improves the WER of a speech recognition system by 1% adds almost nothing to
product quality, but may significantly increase infrastructure costs. Downstream
metrics postpone the evaluation of an ML model by measuring the quality of the
model indirectly through the observation of signals produced by components which
consume the results of the ML model. Consider the task of sentiment analysis applied
to culinary recipe reviews. The metric used to evaluate the accuracy of the classifier
(e.g., accuracy) is in no way connected to the metric used to train word embeddings
for that particular domain.

In several applications, there is a strict response time limit imposed, depending on
business requirements (e.g., a model must come up with a prediction within 30 ms). In
various NLP tasks, using transformers such as BERT [48] or Q8BERT [116] might not be
feasible due to long inference times and the size of the model itself. Especially in real-
time systems using dictionary-based (static) embeddings, like word2vec [82], might be
the only viable solution. In order to address certain issues, e.g., concept drift, models
might have to be retrained periodically on recent data. Such a requirement makes
the training speed and cost critical – together with the cost of building automated
processes, data acquisition, human and finally compute resources.
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2.3. Real business impact of ML models

In the production environment, the quality of an ML model should be measured
from the perspective of how it influences the production system as a whole, and the
key business objectives in particular. Finding a link between these two metrics is a
significant effort without the guarantee of success. The main reason is that such a
correspondence can be elusive, indirect, and convoluted. How does the precision of an
ML model influence overall customer satisfaction? Multiple factors need to be taken
into consideration and all should be measured. Factors such as user interface changes
or small latency reduction might be the reason for a change in measured customer
satisfaction, not the model’s predictive power. The first step towards addressing this
issue is to invest in monitoring and to implement a large variety of measurements to
get a better understanding of how different elements of a system inter-operate and
influence each other. Due to the fact that it is hard to attribute business objectives to
individual metrics, as they are interwoven by complex relationships, the key outcome
of monitoring is the recognition of the role ML models play in a larger system. If mea-
sured metrics do not translate into business objectives, either the scope of monitoring
should expand, or reconsidering ML model training objectives might be necessary.
Rule-based and simple interpretable models are valuable during the first iteration –
they not only help to launch product or release features faster, but also provide ample
opportunity to better understand the system and offer more business insights.

2.4. Recommendations

In our view, the academia does not pay enough attention to the practical ramifications
of model training and evaluation. ML models do not operate in a vacuum, they con-
stitute a broader ecosystem, and we should evaluate them in the context of business
objectives they serve. This principle may be difficult to apply in an academic envi-
ronment, but we need to continuously remind the students of the necessity to think
critically about model training and evaluation. For instance, a mismatch between the
training criterion (i.e. the loss function optimized during training) and real objectives
has led YouTube to recommend content full of racism and conspiracy theories because
it maximized the number of views [104]. Students should be taught to check for po-
tential information leaks between training and evaluation sets, biases in the training
datasets, and model over-fitting (collectively known as the training-serving bias). It
is especially important in cases where transfer-learning is involved and models are
expected to perform on data substantially different from the ones used in training.
We also suggest that students are made aware of:

• possible adversarial effects of ML objective functions [78],

• model bias caused by objective functions [55, 86],

• real environmental costs of ML training [76],

• real-world examples of over-fitting of ML models [77],
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3. Data

Thoroughly knowing one’s data and domain is the key requirement for the successful
application of ML to solve real-world problems. Out of the box models and algorithms
usually require sophisticated domain adaptation, which cannot be performed without
a deep understanding of data and its characteristics. As an example, we can imagine
a keyword extraction problem for scientific papers (a standard problem in academia)
and the application of its related research to extract key phrases from transcribed
calls in a call center (a very domain-specific problem). On the surface, these may
seem like identical problems and one may hope to get good results with off-the-
shelf algorithms. In practice, we could learn that transcribed calls have high word
error rate, fundamentally different sentence structure (due to turn-taking by different
participants, disfluencies, back-channels), and different parts of speech distribution,
as spoken language differs from written language significantly. Of course, gaining this
domain knowledge is impossible in the classroom setting, but students should be fully
aware of the challenge of thorough domain exploration.

