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SUMMARY 

 
This research aims to estimate heritability and repeatability based on the data on milk 

production traits (MY – milk yield; FY – milk fat yield; FC – milk fat content; PY – milk 

protein yield and PC – milk protein content) as well as pedigree and genomic 

information. A total of 6,041 animals were included in the research, while 2,565 of them 

had data for milk production traits. In order to form a genomic relationship matrix, 58K 

SNP data were used for a total of 1,491 cows. Several software tools were used in the 

preparation and analysis of data, which were provided by the Central Breeding 

Organization, Department of Animal Science, Faculty of Agriculture, University of Novi 

Sad. PreGSF90, in combination with RENUMF90, was used for quality control of 

genomic information. Genetic analysis was performed in WOMBAT software by the 

REML using standard repeatability univariate analysis (BLUPpe) and repeatability 

models for genomic prediction (GBLUPpe and ssGBLUPpe). In all three analyses, the 

highest heritability (0.410, 0.378 and 0.389, respectively) and repeatability (0.449, 0.429 

and 0.440, respectively) were calculated for FC. Heritability estimates for all other traits 

were lower. Heritability ranged from 0.158 to 0.185 for MY, from 0.166 to 0.178 for FY, 

from 0.141 to 0.154 for PY and from 0.135 to 0.221 for PC. Heritability estimates 

indicate that it is possible to achieve genetic improvement but it is necessary to introduce 

the best model for prediction of breeding values of cow. 
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INTRODUCTION 

 

With the growth of the world population, it has become necessary to increase the quantity and quality of animal 

products for human consumption. This is also very important for our country, which has a relatively small number of 

dairy cattle per capita, while cow's milk and dairy products are among the most common foods in people’s diet. 

Many factors have contributed to the tremendous improvement in dairy cattle production over the past century, while 

one of the most important factors is regular measuring of traits and recording of phenotypic performance. The 

quantity and quality of milk are among the key factors affecting profitability of dairy cattle farming and represent the 

most important characteristics in the breeding programs of various dairy breeds. The most famous and widespread 

dairy breed in the world is Holstein Friesian. In dairy cattle breeding in Serbia, Holstein Friesian breed of cows is 

dominant on the territory of AP Vojvodina. According to the data from the Central Breeding Organization for 2022, 

the number of Holstein Friesian cattle included in breeding programs was 81,554, while the milk yield of the cattle in 

standard lactation was 7,571 kg of milk, 290 kg of fat (3.83%) and 247 kg of protein (3.26%) (Central Breeding 

Organization, 2023). By comparing these values with the milk yield of recorded cows in other ICAR member 

countries (ICAR, 2022), it can be concluded that there are opportunities for improving the traits in the Serbian dairy 

population. Dairy farmers can improve the productivity of their production through selective breeding. Selective 

breeding aims to provide offspring that are superior to their parents in traits of interest. Therefore, it is very important 

that animals are ranked and selected based on their breeding values, which are estimated using various mathematical 

and statistical models. Development of breeding programs and evaluation of breeding values requires knowledge of 

genetic parameters, so the first step in carrying out genetic analyzes is their calculation. The most important genetic 

parameter is heritability, primarily because it predicts how a trait will respond to selection. Dairy cattle breeding 

programs must consider the repeatable performance of cows, i.e. the potential for more than one lactation per cow 

(Sahin et al., 2012). The authors state that lifetime milk production is an important economic trait when defining 

breeding goals and that a very important question is whether milk production in subsequent lactations is sufficiently 

genetically repeatable, so that production in the first lactation can contribute with useful genetic information on 

subsequent lactations. The answer to this question leads us to another important genetic parameter, repeatability. 

Genetic parameters are calculated by relating certain variance components, and the most popular method for their 

estimation is the method of restricted maximum likelihood (REML; Patterson & Thompson, 1971). REML theory is 

based on equations mixed model BLUP (Henderson, 1975), which provides unbiased predictions if all data used for 

selection are also used in the analysis (Cesarani et al., 2019). When genomic information is available, variance 

components can be estimated using genome-wide REML (GBLUP) if only the phenotypes of the genotyped animals 

are considered, or by applying one-step GBLUP (ssGBLUP) if considering the phenotypes of all available animals, 

including also non-genotyped ones. While the initial cost of REML with genomic data was high due to the dense 

blocks of mixed equation models generated by the genomic information, updated sparse matrix techniques allow the 

use of large numbers of genotyped individuals in the estimation of variance components (Masuda et al., 2015). 