3.1. Teaching data processing

Most machine learning models are data greedy. Many courses and textbooks stress the
importance of data and feature engineering, but it is challenging to comprehensively
present all the intricacies of the process in an academic setting. What we often see is
that students learn about the essential feature engineering techniques (normalization,
binning, feature extraction, feature encoding) and then proceed to learn about various
algorithms. On the other hand, every practitioner will recognize that data preparation
is the most crucial step in the entire machine learning pipeline [93]. In a practical
setting, they will spend the majority of time on data and feature engineering, and it
will be time well-spent. According to many sources [5, 6], the so-called 80/20 rule is
applied to most of data scientists’ work. It means that 80% of the data scientist’s
valuable time is spent simply on finding, cleansing, and organizing data, leaving only
20% to perform actual analysis.

Academic curricula usually enclose data processing in a separate course or special-
ization, focusing on data warehousing [72], extraction-transform-load pipelines [108],
and data lakes [71]. Of course, this is understandable as the subject of data processing
is in itself too large and by no means limited to machine learning. Our recommenda-
tion to ML teachers is to make sure that ML teaching is synchronized and integrated
with data processing teaching. It may be very tempting to point the students to
a dataset posted on Kaggle [17] and to proceed directly to ML model training. In
reality, getting high-quality data is much harder and time-consuming than it might
seem.
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3.2. Data annotation

Leaving the data processing aside, we want to concentrate on two distinct concepts
that the students of ML should be exposed to. Domain adaptation combined with
data annotation is a very useful tool to obtain high quality data for model training,
and it can be effectively presented in an academic setting. When no high-quality data
is available, another possibility is to turn to a family of techniques commonly referred
to as weakly supervised learning.

Data annotation and acquisition strategies can be a key business competitive ad-
vantage. Investments in building or customizing software and processes for data
annotation can be pivotal to business’ success. Unfortunately, practical concerns
surrounding data annotation can be detrimental. The need for additional human re-
sources or questions regarding data security and confidentiality are examples of such
concerns which limit the wide use of data annotation. On the other hand, the inclusion
of the ML team in the data annotation process may have many positive side effects.
ML engineers not only produce more high quality data for model training, but they
gain invaluable understanding of the application domain and business ramifications
at the same time.

It is worth mentioning that advancing the project from prototype to production
could require additional investment in dedicated staff for data annotation. While
crowd-sourcing services [2, 11] can be a viable way to obtain annotated data for some
problems, it is not a one-size-fits-all solution. Obtaining and ensuring annotation
quality may prove prohibitively expensive and unreliable if the annotation task is
cognitively complex or requires some domain expertise.

3.3. Weakly supervised learning

Weak supervision is another approach for the curation of data for model training [36,
46]. Weakly supervised learning is an umbrella term for a family of techniques for the
mitigation of data scarcity. In general, weakly supervised learning can be categorized
into:

• incomplete supervision: only a part of the dataset is labeled, and more labels
need to be induced from existing labels based on certain assumptions about data
structure (this type of weak supervision is usually referred to as semi-supervised
learning [105]),

• inexact supervision: labels are not as exact or detailed as desired, they may be
expressed in terms of higher-order concepts or generalizations [59],

• inaccurate supervision: labels may contain errors [64].

Many techniques have been proposed over the years to implement the paradigm
of weakly supervised learning. Active learning [57, 97] uses a model-in-the-loop ap-
proach to human annotation by carefully selecting data items for human annotation.
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Transfer learning [94] uses models trained on different tasks and datasets to solve
other problems. This transfer of knowledge encoded in a model can be accompa-
nied by either unsupervised domain adaptation [50], or by supervised fine-tuning [70].
Recently, a new paradigm of self-supervised learning has been quickly gaining mo-
mentum [51, 65]. The main premise of self-supervised learning is to extract a useful
supervision signal from unlabeled data using an auxiliary task (also known as the
pretext task). The design of the auxiliary task requires domain knowledge and a
significant dose of engineering ingenuity, and can be a valuable teaching exercise.

3.4. Recommendations

We assume that the students are exposed to data gathering, cleaning, imputation,
transformation, and integration techniques within the scope of relevant subjects in
their curriculum. In this section we focus on data annotation and we provide rec-
ommendations on how to make working with data more efficient and attractive to
students.

• Annotation protocol: Students should be familiar with the concept of the
annotation protocol and how such protocol can be designed and implemented.
Probably the best place to start is to work with text data. An excellent intro-
duction to the annotation of text corpora can be found in [90]

• Manual data annotation: Affordable and effective tools for annotation are
readily available and should be presented as the part of the ML course curricu-
lum. Data annotation can be done directly from Jupyter Notebooks [16, 24], or
tools like Prodigy [84] and doccano [85]. For crowd-sourcing platforms, such
as Amazon Mechanical Turk [3] or Amazon Sagemaker Ground-Truth [2], a
thorough comparison of platforms is available [34].

• Programmatic data annotation: Manual data annotation can be time-
consuming and expensive, even if ML models are included in the annotation
loop. Programmatic data annotation is an interesting alternative. Snorkel [91]
is the tool which allows to encode basic labeling intuitions into a rule-based
system that automatically annotates data. This is especially useful if one al-
ready has a small set of manually labeled data or a reasonable understanding
of labeling rules from data exploration.

• Pre-trained models: Many pre-trained models have been published over the
recent years BERT [48], Glove [88], GPT-3 [43], MobilesNet [69], VGG [100], and
many more. A promising direction is to use these models in new application
domains via transfer learning [75, 112], especially when training of models from
scratch is prohibitively expensive [26]. This practice has become de facto the
baseline approach in computer vision and NLP tasks. Using pre-trained models
is trivial since many of those models are available via standard APIs in libraries
such as SpaCy [67], Flair [12], HuggingFace [15], or PyTorch Vision [87].
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• Augment data if possible: Data augmentation can be used to enrich and di-
versify data available for model training. Data augmentation techniques, such
as cropping, padding, and horizontal flipping, are commonly used to train large
neural networks [66] in image recognition tasks, but data augmentation can ap-
ply to text and audio data as well. Words and sentences can be shuffled, words
can be replaced by synonyms, tokens can be randomly inserted, swapped, or
deleted, back translation can be used to circle a sentence between languages,
sentences can be randomly modified by manipulating the syntax tree directly.
For audio data most typical augmentations include noise injection, frequency
shifting, and speed manipulation. Several augmentations are readily available
in popular libraries (TensorFlow.image, Keras, TorchVision.transforms),
and libraries dedicated to image augmentation, such as Augmentator [38] or
Albumentations [44] are available. For text and audio data augmentation can
be easily performed using NLPAug [80] library.

• Be aware of ways to find open datasets: There are numerous reposito-
ries with openly available datasets such as Kaggle Dataset [17], UCI Machine
Learning Repository [30], Amazon Open Data [4], Google Dataset Search [14],
Network Repository [22], Data Gov [8], and Data USA [9]. Open datasets may
be especially valuable in tandem with proprietary licensed or internal datasets,
as they could provide ample data for pre-training a model that can later be
fine-tuned [70] with proprietary data. Furthermore, students should be aware
of different license types and ways to understand their applicability for commer-
cial use [29].

• Use data versioning tools: In an ideal world data do not evolve with time.
However, the real-life projects have to face data streaming, concept drifts, degra-
dation of data quality over time, etc. Students should know how to create data
snapshots, or how to rollback data and models to a certain time point. Data
Version Control (dvc) [10] and kedro [18] are examples of tools which allow for
advanced data versioning.

• Bad examples of ML models: Discuss examples of biased models [39, 68,
103]. Students’ understanding of concepts such as information leakage, con-
cept drift, sampling error, survival bias, etc., may be significantly increased by
showing real world examples of ML models gone bad [98].

4. Algorithms

A typical ML curriculum puts significant focus on detailed presentations of algorithms
for classification, regression, and clustering. It is, of course, fundamental to under-
stand the inner workings of an algorithm, to be able to adjust its hyper-parameters,
and to interpret the results. However, focusing solely on these aspects may result
in over-stressing the role of individual algorithms, which becomes detrimental to the
application of ML to solve real-world problems.
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4.1. ML baselines

In practice, starting every experiment with a simple baseline is not only a good
strategy, but a necessity as well. General-purpose classification algorithms, such as
Random Forests, Gradient Boosting, or Naive Bayes, can provide strong baselines in
many classification tasks, whereas Agglomerative Hierarchical Clustering, k-means,
or DBSCAN tend to perform well for unsupervised tasks. In the case of NLP tasks,
pre-computed word embeddings, combined with simple tools (such as cosine distance
for clustering, or Support Vector Machines for classification), tend to work remarkably
well across a wide range of problems. Similarly for image recognition, stripping layers
from large pre-computed models, such as VGG19, ResNet, or InceptionV3, is a very
reasonable starting point.