Gutierrez-Reinoso et al. (2021) state that evaluation of various traits in dairy cattle is more efficient using data 

obtained from genomic analysis compared to pedigree-based analysis, and that combination of both methodologies 

can significantly improve the evaluation in terms of accuracy. 

The main dairy producing countries, including the USA, Canada, Great Britain, Ireland, New Zealand, Australia, 

France, the Netherlands, Germany and Scandinavian countries, have implemented genomic evaluations in their 

breeding programs, which has led to significant changes in the global dairy industry sector (Weller et al., 2017). In 

the breeding program for the Holstein Friesian breed in AP Vojvodina, the genetic evaluation of cattle is carried out 

on the data on the established lactation production of cows, obtained during the first and later parities using the 

traditional BLUP sire model and BLUP animal model (Central Breeding Organization, 2019). The aim of this paper 

is to calculate the heritability and repeatability scores by REML method, using standard univariate analysis with 

repeated measures (BLUPpe) and repeatability models for genomic prediction (GBLUPpe and ssGBLUPpe – singl 

step GBLUPpe), and to consider the possibility of introducing genomic information into genetic evaluations. 

 

MATERIAL AND METHODS 
 

Data files 

Database consisted of 1,600 Holstein cows genotyped with the GeneSeek GGP Bovine 100 K chip, on the basis of 

which the preparation of the SNP file started. The first preparation of SNPs involved excluding the chips for so-

called Mendelian traits, as well as double SNPs with a smaller GeneTrain parameter. It was followed by the 

preparation of SNPs for analysis using Wombat software (Meyer, 2007), which does not accept markers with 

missing values. For this purpose, some SNPs and animals were eliminated, after which the database consisted of 
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1,566 animals with 62,807 SNPs, each with a call rate of 100%. The next step was SNP quality control in the 

preGSF90 software in combination with RENUMF90 (Misztal et al., 2018), where one SNP was excluded according 

to the Mendelian conflict (MC) criterion and 4,091 SNPs with a minor allele frequency <0.05. Also, 14 animals with 

Mendelian conflicts between parents and offspring were removed. After the quality control, the database included 

1,491 cows with 58,715 SNPs. 

Based on these cows, three pedigree files with two generations were formed. The first pedigree file contained data 

for calculating the numerical relationship matrix (A) and was organized in three columns: animal, sire, dam. The 

second pedigree file was created to calculate a genomic relationship matrix and contained data only for genotyped 

animals (G). It had the following structure: three columns for parentage information (animal, sire, dam) and a fourth 

indicating that there is SNP information for that animal. The third pedigree file was a combination of the previous 

two (H) and it contained data on the origin and genotyping of animals from the A pedigree file with the same data 

structure as in the G file except that in the fourth column 0 indicated animals that do not have SNPs, and 1 those who 

do. 

After the preparation of SNP and pedigree files, we started to create files with phenotypic data for five milk yield 

traits (MY – milk yield; FY – milk fat yield; FC – milk fat content; PY – milk protein yield and PC – milk protein 

content) and factors that were a fixed part of the model for heritability and repeatability assessment. Phenotypic data 

were related to the production results of lactation standardized to 305 days using the ICAR method to calculate daily 

values based on monthly controls during AM/PM milking (Delorenzo et al., 1986; ICAR, 2022a). The influence of 

lactation in order was observed through 6 classes (first lactation - 2565 measurements; second - 1448 measurements; 

third - 768 measurements; fourth - 344; fifth - 116; sixth - 40). Lactations refer to calvings in the period from 2012 to 

2021 and are grouped into three seasons (first - November, December, January, February; second - March, April, 

September, October; third - May, June, July, August), with a total of 8 farms on the territory of AP Vojvodina. 

Table 1 shows an overview of the number of animals included in the input files that participated in the trials. 

 
Table 1. Structure of pedigree files 

Number of Animals 
Pedigree Files 

A G H 

Total 6041 1491 6041 

Full pedigree 4087 1491 4087 

Measurement results 2565 1491 2565 

Genotyped - 1491 1491 

Legend: A – file for the NRM matrix of relationships; G 

and H – files for the GRM matrix of relationships 

 

Evaluation of variance components, heritability and repeatability 

BLUP was first developed by Henderson (1975) and it is used to simultaneously estimate fixed effects and breeding 

values. BLUP has found wide use in the genetic evaluation of domestic animals due to its statistical properties. With 

the constant progress of computers, its application has expanded from simpler models, such as the sire model, to 

more complex models, such as the animal model and its derivatives. Here, the repeatability models will be presented. 

In all the presented models, the values suggested by Wombat (Mayer, 2007) were used for the initial values of the 

variance components.  
Let us consider the following equation for a mixed linear model (BLUP): 
 

           (1) 

 
where are: 
 
y - the vector of observations (features) dimensions n x 1, and n is the number of data 
b - the vector of unknown fixed effects of dimension p x 1, and p is the number of levels of fixed effects 
a - the vector of unknown random effects (breeding values) of dimension q x 1, and q is the number of levels of 
random effects 
e - the vector of random error effects of dimension n x 1 
X - a known design matrix of dimension n x p relating the given data to the fixed effects 
Z - a known design matrix of dimension n x q relating the given data to the random effects.  
Matrices X and Z are also called incidence matrices and their elements are 0 and 1. 
The vector ɑ contains only the additive random effects of the animal. Then 
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Z' denotes the transposed matrix Z. Mathematically speaking, BLUP provides an estimate for b that we denoted by    
and an estimate for a  denoted by   , which were obtained by solving the equations (MME - Mixed Model Equations) 
which are, for Equation (1), given as 
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The starting values of the variance components (Henderson-s method 3) 

The Least Squares equations for (1) are (van der Werf, 2009) 
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Absorbing the fixed effects reduces the equations to             with    −     ′   𝟏 ′. If the inverse of 

 ′  does not exist, a generalized inverse can be used in its place. The initial values of the variance components can 

be taken as 
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The Average Information Algorithm for Restricted Maximum Likelihood (AI-REML) estimation 

Basic steps of this AI-REML are: 

Step 1: Determine the NRM matrix of relationships marked as A. 

Step 2: Set the initial values of the variances   
  and   

 , set the counter k = 0 and define     
  

 

   
   . 

Step 3: Calculate      
    

 . 

Step 4: Determine the matrices     
   and     

  . 

Step 5: Define the matrices          and     𝟏 −   𝟏   ′  𝟏   𝟏 ′  𝟏. 

Step 6: If we denote with     determinant of the matrix, we calculate     ,        and      ′  𝟏  . 
Step 7: Calculate the value of the likelihood function 
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Step 8: Solve the system (2). 

Step 9: With C
22

 we denote the part of the inverse matrix from Step 8, which corresponds to unknown random 

effects. Let    −    −    , where    and    are obtained from Step 8. Calculate partial derivative of the first order 

as follows: 
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Step 10: Calculate the average (av) partial derivative of the second order as follows: 
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Step 11: Form the matrix       
− − 
− − 

   and calculate     
  . 

Step 12: Now, calculate new estimations of the variance components: 

 

 
  

 

  
 
 

 

              
    

      
 

      
   

Step 13: If the difference between variance components calculated in two successive iterations is small enough, we 

calculate the standard errors (SE) by formulas: 

 

    
       

       ,     
       

         

 

Otherwise, k = k + 1 and go to Step 3. 

The similar algorithm can be applied to a mixed linear model with repetition. Let us consider the following equation 

for a mixed linear model with repetition (BLUPpe): 

 

               (4) 

 
where are: 
 
pe - the vector of unknown environmental random effects of dimension r x 1; the matrix   is a design matrix related 
to the effects of the external environment (i.e., only the animals for which we had repeated measurements were 
observed) of dimension n x r. 
The vector   contains only the additive random effects of the animal, while the non-additive genetic effects are 
contained in the vector pe. The assumption is that environmental effects and error effects are independently 
distributed with a mean of zero and variances    

  and   
 , respectively. That is when 

 

            
 ,           

 ,           
  

and 

                                                 

                                             
        

     
  

 
W' denotes the transposed matrix W. Mathematically speaking, BLUPpe provides an estimate for b that we denoted 

by   , an estimate for    denoted by   , and an estimate for pe, denoted by     and which were obtained by solving the 
equations (MME - Mixed Model Equations) which are, for Equation (4), given as 
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where    
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GBLUP is BLUP, where A is replaced by the genomic matrix G, i.e., Gr (for more details about matrices G, i.e. Gr, 
see Štrbac et al., 2023). The basic model was then Equation (4) with           

 ,           
  and         

    
 . The MME model with repetition (GBLUPpe) is 
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where    
  
 

  
  and    

  
 

   
 . If the matrix in Equations (6) is singular, its generalized inverse matrix is used when 

obtaining   ,    and    . 
 