4.2. Recommendations

Teaching and presenting ML algorithms is probably the most gratifying part of the ML
curriculum. While not questioning the central point which ML algorithms occupy in
the curriculum, below we present some recommendations for enriching this curriculum
with applied ML concepts.

• Always start with a baseline: Whenever presenting a new algorithm, strive
to compare its performance with a baseline. We advocate the use of Random
Forests [42] as a universal baseline, but any simple ML algorithm will do.

• Use benchmarks: Many ML tasks have accompanying benchmarks that al-
low to extensively compare many algorithms. Examples include general bench-
marks, such as the suite of clustering benchmarks [54], or task-dependent spe-
cialized benchmarks, like Chinese-to-English neural translation benchmark [61].

• Visualize algorithms: In our experience, visual tools which help to interpret
and explain trained models are invaluable. Visualization can be easily intro-
duced into the ML workflow using tools such as Yellowbrick [33] or Visdom [31].
Text datasets can be visualized using Scattertext [73]. Deep neural nets can
be inspected using TensorBoard [27], GanLab [13], saliency maps [117], or Deep
Visualization [115]. Even recurrent neural networks can be easily visualized to
reveal activations and attention [101, 111].

5. Deployment

5.1. Methodologies for ML processes

Finally, we arrive at the most contentious point: limited teaching of ML productiza-
tion in the academia. For obvious reasons, it is difficult to comprehensively present
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this subject in the classroom setting, so the focus of the academic community was on
the presentation of methodologies rather than practical tools. Over the years, several
methodologies for knowledge discovery and machine learning processes have been pro-
posed. Cross-Industry Standard Process for Data Mining (CRISP-DM) [113], Knowl-
edge Discovery from Databases [53], Sampling, Exploring, Modifying, Modeling, and
Assessing data (SEMMA) [81], Ontology Driven Knowledge Discovery Process [60],
or Knowledge Discovery Life Cycle (KDLC) [79] come to mind. Unfortunately, these
attempts to introduce rigid methodologies to ML workflows have never gained momen-
tum and commercial recognition. Even the most popular among them, CRISP-DM,
is no longer maintained, and its special interest group seems to have dissolved.

The widespread adoption of ML in practical tools and services resulted in the
rekindling of research interests around ML processes and ML management. The com-
plexity of ML-based systems makes their validation and verification a challenging
task [63]. In recent years we see much more work, both practical and theoretical,
allocated to designing robust and secure ML workflows, in particular, by adapting
well-known practices and patterns of software engineering to ML systems. A good
place to start researching software engineering methodologies for ML is a recent case
study [35], where the authors review ML-based initiatives at Microsoft from the per-
spective of agile software engineering processes. The resulting nine-stage workflow
presents best practices that address the challenges of deploying ML solutions. A
similar best practices guide from Google has already been mentioned [119]. Another
excellent resource of this type is a detailed description of best practices resulting
from implementing over 150 machine learning models within Booking.com infrastruc-
ture [37]. The authors emphasize the importance of a good metric design which takes
into consideration the business impact. The authors also note that there is practically
no correlation between the offline performance gain of a model and the business value
gain.

Interestingly, machine learning is not only benefiting from software engineering
methods, but it changes software engineering at the same time. A recent study [110]
presents the results of a large survey of software engineers on their experiences when
developing ML-based products. The ability of a system to learn adds a layer of
complexity and instability to the overall system design. This uncertainty is reflected
in changes to the software development process. A survey [74] of almost 800 data
scientists working on ML products in Microsoft reveals that the term data scientist
encompasses at least nine distinct roles with disjoint characteristics and responsibili-
ties within an ML project. This is just one out of many challenges of engineering ML
solutions [40] and of teaching ML engineering.

5.2. Deployment of ML models

ML deployment is a very complex and iterative process, involving data acquisition,
data labeling, model training and evaluation, KPI monitoring, model re-training,
and more. This process is driven by engineering principles, rather than research
guidelines. At the same time, it is not simply the adaptation of software engineering
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best practices to the domain of ML. Practitioners of ML are fully aware how much
more challenging and difficult is the deployment of ML-backed solutions as compared
to more traditional information systems [96] due to:

• Entanglement: Input features are all interconnected, adding, removing or chang-
ing the distribution of a single feature can impact all other features. ML work-
flows are often cited as good examples of the CACE principle: Changing Any-
thing Changes Everything.

• Unstable data dependencies: The relationship between input and output of
an ML model can be unstable, a small change in the input signal can have a
detrimental effect on the model which consumes the signal.

• Underutilized data dependencies: For various reasons ML workflows may keep
input features which provide almost no value to the model. A legacy feature
may have become obsolete during model training, but is still served as input,
a feature may be bundled together with truly useful features, two features may
be correlated but the model makes a mistake and prioritizes non-causal feature,
etc.

• Direct and hidden feedback loops: A model can directly or indirectly influence
the selection of input features, creating a feedback loop which is very difficult to
analyze. Also, a model can implicitly select input features for another model,
creating a hidden dependency.

• Dead experimental codepaths: Due to the way ML models are designed and
developed, the codebase can contain hundreds of abandoned branches with data,
models, and configurations. Such branches may be the source of integration
errors.

• Process management debt: When the product becomes large and mature, the
number of ML models contained in the product grows rapidly. Coordination
of models, synchronized updating of configurations, management of resource
allocation between models, monitoring of data flows in the production pipeline,
all these tasks become increasingly complex and error-prone.

5.3. Testing of ML code

One of the most neglected areas of ML productization is testing. Despite years of
developing best practices in software engineering testing, ML engineers exhibit a dis-
quieting restraint when it comes to testing. In general, testing of machine learning
pipelines is difficult as it involves multiple levels: data pipelines, feature extraction
pipelines, model training and validation, model serving. Time dimension plays an
important role – many regressions may be delayed as they accumulate over time in
the training data. In order to fully comprehend the scope of this challenge, readers
are invited to take a simple test [41]. The authors propose a set of tests for data.
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They discuss testing of the data itself, but also testing ML infrastructure, model de-
velopment, and methods of ML monitoring. There are also methodologies developed
for particular branches of ML, such as methodologies dedicated to deep learning test-
ing [47, 56, 114], testing for machine translation [102], or computing bounds on ML
assurances from manifold learning [45]. A comprehensive survey of over 140 scientific
papers on ML testing is available [118].

Teaching ML deployment in an academic setting is difficult. Nevertheless, students
should be constantly reminded that ML projects are just like any other IT projects,
only more so. Solid software engineering workflows and best practices are as relevant
to ML projects as they are to regular projects.

5.4. Keep it simple

The phrase "better done than perfect" has profound implications in business, espe-
cially in the early stages of a project. Students should be encouraged to develop
their solutions in an iterative way and not shy away from rules and heuristics [119].
A combination of rules, heuristics, and a simple predictive model often proves to be
a formidable baseline. Such solutions are usually computationally efficient and may
prove hard to beat by subsequent effort if contenders are evaluated holistically, taking
into account their performance, efficacy, hidden costs, and maintainability.

Consider the use case of moderating online classified ads market to exclude ads
which violate the terms of service. Initially, it may be tempting to assume that this
binary classification task can be fully automated with ML. In practice, due to the
concept drift introduced by the changing market, the ingenuity of spammers and
scammers, or even changes in the terms of service itself, the problem is much better
framed as an attempt to augment a rule-based system and a team of human moder-
ators. By ranking ads according to the probability of acceptance (and automatically
approving those with probability below the threshold that satisfies the false positive
rate), prioritizing the moderation of less questionable ads, and explaining and high-
lighting the reason for a low score, moderators can make their decisions faster. With
such definition, even a weak classifier could be successful in providing a true business
impact. Careful analysis of such use cases with students, even if only theoretical,
can dramatically improve students’ understanding of the entire ML workflow and its
business ramifications. While designing projects for students, we encourage seeking
problems that enable or require problem re-framing and simplification, or simulate
evolving and flexible requirements.