The idea for ssGBLUP arose from the fact that a smaller part of the animals from the observed population was 
genotyped. A relationship matrix of the form A is observed 
 

   
 𝟏𝟏  𝟏 

  𝟏    
    

 
where index number 1 refers to animals that have not been genotyped, and index number 2 to animals that have been 
genotyped. Now, the matrix Mg012 has dimensions qg x m, where qg is the number of genotyped animals and m is the 
number of marker columns (i.e., the number of SNPs). After centering the matrix Mg012, we get the matrix Mg, whose 
elements are −1, 0 and 1. After determining the allele frequency (as in the previous section), the matrix S will be of 
the form S = Mg – P. The genomic relationship matrix (Gg) is given by 
 

   
   

        −      
  

   

 

 
where are: 
 
pj,B - the frequency of allele B in the j-th column of the SNP. If the matrix Gg is singular, then it is replaced by Ggr 
where 
 

                     −       

 
Here, with 0 ≤ λ ≤ 1 we denoted the ratio of the total genetic variance and the marker effect, A as the relationship 
matrix, α, and β as the leveling factors proposed in [23] and [24], J is a square matrix with all elements equal to 1, I 
is a unit matrix and 0 < ɛ   1 is a small constant. Clearly, A22 is a matrix of dimension qg x qg and is the relationship 

matrix only for genotyped animals. Matrices J and I were defined in the previous section. The matrix   𝟏is obtained 
as follows [25] 
 

  𝟏    𝟏   
  
    

 𝟏 −    
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For ssGBLUPpe, the basic model is Equation (4), with           

 ,           
  and             

 . The 

MME model for Equation (4) with repetition is 
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where    
  
 

  
  and    

  
 

   
 . In the case of a singular matrix for this model, its generalized inverse matrix was used. 

Note that if all animals are genotyped,        
  . 

The phenotypic variance   
    

     
    

 , while the repeatability coefficient is equal to      
     

     
 . 

The heritability is      
    

 . 

 

RESULTS AND DISCUSSION 

 

In most of REML algorithms, the iterations are used. The algorithm starts by the starting values of the variance 

components and finishes when the likelihood function reaches its maximum. The basic properties of this algorithm 

are: partial derivatives of the maximum likelihood function are needed; the average of partial derivatives of the 

maximum likelihood function of the second order and the expected values of these partial derivatives must be 

calculated; it includes unknown random effects; at each iteration, the solution of MME and trace of part of the 

inverse matrix which corresponds to unknown random effects; and algorithm stops when the difference between the 

calculated variance components is less than some given number. In all the presented models that have been 

considered, the values suggested by Wombat (Meyer, 2007) were used for the starting values of the variance 

components (Tab. 2). 

 
Table 2. The starting values of the variance components when solving system (2), (3) and (4) 

Method MY FY FC PY PC 

BLUPpe   
    

     
  3939814 8442 0.4442 3990 0.0568 

GBLUPpe 3656890 8223 0.4620 3981 0.0662 

ssGBLUPpe 3939814 8442 0.4442 3990 0.0568 

 

From the data in Table 2, we can see that the same starting values were recommended by the software during 

BLUPpe and ssGBLUPpe, which is explained by the fact that the number of animals with measurement results was 

the same, while in GBLUPpe the phenotypic values of only genotyped animals were used, i.e., there were fewer 

values. 

The goal of animal breeding is to improve animal performance in specific populations through selection. This 

improvement would not be possible without variability, i.e., differences between animals that are quantified at the 

population level by estimating the variance components for the traits of interest. Variance components are important 

to us for evaluation of genetic parameters and evaluation of breeding values. Because of its desirable traits, REML 

has become the most widely applied method for estimating variance components using different BLUP models. Also, 

the availability of modern high-capacity computers and the progress in increasing the efficiency of computer 

algorithms make it possible to test more and more complex models for this purpose, and therefore the development 

and application of appropriate statistical procedures for comparing models is becoming increasingly important 

(Hofer, 1998). The author points out the algorithms that are based on (approximate) second-order partial derivatives, 

such as average information (AI) REML or quasi-Newton, provide approximate large sample (co)variances of 

estimated (co)variance components.  

Table 3 shows the estimates of variance components and standard errors of estimates calculated by the REML 

method within the traditional BLUP model with repeated measures and BLUP models with genomic data. 