The main incentive in academic research is being published in a prestigious jour-
nal, which enforces certain constraints on the minimum scope of the experiment and
introduces a strong bias towards positive results. In business, however, we are inter-
ested in the most cost-effective way of validating or invalidating a hypothesis. The
main focus in applied ML is on fast pruning of unpromising paths. Students should be
encouraged to design quick validation experiments for guidance. In addition, students
should quickly learn not to get attached to their ideas, but to embrace failure and
learn. Many ideas and approaches do not work or do not yield sufficient improvements
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in practice, so being able to let go of a failed idea and move to the next experiment
is essential in applied research. Failures are not synonymous with wasted resources,
but trying to squeeze microscopic improvements over baseline solutions erratically is.

5.5. Market perspective

Last but not least, academia rarely teaches students to think of ML models through
the prism of the final product. This perspective requires a careful consideration of
several factors that may or may not fall outside of the area of expertise of machine
learning researchers and engineers. Apart from customer research, user experience
design, profitability, marketing, and the expertise of ML practitioners can be beneficial
for the development of the final product. There are several possible strategies that a
product can employ to gain popularity: being first to the market, being cheaper than
the competition, being better than the competition (claimed with data), being a fast
follower with good marketing strategy, or maybe just being good enough to carve up
a wide niche. Students should be aware of the strategy the product is employing and
should evaluate their progress and objectives in the context of that strategy. The
final goal is not to be perfect, but to adequately solve a business need.

5.6. Recommendations

We understand that the presentation of the full deployment of an ML model may be
difficult in the classroom setting. Also, with the rapid update of the ML toolbox the
curriculum focused on a particular set of tools and libraries faces the danger of quickly
becoming obsolete. Thus, in this section we have gathered general recommendations
regarding the tools that may be presented in the context of ML deployment.

1. Use agile processes all the way: Run ML projects using a flexible method-
ology (e.g. Kanban or Scrum), with short daily re-caps, planning, definitions of
done, retrospectives, and frequent syncing between team members to brainstorm
and validate ideas. Pair programming can help with idea generation, training,
and reducing errors and failed assumptions. Machine learning tasks are complex
and time-consuming, so sync often to help each other avoid dead ends and flaws,
especially in the early phase. We recommend to structure ML assignments in
a way that they require a group effort and a prolonged collaboration between
students, possibly spanning over different courses.

2. Do code reviews: This is one of the best and quickest ways to teach high-
quality coding to students. It promotes the best programming practices and
supports horizontal knowledge transfer between students. Try to define a set of
practices that students will enforce during the review, e.g., verifying if all tests
have passed in the automatic build, keeping folder structure and naming con-
ventions, and checking if all artefacts needed to reproduce a model are available
and properly described.
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3. Test (almost) everything: Seldom do we see ML code presented to the stu-
dents accompanied by unit tests, integration tests, and automatic (or at least
reproducible) builds. At the same time, releasing an untested code to a produc-
tion environment is a recipe for disaster. ML code should be tested at least as
thoroughly as the rest of the codebase. Testing of ML code is not simple, it de-
pends on train/test/validation datasets, which may not be time-invariant. But
the most difficult obstacle is that ML tests should verify not only the structure
of the code, but the logic learned during training [92].

4. Build a "second brain": Often, it is more important to know what did not
work and what was considered, but rejected, and why. Everything should be
documented: rationales, tools, assumptions, solutions, outcomes, requirements.
The term "documentation" is used here loosely as a set of semi-structured notes
available for the ML team for reference. Notion [23] is a perfect tool to build
such "second brain" for the project.

5. Outsource model serving complexity: There are many services that may
provide stable and robust execution and monitoring environments for ML de-
ployment. Consider including tutorials on how to deploy models to TensorFlow
Serving [28], Weights & Biases [32], Amazon SageMaker [25] or Neptune [21].
Most of these environments offer free academic licences and sandbox versions
suitable for classroom use.

6. Avoid over-engineering: Discourage students from premature optimization
and imprint in them the key rule of extreme programming: you ain’t gonna
need it (YAGNI). ML workflows tend to become convoluted quite quickly, so
do not add any unnecessary complexity. Highlight to students that complex
pipelines with many features, even if they deliver better predictive results, may
be less preferable in real-world scenarios due to maintainability and availability
considerations [119].