 
Table 3. Evaluation of variance components 

  

      
          

         
       

BLUPpe 

MY 448040   95779.1 652881   89324.9 1740830   47068.5 

FY 1006   186.5 1014   171.5 3639   98.4 

FC 0.102   0.0103 0.010   0.0074 0.138   0.0038 

PY 400.5   89.80 592.4   85.21 1783   48.1 

PC 0.011   0.0017 0.006   0.0015 0.034   0.0009 
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GBLUPpe 

MY 480433   112529.0 446426   113878.0 1951760   80670.8 

FY 988   220.72 869.1   230.5 4103   171.0 

FC 0.093   0.0126 0.013   0.0010 0.141   0.006 

PY 415.2   108.68 423.1   115.6 2108   86.4 

PC 0.008   0.0020 0.005   0.0022 0.048   0.0019 

ssGBLUPpe 

MY 568693   91689.6 492457   83453.4 2007740   54001.7 

FY 1050   167.0 887.7   156.99 3982   107.0 

FC 0.096   0.0091 0.013   0.0065 0.138   0.0039 

PY 463.6   83.28 460.4   80.14 2079   55.8 

PC 0.011   0.0014 0.006   0.0013 0.034   0.0009 

 

Variance component estimates were in most cases higher when genomic data were included, except in the case of 

variance estimates due to environmental permanent effects, which were highest using the traditional BLUPpe model. 

From the example of   −   
  for the trait MY, we can see that the calculated scores increased by about 7% and 27% 

when we compare the values obtained by applying GBLUP and ssGBLUP in relation to BLUPpe, respectively. 

Regarding the milk quality traits, different results were obtained. GBLUP gave a higher   −   
  for the trait PY, 

while for the other three traits the values were lower compared to BLUPpe. Interestingly, ssGBLUPpe gave the 

opposite results, i.e., higher values of   −   
  were for all milk quality traits except for the PY trait. By comparing 

the model with the genomic data, we can see that the values were higher for all five analyzed traits in favor of 

ssGBLUP. As for   
 , using the model with genomic data, higher scores were obtained for almost all traits, except 

for the FC and PC traits, where the same values of this variance were obtained using ssGBLUPpe and BLUPpe. 

If we compare the standard error values of the estimates of the variance components, we can see that higher values 

were obtained using GBLUPpe compared to the traditional BLUPpe, except for the FC trait, and by comparing the 

values obtained from ssGBLUPpe with BLUPpe, we can see that the standard errors were smaller, except for   
 . 

Standard errors obtained by models with genomic data were smaller in favor of ssGBLUPpe. 

Heritability is the most important genetic parameter, on the basis of which breeding programs define methods for 

evaluating the breeding values of animals, selection methods and mating systems. In addition to heritability, which 

can be interpreted as a parameter that assesses to what extent the superiority of the parents can be expected in their 

offspring, it is also very important to assess repeatability, which assesses to what extent the superiority of animals in 

one measurement can be expected in subsequent measurements of the same animals. Estimates of heritability and 

repeatability in populations depend on partitioning the observed variation into components that reflect genetic and 

environmental factors. Although these data are most commonly calculated using traditional methods based on 

pedigree and phenotype data, new methods using genetic marker data have been recently proposed. Table 4 shows 

heritability and repeatability scores with standard errors of heritability scores. 

 
Table 4. Evaluation of heritability (h2) and repeatability (R )  

Method BLUPpe GBLUPpe ssGBLUPpe 

Traits h2±s.e. R h2±s.e. R h2±s.e. R 

MY 0.158   0.032 0.387 0.167   0.037 0.322 0.185   0.028 0.346 

FY 0.178   0.031 0.357 0.166   0.035 0.312 0.177   0.027 0.327 

FC 0.410   0.035 0.449 0.378   0.044 0.429 0.389   0.031 0.440 

PY 0.144   0.031 0.358 0.141  0.036 0.285 0.154   0.026 0.308 

PC 0.221   0.031 0.342 0.135   0.031 0.223 0.216   0.026 0.333 

 

Based on the data from Table 4, we can see that higher heritability values were calculated for the MY trait when 

genomic data were used, and the highest value was obtained using the ssGBLUP model. The highest value for the 

trait PY was also calculated using the ssGBLUP model (0.154), but it was slightly higher compared to BLUPpe 

(0.144) and GBLUPpe (0.141), which gave similar results. For other traits (FY, FC and PC), the highest heritability 

value was calculated using the traditional BLUPpe model, which also calculated the highest repeatability coefficient 

values for all observed traits. In all three analyses, the highest heritability scores, which were moderately high 

(0.410, 0.378 and 0.389, respectively), as well as repeatability scores (0.449, 0.429 and 0.440, respectively) were 

calculated for the FC trait. For other traits, heritability values were moderate. If we look at the values of standard 

errors of heritability estimates, we can see that the lowest values were calculated using the ssGBLUPpe model. A 

little higher values were calculated using the traditional BLUPpe model, while the highest values were calculated 

using the GBLUPpe model. 
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If we compare our results with the results in the literature, we can see that there are certain agreements. Sermyagin et 

al. (2018) performed a genome-wide association study for milk production traits in a Russian population of Holstein 

and Black and White cattle and determined that the heritability of milk yield was 0.180. The highest heritability was 

calculated for milk fat yield at 0.221, while for milk protein yield it was 0.173. Based on our research, we can see 

that a similar heritability value was obtained for the trait MY, which was of medium degree. This may be due to the 

fact that MY is the trait with the highest selection pressure over a longer period of time compared to other traits 

where higher heritability values were calculated. In the research by Lee et al. (2020), the estimated heritability of 

milk yield per parity in the first, second and third parity was 0.28, 0.20 and 0.16, respectively, while for fat yield it 

was 0.26, 0.23 and 0.20, and for protein yield it was 0.23, 0.18, and 0.15, respectively. The highest heritability 

estimates for milk fat percentage and protein percentage, as was also the case in our study, were calculated by 

Oliveira Junior et al. (2021), but their values were much higher (0.66 and 0.69, respectively) and the applied model 

was a bivariate linear animal model using Bayesian methods via Gibbs sampling.  

It is interesting that the heritability value calculated using the traditional BLUPpe model was higher compared to 

those with genomic data for most traits. However, the case that most of the identified SNPs explain a small part of 

heritability for certain traits can be found in the literature and other studies, and the difference between heritability 

based on pedigree and that calculated on genomic data was called missing heritability (Zhu & Zhou, 2020). In the 

research of Khanzadeh et al. (2022), estimated heritabilities based on pedigree and genome were 0.253 and 0.144 for 

milk yield, 0.290 and 0.191 for milk fat percentage, and 0.378 and 0.363 for milk protein percentage, respectively. 

Zhu & Zhou (2020) state that missing heritability may be due to current GWAS being not powerful enough and 

many so-called causative SNPs remain undetected, which can greatly underestimate the variance estimate. In 

addition, pedigree-based studies may overestimate heritability, which depends on the applied model, factors and the 

amount of information included in the analysis. 

 

CONCLUSION 

 

Heritability in the narrow sense is an important genetic parameter that quantifies the proportion of the phenotypic 

variance of a particular trait that can be attributed to additive genetic variation. Repeatability represents its upper 

limit because, in addition to genetic variations, it also takes into account variations due to permanent effects of the 

external environment, i.e., it explains the extent to which phenotypic differences between animals can be explained 

by permanent variations. Estimation of these parameters previously relied on traditional methods that included 

pedigree data and phenotopic measurements. The use of genetic markers enabled the development of new methods 

for evaluating the so-called genomic heritability, which is the proportion of phenotypic variance explained by SNPs. 

In this study, variance component estimates were in most cases higher when genomic data were included, except in 

the case of variance estimates due to environmental permanent effects, which were the highest using the traditional 

BLUPpe model. Higher heritability values for the trait MY were calculated when genomic data were used, and the 

highest value was obtained using the ssGBLUP model. The highest heritability was calculated using the ssGBLUP 

model also for the PY trait, while for the FY, FC and PC traits, the highest heritability values were calculated using 

the traditional BLUPpe model. The highest values of the repeatability coefficient for all observed traits were 

calculated using the traditional BLUPpe model. In all three analyses, the trait FC had the highest heritability scores, 

which were medium high (0.410, 0.378 and 0.389, respectively) as well as repeatability scores (0.449, 0.429 and 

0.440, respectively), while the heritability values for the other traits were medium. 

Heritability estimates indicate that it is possible to achieve genetic improvement, but it is necessary to introduce the 

best model for predicting the breeding values of cows. The research presented in this paper indicates that the 

standard errors of heritability estimates, and in most cases the component variances, were the lowest when applying 

the ssGBLUPpe model, while the GBLUPpe gave the highest errors. This can be explained by the small number of 

genotyped animals, namely cows without the genomic information of sires. The main limiting factor for wide 

application of genomic methods in animal breeding is the insufficient size of the population in certain countries, 

including ours, so it is necessary to consider combining reference populations in different countries, exchanging 

genotypes and thereby contributing to improvement of genetic assessments. 
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