7. Structuring data and model repositories: Organizing projects around a
set of commonly followed conventions is a frequent pattern in many areas of
computer science. ML codebase can quickly deteriorate into a labyrinth of
directories filled with exotically named files. Students will benefit greatly from
an early exposure to ML engineering conventions related to project’s structure.
QuantumBlack’s kedro [18] and cookiecutter [7] are two excellent tools to
organize the structure of the codebase in a logical and interpretable way.

8. Use orchestration tools: A comprehensive ML teaching curriculum contains
all steps of the ML life-cycle. Exposing students to platforms for ML life-cycle
management completes the curriculum and allows the students to see the "big
picture": how all the steps taught during the course come together. We strongly
suggest to include in the curriculum platform such as MLflow [20], MetaFlow [19],
or Algorithmia [1] to demonstrate experimentation, reproducibility, and de-
ployment of ML models.
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6. Conclusions

Teaching ML engineering in a comprehensive way is a very challenging task, as ML
life-cycle consists of multiple interwoven steps requiring different techniques, tools,
and libraries. The basic recipe may sound simple: create a bulletproof processing
pipeline, design a reasonable objective, and keep adding features, making sure at each
step that the processing pipeline is unbroken. In practice, however, the landscape of
available tools, platforms, services, and libraries is vast and quickly changing. A
solid ML engineering curriculum should not be detached from the currently available
toolset, but it should emphasize the role of engineering methodologies beyond novelty
tool fads.

6.1. Bigger picture

And there, of course, remains the most fundamental question: why are we doing
machine learning? Aren’t we engaging in ML for ML’s sake only? We all strive
to accomplish something impactful and meaningful with our work, so it would be
wise to focus attention on machine learning that matters [109] and measuring the
true impact of ML solutions within the broader societal context. Students should
be encouraged to focus on meaningful evaluation methods (i.e., instead of measuring
accuracy, precision, AUROC, etc., measure the change in the real world), to engage
in the outside world (define real problems, collect real data, design real evaluations),
and to keep their eyes on the price, which is choosing research problems based on
their potential impact. A comprehensive list of such research challenges related to
the imminent climate crisis can be found in [95]. Machine learning provides ample
opportunities for researchers to have a real impact on the world and to advance social
good [62]. For a copious compendium of possible ML applications advancing social
good, please refer to [99]. We should strive to design ML solutions in such a way that
they promote and foster human development, economical growth, ethical justice, and
ecological sustainability. We have to take responsibility for the societal impacts of
ML [49]. Academia has a unique opportunity to fulfill this goal by shaping not only
the professional profiles of the alumni, but by planting the seeds of social responsibility
in them.

6.2. Business pressure on academia

In this paper, we have outlined issues which hinder the quick adaptation of students of
machine learning who leave academia for business environments and we have provided
some recommendations that could help address this problem. We are not discussing
the question of the relevance of basic research in machine learning to the actual
needs of the market, nor are we criticizing the way ML research is conducted by
academia. Far from it, we focus exclusively on the problem of teaching ML in a way
which enables students to quickly become proficient in translating their skills into
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functioning products. Academia remains the main source of human talent for applied
ML, and the constant drain of top ML talent by large companies exerts constant
pressure on ML teaching resources. A recent study [58] reveals an exponential growth
of the number of tenure-track and tenured faculty leaving universities for the industry.
This "corporate poaching" negatively impacts the overall economy by stifling the
ML entrepreneurship among the alumni, weakening the ML brainpower available
to government and universities, and lowering the rate of innovation and disruptive
creativity. We hope that our recommendations can be useful for those who chose
to remain in academia thus reducing the negative impact of this unmet demand
for machine learning talent. We also hope that our remarks regarding the social
responsibility aspect of the ML education will inspire educators to take an active
role in shaping the societal awareness of their students. Most students of ML will
leave the university to find a job in the industry, thus a practical alignment of their
skills and mindset with the challenges they will encounter should be beneficial for both
students and the economy. Those who stay in academia will hopefully have a stronger
background to participate in product-oriented grants, industry collaborations, and
open source projects. We believe that a better alignment of academia and business
practices in ML is possible and we hope to strengthen the feedback loop between both
environments.
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